Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

The Potential Applications of Stem Cells for Cancer Treatment

Author(s): Malikeh Rad Niknam and Farnoosh Attari*

Volume 17, Issue 1, 2022

Published on: 10 August, 2021

Page: [26 - 42] Pages: 17

DOI: 10.2174/1574888X16666210810100858

Price: $65

Open Access Journals Promotions 2
Abstract

Scientists encounter many obstacles in traditional cancer therapies, including the side effects on the healthy cells, drug resistance, tumor relapse, the short half-life of employed drugs in the blood circulation, and the improper delivery of drugs toward the tumor site. The unique traits of stem cells (SCs) such as self-renewal, differentiation, tumor tropism, the release of bioactive molecules, and immunosuppression have opened a new window for utilizing SCs as a novel tool in cancer treatment. In this regard, engineered SCs can secrete anti-cancer proteins or express enzymes used in suicide gene therapy which locally induce apoptosis in neoplastic cells via the bystander effect. These cells also stand as proper candidates to serve as careers for drug-loaded nanoparticles or to play suitable hosts for oncolytic viruses. Moreover, they harbor great potential to be employed in immunotherapy and combination therapy. However, tactful strategies should be devised to allow easier transplantation and protection of SCs from in vivo immune responses. In spite of the great hope concerning SCs application in cancer therapy, there are shortcomings and challenges to be addressed. This review tends to elaborate on recent advances on the various applications of SCs in cancer therapy and existing challenges in this regard.

Keywords: Stem cells, cancer treatment, suicide gene therapy, encapsulation, nanoparticle carrier, immunosuppression.

Graphical Abstract
[1]
Chu D-T, Nguyen TT, Tien NLB, et al. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications. Cells 2020; 9(3): 563.
[http://dx.doi.org/10.3390/cells9030563] [PMID: 32121074]
[2]
Vasievich EA, Huang L. The suppressive tumor microenvironment: A challenge in cancer immunotherapy. Mol Pharm 2011; 8(3): 635-41.
[http://dx.doi.org/10.1021/mp1004228] [PMID: 21545153]
[3]
Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 2012; 12(4): 237-51.
[http://dx.doi.org/10.1038/nrc3237] [PMID: 22437869]
[4]
Gomes JPA, Assoni AF, Pelatti M, Coatti G, Okamoto OK, Zatz M. Deepening a simple question: Can MSCs be used to treat cancer? Anticancer Res 2017; 37(9): 4747-58.
[PMID: 28870893]
[5]
Zhang C-L, Huang T, Wu BL, He WX, Liu D. Stem cells in cancer therapy: Opportunities and challenges. Oncotarget 2017; 8(43): 75756-66.
[http://dx.doi.org/10.18632/oncotarget.20798] [PMID: 29088907]
[6]
Stuckey DW, Shah K. Stem cell-based therapies for cancer treatment: Separating hope from hype. Nat Rev Cancer 2014; 14(10): 683-91.
[http://dx.doi.org/10.1038/nrc3798] [PMID: 25176333]
[7]
Hawsawi YM, Al-Zahrani F, Mavromatis CH, Baghdadi MA, Saggu S, Oyouni AAA. Stem cell applications for treatment of cancer and autoimmune diseases: its promises, obstacles, and future perspectives. Technol Cancer Res Treat 2018; 17: 1533033818806910.
[http://dx.doi.org/10.1177/1533033818806910] [PMID: 30343639]
[8]
Karjoo Z, Chen X, Hatefi A. Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev 2016; 99(Pt A): 113-28.
[http://dx.doi.org/10.1016/j.addr.2015.05.009] [PMID: 26004498]
[9]
Kosaka H, Ichikawa T, Kurozumi K, et al. Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Ther 2012; 19(8): 572-8.
[http://dx.doi.org/10.1038/cgt.2012.35] [PMID: 22744211]
[10]
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31: 51-72.
[http://dx.doi.org/10.1146/annurev-immunol-032712-100008] [PMID: 23157435]
[11]
Kuriyama S, Tsujinoue H, Yoshiji H. Immune response to suicide gene therapy. Methods Mol Med 2004; 90: 353-69.
[12]
Touati W, Tran T, Seguin J, et al. A suicide gene therapy combining the improvement of cyclophosphamide tumor cytotoxicity and the development of an anti-tumor immune response. Curr Gene Ther 2014; 14(3): 236-46.
[http://dx.doi.org/10.2174/1566523214666140424152734] [PMID: 24766134]
[13]
King I, Bermudes D, Lin S, et al. Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum Gene Ther 2002; 13(10): 1225-33.
[http://dx.doi.org/10.1089/104303402320139005] [PMID: 12133275]
[14]
Zhao Y, Lam DH, Yang J, et al. Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Ther 2012; 19(2): 189-200.
[http://dx.doi.org/10.1038/gt.2011.82] [PMID: 21633393]
[15]
Aboody KS, et al. Neural stem cell-mediated enzyme/prodrug therapy for glioma: Preclinical studies. Science translational medicine 2013; 5(184): 184ra59-9.
[16]
Altaner C, Altanerova V, Cihova M, et al. Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int J Cancer 2014; 134(6): 1458-65.
[http://dx.doi.org/10.1002/ijc.28455] [PMID: 24038033]
[17]
Wierdl M, Morton CL, Weeks JK, Danks MK, Harris LC, Potter PM. Sensitization of human tumor cells to CPT-11 via adenoviral-mediated delivery of a rabbit liver carboxylesterase. Cancer Res 2001; 61(13): 5078-82.
[PMID: 11431344]
[18]
Chen L, Waxman DJ. Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res 1995; 55(3): 581-9.
[PMID: 7834628]
[19]
Nguyen T-A, Tychopoulos M, Bichat F, et al. Improvement of cyclophosphamide activation by CYP2B6 mutants: From in silico to ex vivo. Mol Pharmacol 2008; 73(4): 1122-33.
[http://dx.doi.org/10.1124/mol.107.042861] [PMID: 18212249]
[20]
Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res 2002; 62(13): 3603-8.
[PMID: 12097260]
[21]
Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013; 15(6): 641-8.
[http://dx.doi.org/10.1016/j.jcyt.2013.02.006] [PMID: 23570660]
[22]
Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 2007; 67(13): 6304-13.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4024] [PMID: 17616689]
[23]
Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97(23): 12846-51.
[http://dx.doi.org/10.1073/pnas.97.23.12846] [PMID: 11070094]
[24]
Malekshah OM, Sarkar S, Nomani A, et al. Bioengineered adipose-derived stem cells for targeted enzyme-prodrug therapy of ovarian cancer intraperitoneal metastasis. J Control Release 2019; 311-312: 273-87.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.006] [PMID: 31499084]
[25]
Zhang T-Y, Huang B, Wu HB, et al. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice. J Control Release 2015; 209: 260-71.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.007] [PMID: 25966361]
[26]
Altanerova U, Jakubechova J, Benejova K, et al. Prodrug suicide gene therapy for cancer targeted intracellular by mesenchymal stem cell exosomes. Int J Cancer 2019; 144(4): 897-908.
[http://dx.doi.org/10.1002/ijc.31792] [PMID: 30098225]
[27]
Singh B, Mitragotri S. Harnessing cells to deliver nanoparticle drugs to treat cancer. Biotechnol Adv 2019.
[http://dx.doi.org/10.1016/j.biotechadv.2019.01.006] [PMID: 30639928]
[28]
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[29]
Auffinger B, Morshed R, Tobias A, Cheng Y, Ahmed AU, Lesniak MS. Drug-loaded nanoparticle systems and adult stem cells: A potential marriage for the treatment of malignant glioma? Oncotarget 2013; 4(3): 378-96.
[http://dx.doi.org/10.18632/oncotarget.937] [PMID: 23594406]
[30]
Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 2012; 7: 5577-91.
[http://dx.doi.org/10.2147/IJN.S36111] [PMID: 23144561]
[31]
Voigt J, Christensen J, Shastri VP. Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. Proc Natl Acad Sci USA 2014; 111(8): 2942-7.
[http://dx.doi.org/10.1073/pnas.1322356111] [PMID: 24516167]
[32]
Duchi S, Sotgiu G, Lucarelli E, et al. Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: effective photoinduced in vitro killing of osteosarcoma. J Control Release 2013; 168(2): 225-37.
[http://dx.doi.org/10.1016/j.jconrel.2013.03.012] [PMID: 23524189]
[33]
Schnarr K, Mooney R, Weng Y, et al. Gold nanoparticle-loaded neural stem cells for photothermal ablation of cancer. Adv Healthc Mater 2013; 2(7): 976-82.
[http://dx.doi.org/10.1002/adhm.201300003] [PMID: 23592703]
[34]
Li L, Guan Y, Liu H, et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 2011; 5(9): 7462-70.
[http://dx.doi.org/10.1021/nn202399w] [PMID: 21854047]
[35]
Herea D-D, Labusca L, Radu E, et al. Human adipose-derived stem cells loaded with drug-coated magnetic nanoparticles for in-vitro tumor cells targeting. Mater Sci Eng C 2019; 94: 666-76.
[http://dx.doi.org/10.1016/j.msec.2018.10.019] [PMID: 30423753]
[36]
Xu M, Asghar S, Dai S, et al. Mesenchymal stem cells-curcumin loaded chitosan nanoparticles hybrid vectors for tumor-tropic therapy. Int J Biol Macromol 2019; 134: 1002-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.201] [PMID: 31063785]
[37]
Wang X, Chen H, Zeng X, et al. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharm Sin B 2019; 9(1): 167-76.
[http://dx.doi.org/10.1016/j.apsb.2018.08.006] [PMID: 30766788]
[38]
Tian W, Lu J, Jiao D. Stem cell membrane vesicle–coated nanoparticles for efficient tumor-targeted therapy of orthotopic breast cancer. Polym Adv Technol 2019; 30(4): 1051-60.
[http://dx.doi.org/10.1002/pat.4538]
[39]
Aghi M, Martuza RL. Oncolytic viral therapies-the clinical experience. Oncogene 2005; 24(52): 7802-16.
[http://dx.doi.org/10.1038/sj.onc.1209037] [PMID: 16299539]
[40]
Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: A new class of immunotherapy drugs. Nat Rev Drug Discov 2015; 14(9): 642-62.
[http://dx.doi.org/10.1038/nrd4663] [PMID: 26323545]
[41]
DeWeese TL, van der Poel H, Li S, et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 2001; 61(20): 7464-72.
[PMID: 11606381]
[42]
Hu JC, Coffin RS, Davis CJ, et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 2006; 12(22): 6737-47.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0759] [PMID: 17121894]
[43]
Fukuhara H, Ino Y, Kuroda T, Martuza RL, Todo T. Triple gene-deleted oncolytic herpes simplex virus vector double-armed with interleukin 18 and soluble B7-1 constructed by bacterial artificial chromosome-mediated system. Cancer Res 2005; 65(23): 10663-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2534] [PMID: 16322208]
[44]
García-Castro J, Alemany R, Cascalló M, et al. Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther 2010; 17(7): 476-83.
[http://dx.doi.org/10.1038/cgt.2010.4] [PMID: 20168350]
[45]
Ahmed AU, Rolle CE, Tyler MA, et al. Bone marrow mesenchymal stem cells loaded with an oncolytic adenovirus suppress the anti-adenoviral immune response in the cotton rat model. Mol Ther 2010; 18(10): 1846-56.
[http://dx.doi.org/10.1038/mt.2010.131] [PMID: 20588259]
[46]
Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 2006; 5(3): 755-66.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0334] [PMID: 16546991]
[47]
Nwabo Kamdje AH, Kamga PT, Simo RT, et al. Mesenchymal stromal cells’ role in tumor microenvironment: involvement of signaling pathways. Cancer Biol Med 2017; 14(2): 129-41.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0033] [PMID: 28607804]
[48]
Duebgen M, Martinez-Quintanilla J, Tamura K, et al. Stem cells loaded with multimechanistic oncolytic herpes simplex virus variants for brain tumor therapy. J Natl Cancer Inst 2014; 106(6): dju090.
[http://dx.doi.org/10.1093/jnci/dju090] [PMID: 24838834]
[49]
Yong RL, Shinojima N, Fueyo J, et al. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Δ24-RGD to human gliomas. Cancer Res 2009; 69(23): 8932-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3873] [PMID: 19920199]
[50]
Ruano D, López-Martín JA, Moreno L, et al. First-in-human, first-in-child trial of autologous MSCs carrying the oncolytic virus Icovir-5 in patients with advanced tumors. Mol Ther 2020; 28(4): 1033-42.
[http://dx.doi.org/10.1016/j.ymthe.2020.01.019] [PMID: 32053771]
[51]
Mooney R, Majid AA, Batalla-Covello J, et al. Enhanced delivery of oncolytic adenovirus by neural stem cells for treatment of metastatic ovarian cancer. Mol Ther Oncolytics 2018; 12: 79-92.
[http://dx.doi.org/10.1016/j.omto.2018.12.003] [PMID: 30719498]
[52]
Yuan X, Zhang Q, Li Z, et al. Mesenchymal stem cells deliver and release conditionally replicative adenovirus depending on hepatic differentiation to eliminate hepatocellular carcinoma cells specifically. Cancer Lett 2016; 381(1): 85-95.
[http://dx.doi.org/10.1016/j.canlet.2016.07.019] [PMID: 27450327]
[53]
Keung E, Nelson PJ, Conrad C. Genetically engineered stem cell therapies targeting gastrointestinal malignancy. Stem Cell Ther Cancer 2013; 12(2): 159-70.
[http://dx.doi.org/10.1002/9781118660423.ch12]
[54]
Qiao L, Xu Z, Zhao T, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008; 18(4): 500-7.
[http://dx.doi.org/10.1038/cr.2008.40] [PMID: 18364678]
[55]
Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 2012; 64(8): 739-48.
[http://dx.doi.org/10.1016/j.addr.2011.06.010] [PMID: 21740940]
[56]
Han J, Hwang HS, Na K. TRAIL-secreting human mesenchymal stem cells engineered by a non-viral vector and photochemical internalization for pancreatic cancer gene therapy. Biomaterials 2018; 182: 259-68.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.024] [PMID: 30142525]
[57]
Sasportas LS, Kasmieh R, Wakimoto H, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 2009; 106(12): 4822-7.
[http://dx.doi.org/10.1073/pnas.0806647106] [PMID: 19264968]
[58]
Shah K, Bureau E, Kim DE, et al. Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 2005; 57(1): 34-41.
[http://dx.doi.org/10.1002/ana.20306] [PMID: 15622535]
[59]
Shah K, Tung CH, Yang K, Weissleder R, Breakefield XO. Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res 2004; 64(9): 3236-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3516] [PMID: 15126365]
[60]
Okada H, Pollack IF. Cytokine gene therapy for malignant glioma. Expert Opin Biol Ther 2004; 4(10): 1609-20.
[http://dx.doi.org/10.1517/14712598.4.10.1609] [PMID: 15461572]
[61]
Xu X, Yang G, Zhang H, Prestwich GD. Evaluating dual activity LPA receptor pan-antagonist/autotaxin inhibitors as anti-cancer agents in vivo using engineered human tumors. Prostaglandins Other Lipid Mediat 2009; 89(3-4): 140-6.
[http://dx.doi.org/10.1016/j.prostaglandins.2009.07.006] [PMID: 19682598]
[62]
Gunnarsson S, Bexell D, Svensson A, Siesjö P, Darabi A, Bengzon J. Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNgamma-transduced tumor cell immunotherapy of experimental glioma. J Neuroimmunol 2010; 218(1-2): 140-4.
[http://dx.doi.org/10.1016/j.jneuroim.2009.10.017] [PMID: 19914721]
[63]
Xin H, Sun R, Kanehira M, et al. Intratracheal delivery of CX3CL1-expressing mesenchymal stem cells to multiple lung tumors. Mol Med 2009; 15(9-10): 321-7.
[http://dx.doi.org/10.2119/molmed.2009.00059] [PMID: 19603106]
[64]
Xin H, Kanehira M, Mizuguchi H, et al. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells 2007; 25(7): 1618-26.
[http://dx.doi.org/10.1634/stemcells.2006-0461] [PMID: 17412895]
[65]
Chawla-Sarkar M, Leaman DW, Borden EC. Preferential induction of apoptosis by interferon (IFN)-β compared with IFN-α2: correlation with TRAIL/Apo2L induction in melanoma cell lines. Clin Cancer Res 2001; 7(6): 1821-31.
[PMID: 11410525]
[66]
Ren C, Kumar S, Chanda D, Chen J, Mountz JD, Ponnazhagan S. Therapeutic potential of mesenchymal stem cells producing interferon-α in a mouse melanoma lung metastasis model. Stem Cells 2008; 26(9): 2332-8.
[http://dx.doi.org/10.1634/stemcells.2008-0084] [PMID: 18617688]
[67]
Dembinski JL, et al. Tumor stroma engraftment of gene-modified mesenchymal stem cells as anti-tumor therapy against ovarian cancer. Cytotherapy 2013; 15(1): 20-32. e2.
[http://dx.doi.org/10.1016/j.jcyt.2012.10.003]
[68]
Kidd S, Caldwell L, Dietrich M, et al. Mesenchymal stromal cells alone or expressing interferon-β suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy 2010; 12(5): 615-25.
[http://dx.doi.org/10.3109/14653241003631815] [PMID: 20230221]
[69]
Samant RS, Shevde LA. Recent advances in anti-angiogenic therapy of cancer. Oncotarget 2011; 2(3): 122-34.
[http://dx.doi.org/10.18632/oncotarget.234] [PMID: 21399234]
[70]
van Eekelen M, Sasportas LS, Kasmieh R, et al. Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene 2010; 29(22): 3185-95.
[http://dx.doi.org/10.1038/onc.2010.75] [PMID: 20305695]
[71]
Matsumoto K, Nakamura T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci 2003; 94(4): 321-7.
[http://dx.doi.org/10.1111/j.1349-7006.2003.tb01440.x] [PMID: 12824898]
[72]
Kanehira M, Xin H, Hoshino K, et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 2007; 14(11): 894-903.
[http://dx.doi.org/10.1038/sj.cgt.7701079] [PMID: 17693990]
[73]
Choe G, Park J, Park H, Lee JY. Hydrogel biomaterials for stem cell microencapsulation. Polymers 2018; 10(9): E997.
[http://dx.doi.org/10.3390/polym10090997] [PMID: 30960922]
[74]
Prestwich GD. Engineering a clinically-useful matrix for cell therapy. Organogenesis 2008; 4(1): 42-7.
[http://dx.doi.org/10.4161/org.6152] [PMID: 19279714]
[75]
Son BR, Marquez-Curtis LA, Kucia M, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006; 24(5): 1254-64.
[http://dx.doi.org/10.1634/stemcells.2005-0271] [PMID: 16410389]
[76]
Bhujbal SV, de Vos P, Niclou SP. Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliv Rev 2014; 67-68: 142-53.
[http://dx.doi.org/10.1016/j.addr.2014.01.010] [PMID: 24491927]
[77]
Potter W, Kalil RE, Kao WJ. Biomimetic material systems for neural progenitor cell-based therapy. Front Biosci 2008; 13(806): 806-21.
[http://dx.doi.org/10.2741/2721] [PMID: 17981590]
[78]
Tuin A, Zandstra J, Kluijtmans SG, Bouwstra JB, Harmsen MC, Van Luyn MJ. Hyaluronic acid-recombinant gelatin gels as a scaffold for soft tissue regeneration. Eur Cell Mater 2012; 24(320): 320-30.
[http://dx.doi.org/10.22203/eCM.v024a23] [PMID: 23070944]
[79]
Chang CY, Chan AT, Armstrong PA, et al. Hyaluronic acid-human blood hydrogels for stem cell transplantation. Biomaterials 2012; 33(32): 8026-33.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.058] [PMID: 22898181]
[80]
Read T-A, Sorensen DR, Mahesparan R, et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol 2001; 19(1): 29-34.
[http://dx.doi.org/10.1038/83471] [PMID: 11135548]
[81]
Seo SH, Kim KS, Park SH, et al. The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther 2011; 18(5): 488-95.
[http://dx.doi.org/10.1038/gt.2010.170] [PMID: 21228885]
[82]
Lv G, Zhang Y, Tan M, Xie H, Ma X. Microcapsules for cell transplantation: design, preparation, and application. In: Ma G, Su Z-G, Eds. Microspheres and microcapsules in biotechnology: Design, preparation and applications. New York, USA: Jenny Stanford Publishing; 2013; p. 85.
[http://dx.doi.org/10.1201/b14540-4]
[83]
Leung A, Lawrie G, Nielsen LK, Trau M. Synthesis and characterization of alginate/poly-L-ornithine/alginate microcapsules for local immunosuppression. J Microencapsul 2008; 25(6): 387-98.
[http://dx.doi.org/10.1080/02652040802008857] [PMID: 18465312]
[84]
Orive G, Hernández RM, Gascón AR, Igartua M, Pedraz JL. Development and optimisation of alginate-PMCG-alginate microcapsules for cell immobilisation. Int J Pharm 2003; 259(1-2): 57-68.
[http://dx.doi.org/10.1016/S0378-5173(03)00201-1] [PMID: 12787636]
[85]
Dusseault J, Leblond FA, Robitaille R, et al. Microencapsulation of living cells in semi-permeable membranes with covalently cross-linked layers. Biomaterials 2005; 26(13): 1515-22.
[http://dx.doi.org/10.1016/j.biomaterials.2004.05.013] [PMID: 15522753]
[86]
Mandal S, Arfuso F, Sethi G, Dharmarajan A, Warrier S. Encapsulated human mesenchymal stem cells (eMSCs) as a novel anti-cancer agent targeting breast cancer stem cells: Development of 3D primed therapeutic MSCs. Int J Biochem Cell Biol 2019; 110: 59-69.
[http://dx.doi.org/10.1016/j.biocel.2019.02.001] [PMID: 30735730]
[87]
Martinez-Quintanilla J, He D, Wakimoto H, Alemany R, Shah K. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol Ther 2015; 23(1): 108-18.
[http://dx.doi.org/10.1038/mt.2014.204] [PMID: 25352242]
[88]
Kauer TM, Figueiredo JL, Hingtgen S, Shah K. Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nat Neurosci 2011; 15(2): 197-204.
[http://dx.doi.org/10.1038/nn.3019] [PMID: 22197831]
[89]
Hanahan D. Rethinking the war on cancer. Lancet 2014; 383(9916): 558-63.
[http://dx.doi.org/10.1016/S0140-6736(13)62226-6] [PMID: 24351321]
[90]
Bozic I, Nowak MA. Timing and heterogeneity of mutations associated with drug resistance in metastatic cancers. Proc Natl Acad Sci USA 2014; 111(45): 15964-8.
[http://dx.doi.org/10.1073/pnas.1412075111] [PMID: 25349424]
[91]
Martinez-Quintanilla J, Bhere D, Heidari P, He D, Mahmood U, Shah K. Therapeutic efficacy and fate of bimodal engineered stem cells in malignant brain tumors. Stem Cells 2013; 31(8): 1706-14.
[http://dx.doi.org/10.1002/stem.1355] [PMID: 23389839]
[92]
Ito S, Natsume A, Shimato S, et al. Human neural stem cells transduced with IFN-β and cytosine deaminase genes intensify bystander effect in experimental glioma. Cancer Gene Ther 2010; 17(5): 299-306.
[http://dx.doi.org/10.1038/cgt.2009.80] [PMID: 19893595]
[93]
van de Water JA, Bagci-Onder T, Agarwal AS, et al. Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects. Proc Natl Acad Sci USA 2012; 109(41): 16642-7.
[http://dx.doi.org/10.1073/pnas.1202832109] [PMID: 23012408]
[94]
Stuckey DW, Shah K. TRAIL on trial: preclinical advances in cancer therapy. Trends Mol Med 2013; 19(11): 685-94.
[http://dx.doi.org/10.1016/j.molmed.2013.08.007] [PMID: 24076237]
[95]
Kim SM, Woo JS, Jeong CH, Ryu CH, Jang JD, Jeun SS. Potential application of temozolomide in mesenchymal stem cell-based TRAIL gene therapy against malignant glioma. Stem Cells Transl Med 2014; 3(2): 172-82.
[http://dx.doi.org/10.5966/sctm.2013-0132] [PMID: 24436439]
[96]
Ryu CH, Park KY, Kim SM, et al. Valproic acid enhances anti-tumor effect of mesenchymal stem cell mediated HSV-TK gene therapy in intracranial glioma. Biochem Biophys Res Commun 2012; 421(3): 585-90.
[http://dx.doi.org/10.1016/j.bbrc.2012.04.050] [PMID: 22525671]
[97]
Mohammadpour H, Majidzadeh-A K. Antitumor effect of conditioned media derived from murine MSCs and 5-aminolevulinic acid (5-ALA) mediated photodynamic therapy in breast cancer in vitro. Photodiagn Photodyn Ther 2015; 12(2): 238-43.
[http://dx.doi.org/10.1016/j.pdpdt.2015.02.004] [PMID: 25721458]
[98]
Han HR, Park SA, Ahn S, Jeun SS, Ryu CH. Evaluation of combination treatment effect with TRAIL-secreting mesenchymal stem cells and compound C against glioblastoma. Anticancer Res 2019; 39(12): 6635-43.
[http://dx.doi.org/10.21873/anticanres.13878] [PMID: 31810928]
[99]
Mohr A, Chu T, Brooke GN, Zwacka RM. MSC.sTRAIL has better efficacy than MSC.FL-TRAIL and in combination with akti blocks pro-metastatic cytokine production in prostate cancer cells. Cancers 2019; 11(4): 568.
[http://dx.doi.org/10.3390/cancers11040568] [PMID: 31010082]
[100]
Kim SM, Woo JS, Jeong CH, Ryu CH, Lim JY, Jeun SS. Effective combination therapy for malignant glioma with TRAIL-secreting mesenchymal stem cells and lipoxygenase inhibitor MK886. Cancer Res 2012; 72(18): 4807-17.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0123] [PMID: 22962275]
[101]
Jiang X, Xu J, Liu M, et al. Adoptive CD8+ T cell therapy against cancer:Challenges and opportunities. Cancer Lett 2019; 462: 23-32.
[http://dx.doi.org/10.1016/j.canlet.2019.07.017] [PMID: 31356845]
[102]
Saetersmoen ML, et al. Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells. Seminars in immunopathology.
[http://dx.doi.org/10.1007/s00281-018-0721-x]
[103]
Nishimura T, Kaneko S, Kawana-Tachikawa A, et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 2013; 12(1): 114-26.
[http://dx.doi.org/10.1016/j.stem.2012.11.002] [PMID: 23290140]
[104]
Shah NN, Baird K, Delbrook CP, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood 2015; 125(5): 784-92.
[http://dx.doi.org/10.1182/blood-2014-07-592881] [PMID: 25452614]
[105]
Wakao H, Yoshikiyo K, Koshimizu U, et al. Expansion of functional human mucosal-associated invariant T cells via reprogramming to pluripotency and redifferentiation. Cell Stem Cell 2013; 12(5): 546-58.
[http://dx.doi.org/10.1016/j.stem.2013.03.001] [PMID: 23523177]
[106]
Seki T, Yuasa S, Oda M, et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 2010; 7(1): 11-4.
[http://dx.doi.org/10.1016/j.stem.2010.06.003] [PMID: 20621043]
[107]
Loh Y-H, Hartung O, Li H, et al. Reprogramming of T cells from human peripheral blood. Cell Stem Cell 2010; 7(1): 15-9.
[http://dx.doi.org/10.1016/j.stem.2010.06.004] [PMID: 20621044]
[108]
Staerk J, Dawlaty MM, Gao Q, et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 2010; 7(1): 20-4.
[http://dx.doi.org/10.1016/j.stem.2010.06.002] [PMID: 20621045]
[109]
Björklund AT, et al. Complete remission and signs of immunoediting following haploidentical NK cell therapy in refractory high-risk MDS and AML Ell therapy in refractory high-risk MDS and AML. Blood 2017; 130(Suppl. 1): 4458-8.
[110]
Curti A, Ruggeri L, D’Addio A, et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 2011; 118(12): 3273-9.
[http://dx.doi.org/10.1182/blood-2011-01-329508] [PMID: 21791425]
[111]
Kärre K. NK cells, MHC class I molecules and the missing self. Scand J Immunol 2002; 55(3): 221-8.
[http://dx.doi.org/10.1046/j.1365-3083.2002.01053.x] [PMID: 11940227]
[112]
Kärre K. Natural killer cell recognition of missing self. Nat Immunol 2008; 9(5): 477-80.
[http://dx.doi.org/10.1038/ni0508-477] [PMID: 18425103]
[113]
Goodridge JP, Önfelt B, Malmberg KJ. Newtonian cell interactions shape natural killer cell education. Immunol Rev 2015; 267(1): 197-213.
[http://dx.doi.org/10.1111/imr.12325] [PMID: 26284479]
[114]
Paust S, Blish CA, Reeves RK. Redefining memory: Building the case for adaptive NK cells. J Virol 2017; 91(20): e00169-17.
[http://dx.doi.org/10.1128/JVI.00169-17] [PMID: 28794018]
[115]
Liu LL, Béziat V, Oei VYS, et al. Ex vivo expanded adaptive NK cells effectively kill primary acute lymphoblastic leukemia cells. Cancer Immunol Res 2017; 5(8): 654-65.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0296] [PMID: 28637877]
[116]
Liu LL, Pfefferle A, Yi Sheng VO, et al. Harnessing adaptive natural killer cells in cancer immunotherapy. Mol Oncol 2015; 9(10): 1904-17.
[http://dx.doi.org/10.1016/j.molonc.2015.10.001] [PMID: 26604011]
[117]
Gardner R, Wu D, Cherian S, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 2016; 127(20): 2406-10.
[http://dx.doi.org/10.1182/blood-2015-08-665547] [PMID: 26907630]
[118]
Daher M, Rezvani K. Next generation natural killer cells for cancer immunotherapy: The promise of genetic engineering. Curr Opin Immunol 2018; 51: 146-53.
[http://dx.doi.org/10.1016/j.coi.2018.03.013] [PMID: 29605760]
[119]
Liu E, Tong Y, Dotti G, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 2018; 32(2): 520-31.
[http://dx.doi.org/10.1038/leu.2017.226] [PMID: 28725044]
[120]
Balzarolo M, Watzl C, Medema JP, Wolkers MC. NAB2 and EGR-1 exert opposite roles in regulating TRAIL expression in human Natural Killer cells. Immunol Lett 2013; 151(1-2): 61-7.
[http://dx.doi.org/10.1016/j.imlet.2013.02.001] [PMID: 23416169]
[121]
Lardner A. The effects of extracellular pH on immune function. J Leukoc Biol 2001; 69(4): 522-30.
[PMID: 11310837]
[122]
Noman MZ, Messai Y, Carré T, et al. Microenvironmental hypoxia orchestrating the cell stroma cross talk, tumor progression and antitumor response. Crit Rev Immunol 2011; 31(5): 357-77.
[http://dx.doi.org/10.1615/CritRevImmunol.v31.i5.10]
[123]
Otegbeye F, Ojo E, Moreton S, et al. Inhibiting TGF-beta signaling preserves the function of highly activated, in vitro expanded natural killer cells in AML and colon cancer models. PLoS One 2018; 13(1): e0191358.
[http://dx.doi.org/10.1371/journal.pone.0191358] [PMID: 29342200]
[124]
Hermanson DL, Bendzick L, Pribyl L, et al. Induced pluripotent stem cell‐derived natural killer cells for treatment of ovarian cancer. Stem Cells 2016; 34(1): 93-101.
[http://dx.doi.org/10.1002/stem.2230] [PMID: 26503833]
[125]
Patel SJ, Yamauchi T, Ito F. Induced pluripotent stem cell-derived t cells for cancer immunotherapy. Surg Oncol Clin N Am 2019; 28(3): 489-504.
[http://dx.doi.org/10.1016/j.soc.2019.02.005] [PMID: 31079802]
[126]
Teixeira L, Francoise R, Michail I, Christos S. Breast cancer immunology. Oncol Times 2016; 38(9): 18-9.
[http://dx.doi.org/10.1097/01.COT.0000483221.52404.e3]
[127]
Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 2015; 21(8): 938-45.
[http://dx.doi.org/10.1038/nm.3909] [PMID: 26193342]
[128]
Lizée G, Overwijk WW, Radvanyi L, Gao J, Sharma P, Hwu P. Harnessing the power of the immune system to target cancer. Annu Rev Med 2013; 64: 71-90.
[http://dx.doi.org/10.1146/annurev-med-112311-083918] [PMID: 23092383]
[129]
Saito H, Iwabuchi K, Fusaki N, Ito F. Generation of induced pluripotent stem cells from human melanoma tumor-infiltrating lymphocytes. J Vis Exp 2016; 117: e54375.
[http://dx.doi.org/10.3791/54375]
[130]
Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med 2016; 22(1): 26-36.
[http://dx.doi.org/10.1038/nm.4015] [PMID: 26735408]
[131]
Gross G, Gorochov G, Waks T, Eshhar Z. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant Proc 1989; 21(1 Pt 1): 127-30.
[132]
Poirot L, Philip B, Schiffer-Mannioui C, et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res 2015; 75(18): 3853-64.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3321] [PMID: 26183927]
[133]
Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell 2017; 168(4): 724-40.
[http://dx.doi.org/10.1016/j.cell.2017.01.016] [PMID: 28187291]
[134]
Themeli M, Kloss CC, Ciriello G, et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol 2013; 31(10): 928-33.
[http://dx.doi.org/10.1038/nbt.2678] [PMID: 23934177]
[135]
Zeng J, Tang SY, Wang S. Derivation of mimetic γδ T cells endowed with cancer recognition receptors from reprogrammed γδ T cell. PLoS One 2019; 14(5): e0216815.
[http://dx.doi.org/10.1371/journal.pone.0216815] [PMID: 31071196]
[136]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024]
[137]
de Almeida PE, Meyer EH, Kooreman NG, et al. Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat Commun 2014; 5(1): 3903.
[http://dx.doi.org/10.1038/ncomms4903] [PMID: 24875164]
[138]
Ghosh Z, et al. Dissecting the oncogenic potential of human embryonic and induced pluripotent stem cell derivatives. Cancer Res 2011; 71(14): 5030.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4402] [PMID: 21646469]
[139]
Brewer BG, Mitchell RA, Harandi A, Eaton JW. Embryonic vaccines against cancer: an early history. Exp Mol Pathol 2009; 86(3): 192-7.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.002] [PMID: 19171137]
[140]
Kooreman NG, et al. Autologous iPSC-based vaccines elicit anti-tumor responses in vivo. Cell Stem Cell 2018; 22(4): 501-513. e7.
[http://dx.doi.org/10.1016/j.stem.2018.01.016]
[141]
Zheng Q, Zheng Y, Chen J, et al. A hepatic stem cell vaccine is superior to an embryonic stem cell vaccine in the prophylaxis and treatment of murine hepatocarcinoma. Oncol Rep 2017; 37(3): 1716-24.
[http://dx.doi.org/10.3892/or.2017.5381] [PMID: 28098898]
[142]
Li Y, Zeng H, Xu RH, Liu B, Li Z. Vaccination with human pluripotent stem cells generates a broad spectrum of immunological and clinical responses against colon cancer. Stem Cells 2009; 27(12): 3103-11.
[http://dx.doi.org/10.1002/stem.234] [PMID: 19816950]
[143]
Katsukawa M, Nakajima Y, Fukumoto A, Doi D, Takahashi J. Fail-safe therapy by gamma-ray irradiation against tumor formation by human-induced pluripotent stem cell-derived neural progenitors. Stem Cells Dev 2016; 25(11): 815-25.
[http://dx.doi.org/10.1089/scd.2015.0394] [PMID: 27059007]
[144]
Inui S, Minami K, Ito E, et al. Irradiation strongly reduces tumorigenesis of human induced pluripotent stem cells. J Radiat Res (Tokyo) 2017; 58(4): 430-8.
[http://dx.doi.org/10.1093/jrr/rrw124] [PMID: 28340154]
[145]
Malta TM, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 2018; 173(2): 338-354. e15.
[http://dx.doi.org/10.1016/j.cell.2018.03.034]
[146]
Okabe M, Otsu M, Ahn DH, et al. Definitive proof for direct reprogramming of hematopoietic cells to pluripotency. Blood 2009; 114(9): 1764-7.
[http://dx.doi.org/10.1182/blood-2009-02-203695] [PMID: 19564635]
[147]
Barriga F, Rojas N, Wietstruck A. Alternative donor sources for hematopoietic stem cell transplantation. In: Demirer T, Ed. Innovations in stem cell transplantation. London, UK: Intechopen 2013; p. 349.
[http://dx.doi.org/10.5772/53083]
[148]
Choi SM, Kim Y, Liu H, Chaudhari P, Ye Z, Jang YY. Liver engraftment potential of hepatic cells derived from patient-specific induced pluripotent stem cells. Cell Cycle 2011; 10(15): 2423-7.
[http://dx.doi.org/10.4161/cc.10.15.16869] [PMID: 21750407]
[149]
Maimets M, Bron R, de Haan G, van Os R, Coppes RP. Similar ex vivo expansion and post-irradiation regenerative potential of juvenile and aged salivary gland stem cells. Radiother Oncol 2015; 116(3): 443-8.
[http://dx.doi.org/10.1016/j.radonc.2015.06.022] [PMID: 26138058]
[150]
Martino M, Lanza F, Pavesi L, et al. High-dose chemotherapy and autologous hematopoietic stem cell transplantation as adjuvant treatment in high-risk breast cancer: Data from the European Group for Blood and Marrow Transplantation Registry. Biol Blood Marrow Transplant 2016; 22(3): 475-81.
[http://dx.doi.org/10.1016/j.bbmt.2015.12.011] [PMID: 26723932]
[151]
Brammer JE, Chihara D, Poon LM, et al. Management of advanced and relapsed/refractory extranodal natural killer T-cell lymphoma: An analysis of stem cell transplantation and chemotherapy outcomes. Clin Lymphoma Myeloma Leuk 2018; 18(1): e41-50.
[http://dx.doi.org/10.1016/j.clml.2017.10.001] [PMID: 29277360]
[152]
Pérez-Cano R, Vranckx JJ, Lasso JM, et al. Prospective trial of adipose-derived regenerative cell (ADRC)-enriched fat grafting for partial mastectomy defects: The RESTORE-2 trial. Eur J Surg Oncol 2012; 38(5): 382-9.
[http://dx.doi.org/10.1016/j.ejso.2012.02.178] [PMID: 22425137]
[153]
Chao H-M, Chern E. Patient-derived induced pluripotent stem cells for models of cancer and cancer stem cell research. J Formos Med Assoc 2018; 117(12): 1046-57.
[http://dx.doi.org/10.1016/j.jfma.2018.06.013] [PMID: 30172452]
[154]
Chen H-Y, Su TH, Tseng TC, et al. Impact of occult hepatitis B on the clinical outcomes of patients with chronic hepatitis C virus infection: A 10-year follow-up. J Formos Med Assoc 2017; 116(9): 697-704.
[http://dx.doi.org/10.1016/j.jfma.2016.11.002] [PMID: 28012674]
[155]
Tsai M-C, Chen CH, Hu TH, et al. Long-term outcomes of hepatitis B virus-related cirrhosis treated with nucleos(t)ide analogs. J Formos Med Assoc 2017; 116(7): 512-21.
[http://dx.doi.org/10.1016/j.jfma.2016.08.006] [PMID: 27720344]
[156]
Yen Y-H, Tsai MC, Wu CK, et al. Association between PNPLA3 (rs738409 C>G) variant and hepatocellular carcinoma in Asian chronic hepatitis C patients: A longitudinal study. J Formos Med Assoc 2018; 117(9): 833-40.
[http://dx.doi.org/10.1016/j.jfma.2017.10.003] [PMID: 29089161]
[157]
Islam SM, Suenaga Y, Takatori A, et al. Sendai virus-mediated expression of reprogramming factors promotes plasticity of human neuroblastoma cells. Cancer Sci 2015; 106(10): 1351-61.
[http://dx.doi.org/10.1111/cas.12746] [PMID: 26190440]
[158]
Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459(7244): 262-5.
[http://dx.doi.org/10.1038/nature07935] [PMID: 19329995]
[159]
McKee RA, Wingert RA. Repopulating decellularized kidney scaffolds: An avenue for ex vivo organ generation. Materials (Basel) 2016; 9(3): 190.
[http://dx.doi.org/10.3390/ma9030190] [PMID: 27375844]
[160]
Wang X, Ao Q, Tian X, et al. Correction: 3D bioprinting technologies for hard tissue and organ engineering. Materials 2016, 9, 802. Materials 2016; 9(11): 911.
[http://dx.doi.org/10.3390/ma9110911] [PMID: 28774034]
[161]
Miyoshi N, Ishii H, Nagai K, et al. Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci USA 2010; 107(1): 40-5.
[http://dx.doi.org/10.1073/pnas.0912407107] [PMID: 20018687]
[162]
Schwach V, Slaats RH, Passier R. Human pluripotent stem cell-derived cardiomyocytes for assessment of anticancer drug-induced cardiotoxicity. Front Cardiovasc Med 2020; 7: 50.
[http://dx.doi.org/10.3389/fcvm.2020.00050] [PMID: 32322588]
[163]
Kotini AG, et al. Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia. Cell stem cell 2017; 20(3): 315-328. e7.
[http://dx.doi.org/10.1016/j.stem.2017.01.009]
[164]
Dao Trong P, Jungwirth G, Yu T, et al. Large-scale drug screening in patient-derived idhmut glioma stem cells identifies several efficient drugs among FDA-approved antineoplastic agents. Cells 2020; 9(6): 1389.
[http://dx.doi.org/10.3390/cells9061389] [PMID: 32503220]
[165]
Sah J. Challenges of stem cell therapy in developing country. J Stem Cell Res Ther 2016; 1(3): 1-3.
[166]
Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V. Concise review: Cancer cells, cancer stem cells, and mesenchymal stem cells: Influence in cancer development. Stem Cells Transl Med 2017; 6(12): 2115-25.
[http://dx.doi.org/10.1002/sctm.17-0138] [PMID: 29072369]
[167]
Xiong Q, Hill KL, Li Q, et al. A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of postinfarction left ventricular remodeling. Stem Cells 2011; 29(2): 367-75.
[http://dx.doi.org/10.1002/stem.580] [PMID: 21732493]
[168]
Noaksson K, Zoric N, Zeng X, et al. Monitoring differentiation of human embryonic stem cells using real-time PCR. Stem Cells 2005; 23(10): 1460-7.
[http://dx.doi.org/10.1634/stemcells.2005-0093] [PMID: 16081663]
[169]
Ben-David U, Nudel N, Benvenisty N. Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat Commun 2013; 4(1): 1992.
[http://dx.doi.org/10.1038/ncomms2992] [PMID: 23778593]
[170]
Lim DY, Ng YH, Lee J, Mueller M, Choo AB, Wong VV. Cytotoxic antibody fragments for eliminating undifferentiated human embryonic stem cells. J Biotechnol 2011; 153(3-4): 77-85.
[http://dx.doi.org/10.1016/j.jbiotec.2011.03.017] [PMID: 21458505]
[171]
Ben-David U, Gan QF, Golan-Lev T, et al. Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 2013; 12(2): 167-79.
[http://dx.doi.org/10.1016/j.stem.2012.11.015] [PMID: 23318055]
[172]
Schuldiner M, Itskovitz-Eldor J, Benvenisty N. Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 2003; 21(3): 257-65.
[http://dx.doi.org/10.1634/stemcells.21-3-257] [PMID: 12743320]
[173]
Martin PJ, Counts GW Jr, Appelbaum FR, et al. Life expectancy in patients surviving more than 5 years after hematopoietic cell transplantation. J Clin Oncol 2010; 28(6): 1011-6.
[http://dx.doi.org/10.1200/JCO.2009.25.6693] [PMID: 20065176]
[174]
Osieka R. Studies on drug resistance in a human melanoma xenograft system. Cancer Treat Rev 1984; 11(Suppl. A): 85-98.
[http://dx.doi.org/10.1016/0305-7372(84)90047-1] [PMID: 6539651]
[175]
Chaudhary PM, Roninson IB. Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J Natl Cancer Inst 1993; 85(8): 632-9.
[http://dx.doi.org/10.1093/jnci/85.8.632] [PMID: 8096875]
[176]
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1: 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy