Review Article

白杨素综述:分子靶点、药理作用和生物药学等方面

卷 23, 期 4, 2022

发表于: 24 August, 2021

页: [420 - 436] 页: 17

弟呕挨: 10.2174/1389450122666210824141044

Open Access Journals Promotions 2
摘要

白杨素(一种类黄酮)已显示出各种有希望的药理活性,即。抗癌、抗糖尿病、免疫调节、抗抑郁和抗哮喘。此外,它对肝脏、大脑、肾脏和心脏等不同器官的各种毒素表现出潜在的保护作用。已经进行了大量研究来探索其可能的作用机制的可能目标。然而,由于其口服生物利用度差,其治疗应用受到限制。其生物利用度差的主要原因是其广泛的首过代谢。尚未全面讨论对白杨素及其相关分子靶点的药理学特性的批判性审查。因此,本工作的重点是深入了解负责白杨素药理作用的分子靶点。此外,首次制作了示意图来表示白杨素的综合药代动力学特性,这有助于了解其成功交付的生物制药方面。深入了解白杨素的生物药学特性将有助于采用合适的制剂方法来克服口服生物利用度差的问题。此外,它有助于研究白杨素与其他药物可能的药代动力学相互作用。因此,我们发现白杨素是一种具有多种治疗特性的神奇天然药物,通过深入了解分子靶点、药理作用和生物制药属性,可以利用其益处。

关键词: 白杨素,化学预防,抗癌,保护作用,抗抑郁,抗糖尿病,抗病毒,药代动力学

« Previous
图形摘要
[1]
Andrew R, Izzo AA. Principles of pharmacological research of nutraceuticals. Br J Pharmacol 2017; 174(11): 1177-94.
[http://dx.doi.org/10.1111/bph.13779] [PMID: 28500635]
[2]
Williamson EM, Liu X, Izzo AA. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br J Pharmacol 2020; 177(6): 1227-40.
[http://dx.doi.org/10.1111/bph.14943] [PMID: 31799702]
[3]
Pagano E, Romano B, Izzo AA, Borrelli F. The clinical efficacy of curcumin-containing nutraceuticals: An overview of systematic reviews. Pharmacol Res 2018; 134: 79-91.
[http://dx.doi.org/10.1016/j.phrs.2018.06.007] [PMID: 29890252]
[4]
Gülçin I, Elmastaş M, Aboul-Enein HY. Antioxidant activity of clove oil - A powerful antioxidant source. Arab J Chem 2012; 5(4): 489-99.
[http://dx.doi.org/10.1016/j.arabjc.2010.09.016]
[5]
Edris AE. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother Res 2007; 21(4): 308-23.
[http://dx.doi.org/10.1002/ptr.2072] [PMID: 17199238]
[6]
Nabavi SF, Braidy N, Habtemariam S, et al. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem Int 2015; 90: 224-31.
[http://dx.doi.org/10.1016/j.neuint.2015.09.006] [PMID: 26386393]
[7]
Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018; 145: 187-96.
[http://dx.doi.org/10.1016/j.phytochem.2017.09.016] [PMID: 29161583]
[8]
Anandhi R, Annadurai T, Anitha TS, et al. Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotus ostreatus, and its major constituent, chrysin, in Triton WR-1339-induced hypercholesterolemic rats. J Physiol Biochem 2013; 69(2): 313-23.
[http://dx.doi.org/10.1007/s13105-012-0215-6] [PMID: 23104078]
[9]
Pichichero E, Cicconi R, Mattei M, Muzi MG, Canini A. Acacia honey and chrysin reduce proliferation of melanoma cells through alterations in cell cycle progression. Int J Oncol 2010; 37(4): 973-81.
[PMID: 20811719]
[10]
Cheung Y, Meenu M, Yu X, Xu B, Cheung Y, Meenu M. Phenolic acids and flavonoids profiles of commercial honey from different floral sources and geographic sources. Int J Food Prop 2019; 22(1): 290-308.
[http://dx.doi.org/10.1080/10942912.2019.1579835]
[11]
Zhou YJ, Xu N, Zhang XC, Zhu YY, Liu SW, Chang YN. Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 Cells and HFD/STZ-induced C57BL/6J mice. J Agric Food Chem 2021; 69(20): 5618-27.
[http://dx.doi.org/10.1021/acs.jafc.1c01109] [PMID: 33979145]
[12]
Kasala ER, Bodduluru LN, Madana RM, v AK, Gogoi R, Barua CC. Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. Toxicol Lett 2015; 233(2): 214-25.
[http://dx.doi.org/10.1016/j.toxlet.2015.01.008] [PMID: 25596314]
[13]
Sharma P, Kumari A, Gulati A, Krishnamurthy S, Hemalatha S. Chrysin isolated from Pyrus pashia fruit ameliorates convulsions in experimental animals. Nutr Neurosci 2019; 22(8): 569-77.
[http://dx.doi.org/10.1080/1028415X.2017.1418786] [PMID: 29284373]
[14]
Wolfman C, Viola H, Paladini A, Dajas F, Medina JH. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol Biochem Behav 1994; 47(1): 1-4.
[http://dx.doi.org/10.1016/0091-3057(94)90103-1] [PMID: 7906886]
[15]
Rodríguez-Landa JF, Hernández-López F, Cueto-Escobedo J, et al. Chrysin (5,7-dihydroxyflavone) exerts anxiolytic-like effects through GABAA receptors in a surgical menopause model in rats. Biomed Pharmacother 2019; 109: 2387-95.
[http://dx.doi.org/10.1016/j.biopha.2018.11.111] [PMID: 30551498]
[16]
Filho CB, Jesse CR, Donato F, et al. Neurochemical factors associated with the antidepressant-like effect of flavonoid chrysin in chronically stressed mice. Eur J Pharmacol 2016; 791: 284-96.
[http://dx.doi.org/10.1016/j.ejphar.2016.09.005] [PMID: 27609609]
[17]
German-Ponciano LJ, Rosas-Sánchez GU, Ortiz-Guerra SI, Fregozo CS, Rodriguez-Landa JF. Effects of chrysin on mRNA expression of 5-HT1A and 5-HT2A receptors in the raphe nuclei and hippocampus. Rev Bras Farmacogn 2021.
[http://dx.doi.org/10.1007/s43450-021-00164-3]
[18]
Angelopoulou E, Pyrgelis ES, Piperi C. Neuroprotective potential of chrysin in Parkinson’s disease: Molecular mechanisms and clinical implications. Neurochem Int 2020; 132: 104612.
[http://dx.doi.org/10.1016/j.neuint.2019.104612] [PMID: 31785348]
[19]
Farooq R, Majid S, Hanif A. Role of phytochemicals from honey in prevention and treatment of arthritis and related disorders. In: Therapeutic Applications of Honey and its Phytochemicals. Springer Singapore 2020; pp. 287-305.
[http://dx.doi.org/10.1007/978-981-15-7305-7_13]
[20]
Zhang C, Yu W, Huang C, et al. Chrysin protects human osteoarthritis chondrocytes by inhibiting inflammatory mediator expression via HMGB1 suppression. Mol Med Rep 2019; 19(2): 1222-9.
[PMID: 30535473]
[21]
Moghadam ER, Ang HL, Asnaf SE, et al. Broad-spectrum preclinical antitumor activity of chrysin: current trends and future perspectives. Biomolecules 2020; 10(10): 1374.
[http://dx.doi.org/10.3390/biom10101374] [PMID: 32992587]
[22]
Miroddi M, Calapai G, Navarra M, Minciullo PL, Gangemi S. Passiflora incarnata L.: ethnopharmacology, clinical application, safety and evaluation of clinical trials. J Ethnopharmacol 2013; 150(3): 791-804.
[http://dx.doi.org/10.1016/j.jep.2013.09.047] [PMID: 24140586]
[23]
Taslimi P, Kandemir FM, Demir Y, et al. The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. J Biochem Mol Toxicol 2019; 33(6): e22313.
[http://dx.doi.org/10.1002/jbt.22313] [PMID: 30801880]
[24]
Kasala ER, Bodduluru LN, Barua CC, et al. Chemopreventive effect of chrysin, a dietary flavone against benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice. Pharmacol Rep 2016; 68(2): 310-8.
[http://dx.doi.org/10.1016/j.pharep.2015.08.014] [PMID: 26922533]
[25]
Lim HK, Kim KM, Jeong SY, Choi EK, Jung J. Chrysin increases the therapeutic efficacy of docetaxel and mitigates docetaxel-induced edema. Integr Cancer Ther 2017; 16(4): 496-504.
[http://dx.doi.org/10.1177/1534735416645184] [PMID: 27151585]
[26]
Song JH, Kim YH, Lee SC, Kim MH, Lee JH. Inhibitory effect of chrysin (5,7-Dihydroxyflavone) on experimental choroidal neovascularization in rats. Ophthalmic Res 2016; 56(1): 49-55.
[http://dx.doi.org/10.1159/000444929] [PMID: 27058958]
[27]
Souza LC, Antunes MS, Filho CB, et al. Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacol Biochem Behav 2015; 134: 22-30.
[http://dx.doi.org/10.1016/j.pbb.2015.04.010] [PMID: 25931267]
[28]
Filho CB, Jesse CR, Donato F, et al. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na(+),K(+)-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin. Neuroscience 2015; 289: 367-80.
[http://dx.doi.org/10.1016/j.neuroscience.2014.12.048] [PMID: 25592430]
[29]
Darendelioglu E. Neuroprotective effects of chrysin on diclofenac-induced apoptosis in SH-SY5Y cells. Neurochem Res 2020; 45(5): 1064-71. https://link.springer.com/article/10.1007/s11064-020-02982-8
[http://dx.doi.org/10.1007/s11064-020-02982-8] [PMID: 32040722]
[30]
Zhang Z, Li G, Szeto SSW, et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 2015; 84: 331-43.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.02.030] [PMID: 25769424]
[31]
Li X, Huang JM, Wang JN, Xiong XK, Yang XF, Zou F. Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53. Chem Biol Interact 2015; 232: 12-20.
[http://dx.doi.org/10.1016/j.cbi.2015.03.003] [PMID: 25770930]
[32]
Rehman MU, Ali N, Rashid S, et al. Alleviation of hepatic injury by chrysin in cisplatin administered rats: probable role of oxidative and inflammatory markers. Pharmacol Rep 2014; 66(6): 1050-9.
[http://dx.doi.org/10.1016/j.pharep.2014.06.004] [PMID: 25443734]
[33]
Mehri S, Karami HV, Hassani FV, Hosseinzadeh H. Chrysin reduced acrylamide-induced neurotoxicity in both in vitro and in vivo assessments. Iran Biomed J 2014; 18(2): 101-6.
[PMID: 24518551]
[34]
Zarzecki MS, Araujo SM, Bortolotto VC, de Paula MT, Jesse CR, Prigol M. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol Rep 2014; 1: 200-8.
[http://dx.doi.org/10.1016/j.toxrep.2014.02.003] [PMID: 28962239]
[35]
Darwish HA, Arab HH, Abdelsalam RM. Chrysin alleviates testicular dysfunction in adjuvant arthritic rats via suppression of inflammation and apoptosis: Comparison with celecoxib. Toxicol Appl Pharmacol 2014; 279(2): 129-40.
[http://dx.doi.org/10.1016/j.taap.2014.05.018] [PMID: 24932515]
[36]
Wang J, Zhang T, Du J, Cui S, Yang F, Jin Q. Anti-Enterovirus 71 effects of chrysin and its phosphate ester. PLoS One 2014; 9(3): e89668.
[37]
Xiao J, Zhai H, Yao Y, et al. Chrysin attenuates experimental autoimmune neuritis by suppressing immuno-inflammatory responses. Neuroscience 2014; 262: 156-64.
[http://dx.doi.org/10.1016/j.neuroscience.2014.01.004] [PMID: 24412705]
[38]
Manoharan S, Srinivasan R, Wani S, Karthikeyan S. Chemopreventive potential of chrysin in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. Int J Nutr Pharmacol Neurol Dis 2013; 3(1): 46.
[http://dx.doi.org/10.4103/2231-0738.106993]
[39]
Liu H, Liu K, Huang Z, et al. A chrysin derivative suppresses skin cancer growth by inhibiting cyclin-dependent kinases. J Biol Chem 2013; 288(36): 25924-37.
[http://dx.doi.org/10.1074/jbc.M113.464669] [PMID: 23888052]
[40]
Lirdprapamongkol K, Sakurai H, Abdelhamed S, et al. A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncol Rep 2013; 30(5): 2357-64.
[http://dx.doi.org/10.3892/or.2013.2667] [PMID: 23969634]
[41]
Yang B, Huang J, Xiang T, et al. Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J Appl Toxicol 2014; 34(1): 105-12.
[http://dx.doi.org/10.1002/jat.2941] [PMID: 24122885]
[42]
Rehman MU, Tahir M, Khan AQ, et al. Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: Plausible role of NF-κB. Toxicol Lett 2013; 216(2-3): 146-58.
[http://dx.doi.org/10.1016/j.toxlet.2012.11.013] [PMID: 23194824]
[43]
Shao JJ, Zhang AP, Qin W, Zheng L, Zhu YF, Chen X. AMP-activated protein kinase (AMPK) activation is involved in chrysin-induced growth inhibition and apoptosis in cultured A549 lung cancer cells. Biochem Biophys Res Commun 2012; 423(3): 448-53.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.123] [PMID: 22659738]
[44]
Markiewicz-Żukowska R, Car H, Naliwajko SK, et al. Ethanolic extract of propolis, chrysin, CAPE inhibit human astroglia cells. Adv Med Sci 2012; 57(2): 208-16.
[http://dx.doi.org/10.2478/v10039-012-0042-6] [PMID: 23183767]
[45]
Khan R, Khan AQ, Qamar W, et al. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53. Toxicol Appl Pharmacol 2012; 258(3): 315-29.
[http://dx.doi.org/10.1016/j.taap.2011.11.013] [PMID: 22155348]
[46]
Sultana S, Verma K, Khan R. Nephroprotective efficacy of chrysin against cisplatin-induced toxicity via attenuation of oxidative stress. J Pharm Pharmacol 2012; 64(6): 872-81.http://doi.wiley.com/10.1111/j.2042-7158.2012.01470.x
[http://dx.doi.org/10.1111/j.2042-7158.2012.01470.x] [PMID: 22571266]
[47]
Kandemir FM, Kucukler S, Eldutar E, Caglayan C, Gülçin İ. Chrysin protects rat kidney from paracetamol-induced oxidative stress, inflammation, apoptosis, and autophagy: a multi-biomarker Approach. Sci Pharm 2017; 85(1): 4.
[http://dx.doi.org/10.3390/scipharm85010004] [PMID: 28134775]
[48]
Yu X-M, Phan T, Patel PN, Jaskula-Sztul R, Chen H. Chrysin activates Notch1 signaling and suppresses tumor growth of anaplastic thyroid carcinoma in vitro and in vivo. Cancer 2013; 119(4): 774-81.
[http://dx.doi.org/10.1002/cncr.27742] [PMID: 22991264]
[49]
Brechbuhl HM, Kachadourian R, Min E, Chan D, Day BJ. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: the role of glutathione. Toxicol Appl Pharmacol 2012; 258(1): 1-9.
[http://dx.doi.org/10.1016/j.taap.2011.08.004] [PMID: 21856323]
[50]
Wadibhasme PG, Ghaisas MM, Thakurdesai PA. Anti-asthmatic potential of chrysin on ovalbumin-induced bronchoalveolar hyperresponsiveness in rats. Pharm Biol 2011; 49(5): 508-15.
[http://dx.doi.org/10.3109/13880209.2010.521754] [PMID: 21501099]
[51]
Khan MS, Devaraj H, Devaraj N. Chrysin abrogates early hepatocarcinogenesis and induces apoptosis in N-nitrosodiethylamine-induced preneoplastic nodules in rats. Toxicol Appl Pharmacol 2011; 251(1): 85-94.
[http://dx.doi.org/10.1016/j.taap.2010.12.004] [PMID: 21167192]
[52]
Fonseca SF, Lima DB, Alves D, Jacob RG, Perin G, Lenardão EJ. Synthesis, characterization and antioxidant activity of organoselenium and organotellurium compound derivatives of chrysin. New J Chem 2015; 39(4): 3043-50.
[http://dx.doi.org/10.1039/C4NJ02329C]
[53]
Woodman OL, Chan ECH. Vascular and anti-oxidant actions of flavonols and flavones. In: Clinical and Experimental Pharmacology and Physiology. John Wiley & Sons, Ltd 2004; pp. 786-90.
[http://dx.doi.org/10.1111/j.1440-1681.2004.04072.x]
[54]
Anand KV, Mohamed Jaabir MS, Thomas PA, Geraldine P. Protective role of chrysin against oxidative stress in d-galactose-induced aging in an experimental rat model. Geriatr Gerontol Int 2012; 12(4): 741-50.
[http://dx.doi.org/10.1111/j.1447-0594.2012.00843.x] [PMID: 22469068]
[55]
Breinholt V, Lauridsen ST, Dragsted LO. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat. Xenobiotica 1999; 29(12): 1227-40.
[http://dx.doi.org/10.1080/004982599237903] [PMID: 10647909]
[56]
Manzolli ES, Serpeloni JM, Grotto D, et al. Protective effects of the flavonoid chrysin against methylmercury-induced genotoxicity and alterations of antioxidant status, in vivo. Oxid Med Cell Longev 2015; 2015: 602360.
[http://dx.doi.org/10.1155/2015/602360] [PMID: 25810809]
[57]
Farina M, Aschner M, Rocha JBT. Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol 2011; 256(3): 405-17.
[http://dx.doi.org/10.1016/j.taap.2011.05.001] [PMID: 21601588]
[58]
Joshi D, Kumar MD, Kumar SA, Sangeeta S. Reversal of methylmercury-induced oxidative stress, lipid peroxidation, and DNA damage by the treatment of N-acetyl cysteine: a protective approach. J Environ Pathol Toxicol Oncol 2014; 33(2): 167-82.http://www.dl.begellhouse.com/journals/0ff459a57a4c08d0,249005dc454eb8de,2beb92d577c4b02c.html
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2014010291] [PMID: 24941299]
[59]
Siess MH, Le Bon AM, Canivenc-Lavier MC, Amiot MJ, Sabatier S, Aubert SY. Flavonoids of honey and propolis: characterization and effects on hepatic drug-metabolizing enzymes and Benzo[a]pyrene-DNA binding in rats. J Agric Food Chem 1996; 44(8): 2297-301.
[http://dx.doi.org/10.1021/jf9504733]
[60]
Samarghandian S, Farkhondeh T, Azimi-Nezhad M. Protective effects of chrysin against drugs and toxic agents. Dose Response 2017; 15(2): 1559325817711782.
[http://dx.doi.org/10.1177/1559325817711782] [PMID: 28694744]
[61]
Harry GJ, Kraft AD. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol 2008; 4(10): 1265-77.
[http://dx.doi.org/10.1517/17425255.4.10.1265] [PMID: 18798697]
[62]
Kaur C, Sivakumar V, Zou Z, Ling EA. Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain. Brain Struct Funct 2014; 219(1): 151-70.
[http://dx.doi.org/10.1007/s00429-012-0491-5] [PMID: 23262920]
[63]
Cui Y, Wu J, Jung S-C, et al. Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation. Biol Pharm Bull 2010; 33(11): 1814-21.
[http://dx.doi.org/10.1248/bpb.33.1814] [PMID: 21048305]
[64]
Cho H, Yun CW, Park WK, et al. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol Res 2004; 49(1): 37-43.
[http://dx.doi.org/10.1016/S1043-6618(03)00248-2] [PMID: 14597150]
[65]
Ha SK, Moon E, Kim SY. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci Lett 2010; 485(3): 143-7.
[http://dx.doi.org/10.1016/j.neulet.2010.08.064] [PMID: 20813161]
[66]
Del Fabbro L, Rossito GA, Jesse CR, et al. Chrysin protects against behavioral, cognitive and neurochemical alterations in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett 2019; 706: 158-63.
[http://dx.doi.org/10.1016/j.neulet.2019.05.036] [PMID: 31121284]
[67]
Goes ATR, Jesse CR, Antunes MS, et al. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem Biol Interact 2018; 279: 111-20.
[http://dx.doi.org/10.1016/j.cbi.2017.10.019] [PMID: 29054324]
[68]
Guo B, Zheng C, Cai W, et al. Multifunction of chrysin in Parkinson’s model: Anti-neuronal apoptosis, neuroprotection via activation of MEF2D, and inhibition of monoamine oxidase-B. J Agric Food Chem 2016; 64(26): 5324-33.
[http://dx.doi.org/10.1021/acs.jafc.6b01707] [PMID: 27245668]
[69]
Jiang Y, Gong F-L, Zhao G-B, Li J. Chrysin suppressed inflammatory responses and the inducible nitric oxide synthase pathway after spinal cord injury in rats. Int J Mol Sci 2014; 15(7): 12270-9.
[http://dx.doi.org/10.3390/ijms150712270] [PMID: 25014398]
[70]
Cichoż-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 2014; 20(25): 8082-91.
[http://dx.doi.org/10.3748/wjg.v20.i25.8082] [PMID: 25009380]
[71]
Schwarz C, Fitschek F, Bar-Or D, Klaus DA, Tudor B, Fleischmann E. Inflammatory response and oxidative stress during liver resection. PLoS One 2017; 12(10): e0185685.
[http://dx.doi.org/10.1371/journal.pone.0185685]
[72]
Mizar SM, Omar HA, El Sherbiny GA, El-moselhy MA. Nebivolol and chrysin protect the liver against ischemia/reperfusion-induced injury in rats. Beni Suef Univ J Basic Appl Sci 2015; 4(1): 86-92.
[http://dx.doi.org/10.1016/j.bjbas.2015.02.012]
[73]
Ali N, Rashid S, Nafees S, Hasan SK, Sultana S. Beneficial effects of Chrysin against Methotrexate-induced hepatotoxicity via attenuation of oxidative stress and apoptosis. Mol Cell Biochem 2014; 385(1-2): 215-23.
[http://dx.doi.org/10.1007/s11010-013-1830-4] [PMID: 24154663]
[74]
Temel Y, Kucukler S, Yıldırım S, Caglayan C, Kandemir FM. Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(3): 325-37.
[http://dx.doi.org/10.1007/s00210-019-01741-z] [PMID: 31620822]
[75]
Rashid S, Ali N, Nafees S, et al. Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. Toxicol Mech Methods 2013; 23(5): 337-45.
[http://dx.doi.org/10.3109/15376516.2012.759306] [PMID: 23256457]
[76]
Hermenean A, Mariasiu T, Navarro-González I, et al. Hepatoprotective activity of chrysin is mediated through TNF-α in chemically-induced acute liver damage: An in vivo study and molecular modeling. Exp Ther Med 2017; 13(5): 1671-80.
[http://dx.doi.org/10.3892/etm.2017.4181] [PMID: 28565752]
[77]
Mohammadi A, Kazemi S, Hosseini M, et al. Chrysin effect in prevention of acetaminophen-induced hepatotoxicity in rat. Chem Res Toxicol 2019; 32(11): 2329-37. https://pubs.acs.org/doi/abs/10.1021/acs.chemrestox.9b00332
[http://dx.doi.org/10.1021/acs.chemrestox.9b00332] [PMID: 31625388]
[78]
Fatemi I, Khalili H, Mehrzadi S, Basir Z, Malayeri A, Goudarzi M. Mechanisms involved in the possible protective effect of chrysin against sodium arsenite-induced liver toxicity in rats. Life Sci 2021; 267: 118965.
[http://dx.doi.org/10.1016/j.lfs.2020.118965] [PMID: 33383050]
[79]
Mantawy EM, El-Bakly WM, Esmat A, Badr AM, El-Demerdash E. Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur J Pharmacol 2014; 728(1): 107-18.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.065] [PMID: 24509133]
[80]
Anandhi R, Thomas PA, Geraldine P. Evaluation of the anti-atherogenic potential of chrysin in Wistar rats. Mol Cell Biochem 2014; 385(1-2): 103-13.
[http://dx.doi.org/10.1007/s11010-013-1819-z] [PMID: 24065391]
[81]
Yuvaraj S, Ramprasath T, Saravanan B, Vasudevan V, Sasikumar S, Selvam GS. Chrysin attenuates high-fat-diet-induced myocardial oxidative stress via upregulating eNOS and Nrf2 target genes in rats. Mol Cell Biochem 2021; 476(7): 2719-27.
[http://dx.doi.org/10.1007/s11010-021-04105-5] [PMID: 33677805]
[82]
Zhao S, Liang M, Wang Y, et al. Chrysin suppresses vascular endothelial inflammation via inhibiting the NF-κB signaling pathway. J Cardiovasc Pharmacol Ther 2019; 24(3): 278-87.
[http://dx.doi.org/10.1177/1074248418810809] [PMID: 30497287]
[83]
Wang S, Zhang X, Liu M, et al. Chrysin inhibits foam cell formation through promoting cholesterol efflux from RAW264.7 macrophages. Pharm Biol 2015; 53(10): 1481-7.
[http://dx.doi.org/10.3109/13880209.2014.986688] [PMID: 25857322]
[84]
Kappus MS, Murphy AJ, Abramowicz S, et al. Activation of liver X receptor decreases atherosclerosis in Ldlr mice in the absence of ATP-binding cassette transporters A1 and G1 in myeloid cells. Arterioscler Thromb Vasc Biol 2014; 34(2): 279-84.
[http://dx.doi.org/10.1161/ATVBAHA.113.302781] [PMID: 24311381]
[85]
Yang M, Xiong J, Zou Q, Wang DD, Huang CX. Chrysin attenuates interstitial fibrosis and improves cardiac function in a rat model of acute myocardial infarction. J Mol Histol 2018; 49(6): 555-65.
[http://dx.doi.org/10.1007/s10735-018-9793-0] [PMID: 30225683]
[86]
Rani N, Bharti S, Bhatia J, Nag TC, Ray R, Arya DS. Chrysin, a PPAR-γ agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation. Chem Biol Interact 2016; 250: 59-67.
[http://dx.doi.org/10.1016/j.cbi.2016.03.015] [PMID: 26972669]
[87]
Rani N, Arya DS. Chrysin rescues rat myocardium from ischemia-reperfusion injury via PPAR-γ/Nrf2 activation. Eur J Pharmacol 2020; 883: 173389.
[http://dx.doi.org/10.1016/j.ejphar.2020.173389] [PMID: 32707190]
[88]
Farkhondeh T, Samarghandian S, Bafandeh F. The cardiovascular protective effects of chrysin: a narrative review on experimental researches. Cardiovasc Hematol Agents Med Chem 2019; 17(1): 17-27.
[http://dx.doi.org/10.2174/1871525717666190114145137] [PMID: 30648526]
[89]
Mantawy EM, Esmat A, El-Bakly WM, Salah ElDin RA, El-Demerdash E. Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53, MAPK and AKT pathways. Sci Rep 2017; 7(1): 4795.
[http://dx.doi.org/10.1038/s41598-017-05005-9] [PMID: 28684738]
[90]
Ali BH, Al Za’abi M, Adham SA, Yasin J, Nemmar A, Schupp N. Therapeutic effect of chrysin on adenine-induced chronic kidney disease in rats. Cell Physiol Biochem 2016; 38(1): 248-57.
[http://dx.doi.org/10.1159/000438626] [PMID: 26784294]
[91]
Ali BH, Adham SA, Al Za’abi M, Waly MI, Yasin J, Nemmar A. Ameliorative effect of chrysin on adenine-induced chronic kidney disease in rats. PLoS One 2015; 10(4): e0125285.
[http://dx.doi.org/10.1371/journal.pone.0125285]
[92]
Ciftci O, Ozdemir I. Protective effects of quercetin and chrysin against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced oxidative stress, body wasting and altered cytokine productions in rats. Immunopharmacol Immunotoxicol 2011; 33(3): 504-8.https://www.tandfonline.com/doi/abs/10.3109/08923973.2010.543686
[http://dx.doi.org/10.3109/08923973.2010.543686] [PMID: 21214421]
[93]
Kashioulis P, Lundgren J, Shubbar E, et al. Adenine-induced chronic renal failure in Rats: A model of chronic renocardiac syndrome with left ventricular diastolic dysfunction but preserved ejection fraction. Kidney Blood Press Res 2018; 43(4): 1053-64.
[http://dx.doi.org/10.1159/000491056] [PMID: 29969785]
[94]
Diwan V, Brown L, Gobe GC. Adenine-induced chronic kidney disease in rats. Nephrology (Carlton) 2018; 23(1): 5-11.
[http://dx.doi.org/10.1111/nep.13180] [PMID: 29030945]
[95]
Muñoz AC, Mangold-Gehring S, Micus S, et al. A novel model of chronic kidney disease in rats: dietary adenine in combination with unilateral nephrectomy. Kidney Dis 2019; 5(3): 135-43.
[http://dx.doi.org/10.1159/000495750] [PMID: 31259175]
[96]
Baykalir BG, Arslan AS, Mutlu SI, et al. The protective effect of chrysin against carbon tetrachloride-induced kidney and liver tissue damage in rats. Int J Vitam Nutr Res 2020; 1-12.
[http://dx.doi.org/10.1024/0300-9831/a000653] [PMID: 32349632]
[97]
Tahir M, Sultana S. Chrysin modulates ethanol metabolism in Wistar rats: A promising role against organ toxicities. Alcohol Alcohol 2011; 46(4): 383-92.
[http://dx.doi.org/10.1093/alcalc/agr038] [PMID: 21531755]
[98]
Anghel N, Cotoraci C, Ivan A, et al. Chrysin attenuates cardiomyocyte apoptosis and loss of intermediate filaments in a mouse model of mitoxantrone cardiotoxicity. Histol Histopathol 2015; 30(12): 1465-75.
[PMID: 26112963]
[99]
Rashid S, Ali N, Nafees S, Hasan SK, Sultana S. Mitigation of 5-Fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats. Food Chem Toxicol 2014; 66: 185-93.
[http://dx.doi.org/10.1016/j.fct.2014.01.026] [PMID: 24486618]
[100]
Ciftci O, Ozdemir I, Vardi N, Beytur A, Oguz F. Ameliorating effects of quercetin and chrysin on 2,3,7,8-tetrachlorodibenzo- p-dioxin-induced nephrotoxicity in rats. Toxicol Ind Health 2012; 28(10): 947-54.
[http://dx.doi.org/10.1177/0748233711430978] [PMID: 22173955]
[101]
Kucukler S, Benzer F, Yildirim S, et al. Protective effects of chrysin against oxidative stress and inflammation induced by lead acetate in rat kidneys: a biochemical and histopathological approach. Biol Trace Elem Res 2021; 199(4): 1501-14.
[http://dx.doi.org/10.1007/s12011-020-02268-8] [PMID: 32613487]
[102]
Zeinali M, Rezaee SA, Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed Pharmacother 2017; 92: 998-1009.
[http://dx.doi.org/10.1016/j.biopha.2017.06.003] [PMID: 28609844]
[103]
Gurjar VK, Pal D. Natural compounds extracted from medicinal plants and their immunomodulatory activities. In: Advanced Structured Materials. Springer Science and Business Media Deutschland GmbH 2021; pp. 197-261.
[104]
Naz S, Imran M, Rauf A, et al. Chrysin: Pharmacological and therapeutic properties. Life Sci 2019; 235: 116797.
[http://dx.doi.org/10.1016/j.lfs.2019.116797] [PMID: 31472146]
[105]
Sassi A, Mokdad BI, Mustapha N, Maatouk M, Ghedira K, Chekir-Ghedira L. Immunomodulatory potential of hesperetin and chrysin through the cellular and humoral response. Eur J Pharmacol 2017; 812: 91-6.
[http://dx.doi.org/10.1016/j.ejphar.2017.07.017] [PMID: 28690190]
[106]
Beaumont DM, Mark TM Jr, Hills R, Dixon P, Veit B, Garrett N. The effects of chrysin, a Passiflora incarnata extract, on natural killer cell activity in male Sprague-Dawley rats undergoing abdominal surgery. AANA J 2008; 76(2): 113-7.
[PMID: 18478816]
[107]
Boothapandi M, Ramanibai R. Immunomodulatory effect of natural flavonoid chrysin (5, 7-dihydroxyflavone) on LPS stimulated RAW 264.7 macrophages via inhibition of NF-κB activation. Process Biochem 2019; 84: 186-95.
[http://dx.doi.org/10.1016/j.procbio.2019.05.018]
[108]
Zhang K, Ge Z, Xue Z, et al. Chrysin suppresses human CD14(+) monocyte-derived dendritic cells and ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 2015; 288: 13-20.
[http://dx.doi.org/10.1016/j.jneuroim.2015.08.017] [PMID: 26531689]
[109]
Li Z, Chu S, He W, et al. A20 as a novel target for the anti-neuroinflammatory effect of chrysin via inhibition of NF-κB signaling pathway. Brain Behav Immun 2019; 79: 228-35.
[http://dx.doi.org/10.1016/j.bbi.2019.02.005] [PMID: 30738841]
[110]
Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol 2011; 6: 19-48.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130327] [PMID: 20887193]
[111]
Sagy M, Al-Qaqaa Y, Kim P. Definitions and pathophysiology of sepsis. Curr Probl Pediatr Adolesc Health Care 2013; 43(10): 260-3.
[http://dx.doi.org/10.1016/j.cppeds.2013.10.001] [PMID: 24295606]
[112]
Xiao H, Siddiqui J, Remick DG. Mechanisms of mortality in early and late sepsis. Infect Immun 2006; 74(9): 5227-35.
[http://dx.doi.org/10.1128/IAI.01220-05] [PMID: 16926416]
[113]
Shimaoka M, Park EJ. Advances in understanding sepsis. Eur J Anaesthesiol Suppl 2008; 42(Suppl. 42): 146-53.
[http://dx.doi.org/10.1017/S0265021507003389] [PMID: 18289433]
[114]
Bai J, Luo Y, Song Z, Fan W, Wang Z, Luan T. Effects and mechanisms chrysin inhibits acute lung injury on sepsis-associated acute lung injury rats. Life Sci J 2013; 10(3)
[115]
Koc F, Tekeli MY, Kanbur M, Karayigit MÖ, Liman BC. The effects of chrysin on lipopolysaccharide-induced sepsis in rats. J Food Biochem 2020; 44(9): e13359.https://onlinelibrary.wiley.com/doi/10.1111/jfbc.13359
[http://dx.doi.org/10.1111/jfbc.13359] [PMID: 32614079]
[116]
Xingyue L, Shuang L, Qiang W, Jinjuan F, Yongjian Y. Chrysin ameliorates sepsis-induced cardiac dysfunction through upregulating Nfr2/Heme Oxygenase 1 pathway. J Cardiovasc Pharmacol 2021; 77(4): 491-500.
[http://dx.doi.org/10.1097/FJC.0000000000000989] [PMID: 33818552]
[117]
Galati G, O’Brien PJ. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 2004; 37(3): 287-303.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.034] [PMID: 15223063]
[118]
Amawi H, Ashby CR Jr, Tiwari AK. Cancer chemoprevention through dietary flavonoids: What’s limiting? Chin J Cancer 2017; 36(1): 50.
[http://dx.doi.org/10.1186/s40880-017-0217-4] [PMID: 28629389]
[119]
Rodríguez-García C, Sánchez-Quesada C, J Gaforio J. Dietary flavonoids as cancer chemopreventive agents: an updated review of human studies. Antioxidants 2019; 8(5): 137.
[http://dx.doi.org/10.3390/antiox8050137] [PMID: 31109072]
[120]
George VC, Dellaire G, Rupasinghe HPV. Plant flavonoids in cancer chemoprevention: Role in genome stability. J Nutr Biochem 2017; 45: 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[121]
Samarghandian S, Afshari JT, Davoodi S. Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clinics (São Paulo) 2011; 66(6): 1073-9.
[http://dx.doi.org/10.1590/S1807-59322011000600026] [PMID: 21808878]
[122]
Tavsan Z, Kayali HA. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed Pharmacother 2019; 116: 109004.
[http://dx.doi.org/10.1016/j.biopha.2019.109004] [PMID: 31128404]
[123]
Hazafa A, Rehman KU, Jahan N, Jabeen Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr Cancer 2020; 72(3): 386-97.
[http://dx.doi.org/10.1080/01635581.2019.1637006] [PMID: 31287738]
[124]
Wang J, Wang H, Sun K, et al. Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway. Drug Des Devel Ther 2018; 12: 721-33.
[http://dx.doi.org/10.2147/DDDT.S160020] [PMID: 29662304]
[125]
Al-Oudat BA, Alqudah MA, Audat SA, et al. Design, synthesis, and biologic evaluation of novel chrysin derivatives as cytotoxic agents and caspase-3/7 activators. Drug Des Devel Ther 2019; 13: 423-33.
[http://dx.doi.org/10.2147/DDDT.S189476] [PMID: 30774307]
[126]
Wei CT, Chen LC, Hsiang YP, et al. Chrysin-induced ERK1/2 phosphorylation enhances the sensitivity of human hepatocellular carcinoma cells to sorafenib. Anticancer Res 2019; 39(2): 695-701.
[http://dx.doi.org/10.21873/anticanres.13165] [PMID: 30711947]
[127]
Talebi M, Talebi M, Farkhondeh T, et al. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell Int 2021; 21(1): 214.
[http://dx.doi.org/10.1186/s12935-021-01906-y] [PMID: 33858433]
[128]
World Health Organization (WHO). Fact Sheet #312. Available from: https://www.who.int/nmh/publications/fact_sheet_diabetes_en.pdf
[129]
Bindu J, Narendhirakannan RT. Role of medicinal plants in the management of diabetes mellitus: A review. 3 Biotech 2019; 9(1): 1-17.
[130]
Surya S, Salam AD, Tomy DV, Carla B, Kumar RA, Sunil C. Diabetes mellitus and medicinal plants-a review. Asian Pac J Trop Dis 2014; 4(5): 337-47.
[http://dx.doi.org/10.1016/S2222-1808(14)60585-5]
[131]
Ramírez-Espinosa JJ, Saldaña-Ríos J, García-Jiménez S, et al. Chrysin induces antidiabetic, antidyslipidemic and anti-inflammatory effects in athymic nude diabetic Mice. Molecules 2017; 23(1): 67.
[http://dx.doi.org/10.3390/molecules23010067] [PMID: 29283418]
[132]
Torres-Piedra M, Ortiz-Andrade R, Villalobos-Molina R, et al. A comparative study of flavonoid analogues on streptozotocin-nicotinamide induced diabetic rats: quercetin as a potential antidiabetic agent acting via 11β-hydroxysteroid dehydrogenase type 1 inhibition. Eur J Med Chem 2010; 45(6): 2606-12.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.049] [PMID: 20346546]
[133]
Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol Appl Pharmacol 2014; 279(1): 1-7.
[http://dx.doi.org/10.1016/j.taap.2014.05.007] [PMID: 24848621]
[134]
Barnes PJ, Drazen JM. Pathophysiology of asthma. In: Asthma and COPD. Elsevier Ltd 2009; pp. 399-423.
[http://dx.doi.org/10.1016/B978-0-12-374001-4.00033-X]
[135]
Quirt J, Hildebrand KJ, Mazza J, Noya F, Kim H. Asthma. Allergy Asthma Clin Immunol 2018; 14(2): 50.
[http://dx.doi.org/10.1186/s13223-018-0279-0] [PMID: 30275843]
[136]
Tanaka T, Takahashi R. Flavonoids and asthma. Nutrients 2013; 5(6): 2128-43.
[http://dx.doi.org/10.3390/nu5062128] [PMID: 23752494]
[137]
Yao J, Jiang M, Zhang Y, Liu X, Du Q, Feng G. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma. Int Immunopharmacol 2016; 32: 24-31.
[http://dx.doi.org/10.1016/j.intimp.2016.01.005] [PMID: 26780233]
[138]
Ho M. Enterovirus 71: the virus, its infections and outbreaks. J Microbiol Immunol Infect 2000; 33(4): 205-16.
[PMID: 11269363]
[139]
Song JH, Kwon BE, Jang H, et al. Antiviral Activity of Chrysin Derivatives against Coxsackievirus B3 in vitro and in vivo. Biomol Ther (Seoul) 2015; 23(5): 465-70.
[http://dx.doi.org/10.4062/biomolther.2015.095] [PMID: 26336587]
[140]
Al-Hatamleh MAI, Hatmal MM, Sattar K, et al. Antiviral and immunomodulatory effects of phytochemicals from honey against covid-19: potential mechanisms of action and future directions. Molecules 2020; 25(21): 5017.
[http://dx.doi.org/10.3390/molecules25215017] [PMID: 33138197]
[141]
Guler HI, Tatar G, Yildiz O, Belduz AO, Kolayli S. Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by molecular docking study. Arch Microbiol 2021; 203(6): 3557-64.
[http://dx.doi.org/10.1007/s00203-021-02351-1] [PMID: 33950349]
[142]
Watanabe K, Rahmasari R, Matsunaga A, Haruyama T, Kobayashi N. Anti-influenza viral effects of honey in vitro: Potent high activity of manuka honey. Arch Med Res 2014; 45(5): 359-65.
[http://dx.doi.org/10.1016/j.arcmed.2014.05.006] [PMID: 24880005]
[143]
Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 2007; 74(2): 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[144]
Basu A, Sarkar A, Maulik U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci Rep 2020; 10(1): 17699.
[http://dx.doi.org/10.1038/s41598-020-74715-4] [PMID: 33077836]
[145]
Kessler RC. The costs of depression. Psychiatr Clin North Am 2012; 35(1): 1-14.
[http://dx.doi.org/10.1016/j.psc.2011.11.005] [PMID: 22370487]
[146]
Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level. 2011.
[147]
Arroll B, Macgillivray S, Ogston S, et al. Efficacy and tolerability of tricyclic antidepressants and SSRIs compared with placebo for treatment of depression in primary care: a meta-analysis. Ann Fam Med 2005; 3(5): 449-56.
[http://dx.doi.org/10.1370/afm.349] [PMID: 16189062]
[148]
Yamada M, Yasuhara H. Clinical pharmacology of MAO inhibitors: safety and future. Neurotoxicology 2004; 25(1-2): 215-21.
[http://dx.doi.org/10.1016/S0161-813X(03)00097-4] [PMID: 14697896]
[149]
Gannon RL, Millan MJ. Evaluation of serotonin, noradrenaline and dopamine reuptake inhibitors on light-induced phase advances in hamster circadian activity rhythms. Psychopharmacology (Berl) 2007; 195(3): 325-32.
[http://dx.doi.org/10.1007/s00213-007-0903-z] [PMID: 17694388]
[150]
Locher C, Koechlin H, Zion SR, et al. Efficacy and safety of selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and placebo for common psychiatric disorders among children and adolescents: A systematic review and meta-analysis. JAMA Psychiatry 2017; 74(10): 1011-20.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.2432] [PMID: 28854296]
[152]
Furukawa TA, Onishi Y, Hinotsu S, et al. Prescription patterns following first-line new generation antidepressants for depression in Japan: a naturalistic cohort study based on a large claims database. J Affect Disord 2013; 150(3): 916-22.
[http://dx.doi.org/10.1016/j.jad.2013.05.015] [PMID: 23721923]
[153]
Stassen HH, Angst J, Delini-Stula A. Delayed onset of action of antidepressant drugs? Survey of results of Zurich meta-analyses. Pharmacopsychiatry 1996; 29(3): 87-96.
[http://dx.doi.org/10.1055/s-2007-979551] [PMID: 8738312]
[154]
López-Rubalcava C, Estrada-Camarena E. Mexican medicinal plants with anxiolytic or antidepressant activity: Focus on preclinical research. J Ethnopharmacol 2016; 186: 377-91.
[http://dx.doi.org/10.1016/j.jep.2016.03.053] [PMID: 27021688]
[155]
German-Ponciano LJ, Rosas-Sánchez GU, Rivadeneyra-Domínguez E, Rodríguez-Landa JF. Advances in the preclinical study of some flavonoids as potential Antidepressant agents. Scientifica (Cairo) 2018; 2018: 2963565.
[http://dx.doi.org/10.1155/2018/2963565]
[156]
Matias I, Buosi AS, Gomes FCA. Functions of flavonoids in the central nervous system: Astrocytes as targets for natural compounds. Neurochem Int 2016; 95: 85-91.
[http://dx.doi.org/10.1016/j.neuint.2016.01.009] [PMID: 26845377]
[157]
Khan H, Perviz S, Sureda A, Nabavi SM, Tejada S. Current standing of plant derived flavonoids as an antidepressant. Food Chem Toxicol 2018; 119: 176-88.
[http://dx.doi.org/10.1016/j.fct.2018.04.052] [PMID: 29704578]
[158]
Castrén E, Kojima M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis 2017; 97(Pt B): 119-26.
[http://dx.doi.org/10.1016/j.nbd.2016.07.010] [PMID: 27425886]
[159]
Zhou C, Zhong J, Zou B, Fang L, Chen J, Deng X. Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression. PLoS One 2017; 12: e0172270.
[http://dx.doi.org/10.1371/journal.pone.0172270]
[160]
Cueto-Escobedo J, Andrade-Soto J, Lima-Maximino M, Maximino C, Hernández-López F, Rodríguez-Landa JF. Involvement of GABAergic system in the antidepressant-like effects of chrysin (5,7-dihydroxyflavone) in ovariectomized rats in the forced swim test: comparison with neurosteroids. Behav Brain Res 2020; 386: 112590.
[http://dx.doi.org/10.1016/j.bbr.2020.112590] [PMID: 32184157]
[161]
Baidya D, Kushwaha J, Mahadik K, Patil S. Chrysin-loaded folate conjugated PF127-F68 mixed micelles with enhanced oral bioavailability and anticancer activity against human breast cancer cells. Drug Dev Ind Pharm 2019; 45(5): 852-60.
[http://dx.doi.org/10.1080/03639045.2019.1576726] [PMID: 30724621]
[162]
Walle T, Otake Y, Brubaker JA, Walle UK, Halushka PV. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br J Clin Pharmacol 2001; 51(2): 143-6.
[PMID: 11259985]
[163]
Dong D, Quan E, Yuan X, Xie Q, Li Z, Wu B. Sodium oleate-based nanoemulsion enhances oral absorption of chrysin through inhibition of UGT-mediated metabolism. Mol Pharm 2017; 14(9): 2864-74.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00851] [PMID: 27983856]
[164]
Ge S, Gao S, Yin T, Hu M. Determination of pharmacokinetics of chrysin and its conjugates in wild-type FVB and Bcrp1 knockout mice using a validated LC-MS/MS method. J Agric Food Chem 2015; 63(11): 2902-10.
[http://dx.doi.org/10.1021/jf5056979] [PMID: 25715997]
[165]
Mohos V, Fliszár-Nyúl E, Schilli G, et al. Interaction of Chrysin and Its Main Conjugated Metabolites Chrysin-7-Sulfate and Chrysin-7-Glucuronide with Serum Albumin. Int J Mol Sci 2018; 19(12): 4073.
[http://dx.doi.org/10.3390/ijms19124073] [PMID: 30562928]
[166]
Mohos V, Fliszár-Nyúl E, Ungvári O, et al. Effects of chrysin and its major conjugated metabolites chrysin-7-sulfate and chrysin-7-glucuronide on cytochrome P450 enzymes and on OATP, P-gp, BCRP, and MRP2 transporters. Drug Metab Dispos 2020; 48(10): 1064-73.
[http://dx.doi.org/10.1124/dmd.120.000085] [PMID: 32661014]
[167]
Zhu ZY, Luo Y, Liu Y, Wang XT, Liu F, Guo MZ. Inclusion of chrysin in β-cyclodextrin and its biological activities. J Drug Deliv Sci Technol 2016; 31: 176-86.
[http://dx.doi.org/10.1016/j.jddst.2016.01.002]
[168]
Anari E, Akbarzadeh A, Zarghami N. Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect on the breast cancer cell line. Artif Cells Nanomed Biotechnol 2016; 44(6): 1410-6.
[http://dx.doi.org/10.3109/21691401.2015.1029633] [PMID: 26148177]
[169]
Chadha R, Bhalla Y, Nandan A, Chadha K, Karan M. Chrysin cocrystals: Characterization and evaluation. J Pharm Biomed Anal 2017; 134: 361-71.
[http://dx.doi.org/10.1016/j.jpba.2016.10.020] [PMID: 27894779]
[170]
Vedagiri A, Thangarajan S. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25-35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer’s disease. Neuropeptides 2016; 58: 111-25.
[http://dx.doi.org/10.1016/j.npep.2016.03.002] [PMID: 27021394]
[171]
Komath S, Garg A, Wahajuddin M. Development and evaluation of Chrysin-Phospholipid complex loaded solid lipid nanoparticles - storage stability and in vitro anti-cancer activity. J Microencapsul 2018; 35(6): 600-17.
[http://dx.doi.org/10.1080/02652048.2018.1559369] [PMID: 30557060]
[172]
Wang Z, Fan H, Li Y, Wang Y. Anti-hepatocarcinoma effects of chrysin loaded solid lipid nanoparticle against H22 tumor bearing mice. In: Atlantis Press 2015; pp. 1020-4.
[http://dx.doi.org/10.2991/ic3me-15.2015.197]
[173]
Sharma T, Katare OP, Jain A, et al. QbD-steered development of biotin-conjugated nanostructured lipid carriers for oral delivery of chrysin: role of surface modification for improving biopharmaceutical performance. Colloids Surf B Biointerfaces 2021; 197: 111429.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111429] [PMID: 33130524]
[174]
FDA briefing document pharmacy compounding advisory committee (PCAC) meeting. 2016.

© 2024 Bentham Science Publishers | Privacy Policy