Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

Anti-HER2 VHH Targeted Fluorescent Liposome as Bimodal Nanoparticle for Drug Delivery and Optical Imaging

Author(s): Sepideh Khaleghi, Fatemeh Rahbarizadeh* and Shahryar K. Nikkhoi

Volume 16, Issue 4, 2021

Published on: 06 August, 2021

Page: [552 - 562] Pages: 11

DOI: 10.2174/1574892816666210806150929

Price: $65

Open Access Journals Promotions 2
Abstract

Objectives: The aim of this study was to formulate fluorescent-labeled targeted immunoliposome to visualize the delivery and distribution of drugs in real-time.

Methods: In this study, fluorescent-labeled liposomes were decorated with anti-HER2 VHH or Herceptin to improve the monitoring of intracellular drug delivery and tumor cell tracking with minimal side effects. The conjugation efficiency of antibodies was analyzed by SDS-PAGE silver staining. In addition, the physicochemical characterization of liposomes was performed using DLS and TEM. Finally, confocal microscopy visualized nanoparticles in the target cells.

Results: Quantitative and qualitative methods characterized the intracellular uptake of 110±10 nm particles with near 70% conjugation efficiency. In addition, live-cell trafficking during hours of incubation was monitored by wide-field microscopy imaging. The results show that the fluorescent- labeled nanoparticles can specifically bind to HER2-positive breast cancer with minimal off-target delivery.

Conclusion: These nanoparticles can have several applications in personalized medicine, especially drug delivery and real-time visualization of cancer therapy. Moreover, this method also can be applied in the targeted delivery of contrast agents in imaging and thermotherapy.

Keywords: Fluorescent liposome, HER2, live-cell imaging, targeted delivery, VHH, wide-field microscopy.

[1]
Mohd-Zahid MH, Mohamud R, Abdullah CAC, Lim J, Alem H, Hanaffi WNW. Colorectal cancer stem cells: A review of targeted drug delivery by gold nanoparticles. RSC Adv 2020; 10(2): 973-85.
[http://dx.doi.org/10.1039/C9RA08192E]
[2]
Syed AM, MacMillan P, Ngai J, et al. Liposome imaging in optically cleared tissues. Nano Lett 2020; 20(2): 1362-9.
[http://dx.doi.org/10.1021/acs.nanolett.9b04853] [PMID: 31928014]
[3]
Tinoco G, Warsch S, Glück S, Avancha K, Montero AJ. Treating breast cancer in the 21st century: Emerging biological therapies. J Cancer 2013; 4(2): 117-32.
[http://dx.doi.org/10.7150/jca.4925] [PMID: 23386910]
[4]
Wang Y, Wang Z, Qian Y, et al. Synergetic estrogen receptor-targeting liposome nanocarriers with anti-phagocytic properties for enhanced tumor theranostics. J Mater Chem B Mater Biol Med 2019; 7(7): 1056-63.
[http://dx.doi.org/10.1039/C8TB03351J] [PMID: 32254773]
[5]
Yu W, Liu R, Zhou Y, Gao H. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent Sci 2020; 6(2): 100-16.
[http://dx.doi.org/10.1021/acscentsci.9b01139] [PMID: 32123729]
[6]
Feng B, Tomizawa K, Michiue H, Han X-J, Miyatake S, Matsui H. Development of a bifunctional immunoliposome system for combined drug delivery and imaging in vivo. Biomaterials 2010; 31(14): 4139-45.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.086] [PMID: 20149431]
[7]
Negi LM, Talegaonkar S, Jaggi M, Verma AK. Hyaluronated imatinib liposomes with hybrid approach to target CD44 and P-gp overexpressing MDR cancer: An in vitro, in vivo and mechanistic investigation. J Drug Target 2019; 27(2): 183-92.
[http://dx.doi.org/10.1080/1061186X.2018.1497039] [PMID: 29972336]
[8]
Moosavian SA, Sahebkar A. Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett 2019; 448: 144-54.
[http://dx.doi.org/10.1016/j.canlet.2019.01.045] [PMID: 30763718]
[9]
Krajewska JB, Bartoszek A, Fichna J. New trends in liposome-based drug delivery in colorectal cancer. Mini Rev Med Chem 2019; 19(1): 3-11.
[http://dx.doi.org/10.2174/1389557518666180903150928] [PMID: 30179131]
[10]
Chung BL, Kaplinsky J, Langer R, Kamaly N. Delivery of cancer nanotherapeutics. In: Rai P, Morris S, Eds. Nanotheranostics for Cancer Applications. Denamark: Springer, Cham 2019; pp. 163-205.
[http://dx.doi.org/10.1007/978-3-030-01775-0_8]
[11]
Roche KC, Medik YB, Rodgers Z, Warner S, Wang AZ. Cancer nanotherapeutics administered by non-conventional routes. In: Rai P, Morris S, Eds. Nanotheranostics for Cancer Applications. Denmark: Springer, Cham 2019; pp. 253-74.
[12]
Alizadeh L, Zarebkohan A, Salehi R, Ajjoolabady A, Rahmati-Yamchi M. Chitosan-based nanotherapeutics for ovarian cancer treatment. J Drug Target 2019; 27(8): 839-52.
[http://dx.doi.org/10.1080/1061186X.2018.1564923] [PMID: 30596291]
[13]
Praetorius NP, Mandal TK. Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul 2007; 1(1): 37-51.
[http://dx.doi.org/10.2174/187221107779814104] [PMID: 19075873]
[14]
Cai X, Mao D, Wang C, Kong D, Cheng X, Liu B. Multifunctional liposome: A bright AIEgen-lipid conjugate with strong photosensitization. Angew Chem Int Ed Engl 2018; 57(50): 16396-400.
[http://dx.doi.org/10.1002/anie.201809641] [PMID: 30341792]
[15]
Liu Y, Wang Z, Liu Y, et al. Suppressing nanoparticle-mononuclear phagocyte system interactions of two-dimensional gold nanorings for improved tumor accumulation and photothermal ablation of tumors. ACS Nano 2017; 11(10): 10539-48.
[http://dx.doi.org/10.1021/acsnano.7b05908] [PMID: 28953351]
[16]
Park JY, Daksha P, Lee GH, Woo S, Chang Y. Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications. Nanotechnology 2008; 19(36): 365603.
[http://dx.doi.org/10.1088/0957-4484/19/36/365603] [PMID: 21828874]
[17]
Hodenius M, De Cuyper M, Desender L, Müller-Schulte D, Steigel A, Lueken H. Biotinylated stealth magnetoliposomes. Chem Phys Lipids 2002; 120(1-2): 75-85.
[http://dx.doi.org/10.1016/S0009-3084(02)00105-6] [PMID: 12426077]
[18]
Ren H, He Y, Liang J, et al. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy. ACS Appl Mater Interfaces 2019; 11(22): 20304-15.
[http://dx.doi.org/10.1021/acsami.8b22693] [PMID: 31056910]
[19]
Li J, Sharkey CC, Huang D, King MR. Nanobiotechnology for the therapeutic targeting of cancer cells in blood. Cell Mol Bioeng 2015; 8(1): 137-50.
[http://dx.doi.org/10.1007/s12195-015-0381-z] [PMID: 25798204]
[20]
Tahara Y, Yoshikawa T, Sato H, Mori Y, Zahangir MH, Kishimura A. Encapsulation of a nitric oxide donor into a liposome to boost the Enhanced Permeation and Retention (EPR) effect. MedChemComm 2017; 8(2): 415-21.
[http://dx.doi.org/10.1039/C6MD00614K] [PMID: 30108759]
[21]
Rakhmatullin R, Semashko V, Korableva S, Kiiamov A, Rodionov A, Tschaggelar R. EPR study of ceria nanoparticles containing different concentration of Ce3+ ions. Mater Chem Phys 2018; 219: 251-7.
[http://dx.doi.org/10.1016/j.matchemphys.2018.08.028]
[22]
Ceccon A, Schmidt T, Tugarinov V, Kotler SA, Schwieters CD, Clore GM. Interaction of Huntingtin Exon-1 peptides with lipid-based micellar nanoparticles probed by solution NMR and Q-band pulsed EPR. J Am Chem Soc 2018; 140(20): 6199-202.
[http://dx.doi.org/10.1021/jacs.8b02619] [PMID: 29727175]
[23]
Cheng Y, Ji Y. RGD-modified polymer and liposome nanovehicles: Recent research progress for drug delivery in cancer therapeutics. Eur J Pharm Sci 2019; 128: 8-17.
[http://dx.doi.org/10.1016/j.ejps.2018.11.023] [PMID: 30471410]
[24]
Dawidczyk CM, Russell LM, Searson PC. Nanomedicines for cancer therapy: State-of-the-art and limitations to pre-clinical studies that hinder future developments. Front Chem 2014; 2: 69.
[http://dx.doi.org/10.3389/fchem.2014.00069] [PMID: 25202689]
[25]
Yarden Y. Biology of HER2 and its importance in breast cancer. Oncology 2001; 61(Suppl. 2): 1-13.
[http://dx.doi.org/10.1159/000055396] [PMID: 11694782]
[26]
Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344(11): 783-92.
[http://dx.doi.org/10.1056/NEJM200103153441101] [PMID: 11248153]
[27]
Korkaya H, Paulson A, Iovino F, Wicha MS. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008; 27(47): 6120-30.
[http://dx.doi.org/10.1038/onc.2008.207] [PMID: 18591932]
[28]
Lai-Tiong F. Complete response after pertuzumab+ trastuzumab+ docetaxel in metastatic Her2-positive breast cancer patients: Review of four cases. Eur J Gynaecol Oncol 2018; 39(5): 845-6.
[29]
Rahbarizadeh F, Rasaee MJ, Forouzandeh Moghadam M, Allameh AA, Sadroddiny E. Production of novel recombinant single-domain antibodies against tandem repeat region of MUC1 mucin. Hybrid Hybridomics 2004; 23(3): 151-9.
[http://dx.doi.org/10.1089/1536859041224334] [PMID: 15312305]
[30]
Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 2007; 77(1): 13-22.
[http://dx.doi.org/10.1007/s00253-007-1142-2] [PMID: 17704915]
[31]
McNaughton BR, Bruce VJ. Compositions comprising resurfaced cell-penetrating nanobodies and methods of use thereof. US10604558, 2020.
[32]
Xiaoning S, Xiaoniu M, Liu X. Anti-PD-l1 nanobody and use thereof. US20190023793, 2019.
[33]
Qu Z, Li S. Nanobody biomedicine transdermal administration formulation system and preparation method and use thereof. US20190184012, 2019.
[34]
Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z. Nanobody; an old concept and new vehicle for immunotargeting. Immunol Invest 2011; 40(3): 299-338.
[http://dx.doi.org/10.3109/08820139.2010.542228] [PMID: 21244216]
[35]
Caizer C. Magnetic/superparamagnetic hyperthermia as an effective noninvasive alternative method for therapy of malignant tumors. In: Nanotheranostics. Rai M, Jamil B. Denmark: Springer Cham 2019; pp. 297-335.
[36]
Gu X, Shen C, Li H, Goldys EM, Deng W. X-ray induced Photodynamic Therapy (PDT) with a mitochondria-targeted liposome delivery system. J Nanobiotechnology 2020; 18(1): 87.
[http://dx.doi.org/10.1186/s12951-020-00644-z] [PMID: 32522291]
[37]
Zhang Y, Olsen DR, Nguyen KB, Olson PS, Rhodes ET, Mascarenhas D. Expression of eukaryotic proteins in soluble form in Escherichia coli. Protein Expr Purif 1998; 12(2): 159-65.
[http://dx.doi.org/10.1006/prep.1997.0834] [PMID: 9518456]
[38]
Vernet E, Sauer J, Andersen A, Jensen KJ, Voldborg B. Predictive mutagenesis of Ligation-Independent Cloning (LIC) vectors for protein expression and site-specific chemical conjugation. Anal Biochem 2011; 414(2): 312-4.
[39]
Khaleghi S, Rahbarizadeh F, Ahmadvand D, Malek M, Madaah Hosseini HR. The effect of superparamagnetic iron oxide nanoparticles surface engineering on relaxivity of magnetoliposome. Contrast Media Mol Imaging 2016; 11(5): 340-9.
[http://dx.doi.org/10.1002/cmmi.1697] [PMID: 27307214]
[40]
Nada A, Al-Moghazy M, Soliman AAF, et al. Pyrazole-based compounds in chitosan liposomal emulsion for antimicrobial cotton fabrics. Int J Biol Macromol 2018; 107(Pt A): 585-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.031] [PMID: 28917937]
[41]
Anderson AS. MTT Proliferation Assay. Proceedings of the West Virginia Academy of Science 2020. April 29.
[42]
Wu LP, Wang D, Parhamifar L, Hall A, Chen GQ, Moghimi SM. Poly(3-hydroxybutyrate-co-R-3-hydroxyhexanoate) nanoparticles with polyethylenimine coat as simple, safe, and versatile vehicles for cell targeting: Population characteristics, cell uptake, and intracellular trafficking. Adv Healthc Mater 2014; 3(6): 817-24.
[http://dx.doi.org/10.1002/adhm.201300533] [PMID: 24408356]
[43]
Rehor I, Lee KL, Chen K, et al. Plasmonic nanodiamonds: Targeted core-shell type nanoparticles for cancer cell thermoablation. Adv Healthc Mater 2015; 4(3): 460-8.
[http://dx.doi.org/10.1002/adhm.201400421] [PMID: 25336437]
[44]
Djender S, Schneider A, Beugnet A, et al. Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microb Cell Fact 2014; 13(1): 140.
[http://dx.doi.org/10.1186/s12934-014-0140-1] [PMID: 25223348]
[45]
Chabrol E, Stojko J, Nicolas A, et al. VHH characterization recombinant VHHs: Production, characterization and affinity. Anal Biochem 2020; 589: 113491.
[http://dx.doi.org/10.1016/j.ab.2019.113491] [PMID: 31676284]
[46]
Drummond DC, Kirpotin DB, Huang ZR, Tipparaju SK, Noble C. Ephrin Receptor A2 (EPHA2)-targeted docetaxel-generating nano-liposome compositions. WO2017161067, 2018.
[47]
Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules 2020; 25(23): 5672.
[http://dx.doi.org/10.3390/molecules25235672] [PMID: 33271886]
[48]
Bin S, Qinqin Z, Nong Y. Liposomal paclitaxel palmitate formulation and preparation method thereof. US20190076357, 2019.
[49]
Patil RM. Nanomedicine for early diagnosis of breast cancer. In: Thorat N, Bauer J, Eds. Nanomedicines for Breast Cancer Theranostics. Amsterdam: Elsevier 2020; pp. 153-73.
[http://dx.doi.org/10.1016/B978-0-12-820016-2.00008-2]
[50]
Kasagi N, Yamada N, Mori M, Kato T, Kobayashi T. Liposome composition and pharmaceutical composition. US20200016079, 2020.
[51]
Bremer T. Delivery of urea to cells of the macula and retina using liposome constructs. US20190184030, 2019.
[52]
Caddeo C, Pucci L, Gabriele M, et al. Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int J Pharm 2018; 538(1-2): 40-7.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.047] [PMID: 29294324]
[53]
Kim MW, Kwon S-H, Choi JH, Lee A. A promising biocompatible platform: Lipid-based and bio-inspired smart drug delivery systems for cancer therapy. Int J Mol Sci 2018; 19(12): 3859.
[http://dx.doi.org/10.3390/ijms19123859] [PMID: 30518027]
[54]
Guo Y, Zhang Y, Ma J, et al. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J Control Release 2018; 272: 145-58.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.028] [PMID: 28442407]
[55]
Skouras A, Papadia K, Mourtas S, Klepetsanis P, Antimisiaris SG. Multifunctional doxorubicin-loaded magnetoliposomes with active and magnetic targeting properties. Eur J Pharm Sci 2018; 123: 162-72.
[http://dx.doi.org/10.1016/j.ejps.2018.07.044] [PMID: 30041027]
[56]
Poh S, Chelvam V, Ayala-López W, Putt KS, Low PS. Selective liposome targeting of folate receptor positive immune cells in inflammatory diseases. Nanomedicine 2018; 14(3): 1033-43.
[http://dx.doi.org/10.1016/j.nano.2018.01.009] [PMID: 29410110]
[57]
Marekova D, Turnovcova K, Sursal TH, Gandhi CD, Jendelova P, Jhanwar-Uniyal M. Potential for treatment of glioblastoma: New aspects of superparamagnetic iron oxide nanoparticles. Anticancer Res 2020; 40(11): 5989-94.
[http://dx.doi.org/10.21873/anticanres.14619] [PMID: 33109536]
[58]
Khaleghi S, Rahbarizadeh F, Ahmadvand D, Hosseini HRM. Anti-HER2 VHH targeted magnetoliposome for intelligent magnetic resonance imaging of breast cancer cells. Cell Mol Bioeng 2017; 10(3): 263-72.
[http://dx.doi.org/10.1007/s12195-017-0481-z] [PMID: 31719864]
[59]
Nikkhoi SK, Rahbarizadeh F, Ranjbar S, Khaleghi S, Farasat A. Liposomal nanoparticle armed with bivalent bispecific single-domain antibodies, novel weapon in HER2 positive cancerous cell lines targeting. Mol Immunol 2018; 96: 98-109.
[http://dx.doi.org/10.1016/j.molimm.2018.01.010] [PMID: 29549861]
[60]
Li A, Xing J, Li L, et al. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2- expressing tumor cells. AMB Express 2016; 6(1): 32.
[http://dx.doi.org/10.1186/s13568-016-0201-4] [PMID: 27112931]
[61]
Saqafi B, Rahbarizadeh F. Polyethyleneimine-polyethylene glycol copolymer targeted by anti-HER2 nanobody for specific delivery of transcriptionally targeted tBid containing construct. Artif Cells Nanomed Biotechnol 2019; 47(1): 501-11.
[http://dx.doi.org/10.1080/21691401.2018.1549063] [PMID: 30810413]
[62]
Wang R, Iwakura Y, Araki K, Keino-Masu K, Masu M, Wang X-Y. ErbB2 dephosphorylation and anti-proliferative effects of neuregulin-1 in ErbB2-overexpressing cells; re-evaluation of their low-affinity interaction. Sci Rep 2013; 3: 1402.
[63]
Chen I-J, Cheng Y-A, Ho K-W, et al. Bispecific antibody (HER2 × mPEG) enhances anti-cancer effects by precise targeting and accumulation of mPEGylated liposomes. Acta Biomater 2020; 111: 386-97.
[http://dx.doi.org/10.1016/j.actbio.2020.04.029] [PMID: 32417267]
[64]
Kim B, Shin J, Wu J, et al. Engineering peptide-targeted liposomal nanoparticles optimized for improved selectivity for HER2- positive breast cancer cells to achieve enhanced in vivo efficacy. J Control Release 2020; 322: 530-41.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.010] [PMID: 32276005]
[65]
Jain A, Jain S. Advances in tumor targeted liposomes. Curr Mol Med 2018; 18(1): 44-57.
[http://dx.doi.org/10.2174/1566524018666180416101522] [PMID: 29663884]
[66]
Jain A, Jain SK. Stimuli-responsive smart liposomes in cancer targeting. Curr Drug Targets 2018; 19(3): 259-70.
[http://dx.doi.org/10.2174/1389450117666160208144143] [PMID: 26853324]
[67]
Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci 2018; 19(1): 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[68]
Dumont N, Merrigan S, Turpin J, et al. Nanoliposome targeting in breast cancer is influenced by the tumor microenvironment. Nanomedicine 2019; 17: 71-81.
[http://dx.doi.org/10.1016/j.nano.2018.12.010] [PMID: 30654182]
[69]
Gabizon A, Tzemach D, Gorin J, et al. Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother Pharmacol 2010; 66(1): 43-52.
[http://dx.doi.org/10.1007/s00280-009-1132-4] [PMID: 19779718]
[70]
Mamot C, Drummond DC, Noble CO, et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 2005; 65(24): 11631-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1093] [PMID: 16357174]
[71]
Mazurenko I, Hatzakis NS, Jeuken LJC. Single liposome measurements for the study of proton-pumping membrane enzymes using electrochemistry and fluorescent microscopy. J Vis Exp 2019; (144): e58896.
[http://dx.doi.org/10.3791/58896] [PMID: 30855567]
[72]
Jamnani FR, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Sharifzadeh Z. Targeting high affinity and epitope-distinct oligoclonal nanobodies to HER2 over-expressing tumor cells. Exp Cell Res 2012; 318(10): 1112-24.
[http://dx.doi.org/10.1016/j.yexcr.2012.03.004] [PMID: 22440788]
[73]
Silence K, Vaeck M, Henegouwen PMVBE. Polypeptide constructs including VHH directed against EGFR for intracellular delivery. US9243065, 2016.
[74]
Heukers R, Altintas I, Raghoenath S, et al. Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles. Biomaterials 2014; 35(1): 601-10.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.001] [PMID: 24139763]
[75]
van Lith SAM, van den Brand D, Wallbrecher R, et al. The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates. Eur J Pharm Biopharm 2018; 124: 63-72.
[http://dx.doi.org/10.1016/j.ejpb.2017.12.009] [PMID: 29274374]
[76]
Farcas CG, Dehelean C, Pinzaru IA, et al. Thermosensitive betulinic acid-loaded magnetoliposomes: A promising antitumor potential for highly aggressive human breast adenocarcinoma cells under hyperthermic conditions. Int J Nanomedicine 2020; 15: 8175-200.
[http://dx.doi.org/10.2147/IJN.S269630] [PMID: 33122905]
[77]
Szuplewska A, Rękorajska Joniec A, Pocztańska E, Krysiński P, Dybko A, Chudy M. Magnetic field-assisted selective delivery of doxorubicin to cancer cells using magnetoliposomes as drug nanocarriers. Nanotechnology 2019; 30(31): 315101.
[http://dx.doi.org/10.1088/1361-6528/ab19d3] [PMID: 30991371]
[78]
Bernareggi A, Livi V. Injectable pharmaceutical compositions of an anthracenedione derivative with anti-tumoral activity. US20160256557, 2016.
[79]
Eroğlu İ, İbrahim M. Liposome-ligand conjugates: A review on the current state of art. J Drug Target 2020; 28(3): 225-44.
[http://dx.doi.org/10.1080/1061186X.2019.1648479] [PMID: 31339374]
[80]
Yang EY, Shah K. Nanobodies: Next generation of cancer diagnostics and therapeutics. Front Oncol 2020; 10: 1182.
[http://dx.doi.org/10.3389/fonc.2020.01182] [PMID: 32793488]
[81]
Patel V. Liposome: A novel carrier for targeting drug delivery system. AJPRD 2020; 8(4): 67-76.
[82]
Hynes RO, Jailkhani N. Nanobody based imaging and targeting of ECM in disease and development. US20190225693, 2019.
[83]
Xia Y, Xu C, Zhang X, et al. Liposome-based probes for molecular imaging: From basic research to the bedside. Nanoscale 2019; 11(13): 5822-38.
[http://dx.doi.org/10.1039/C9NR00207C] [PMID: 30888379]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy