[2]
Fletcher, C.F.; Lutz, C.M.; O’Sullivan, T.N.; Shaughnessy, J.D.; Hawkes, R.; Frankel, W.N.; Copeland, N.G.; Jenkins, N.A. Absence
epilepsy in tottering mutant mice is associated with calcium
channel defects. 11
[5]
Goldenberg, M.M. Overview of drugs used for epilepsy and seizures.
24,
[9]
Belardetti, F.; Zamponi, G.W. Calcium channels as therapeutic targets., 2012. 1, 19.
[11]
Yin, S.; Liu, J.; Kang, Y.; Lin, Y.; Li, D.; Shao, L. Interactions of nanomaterials with ion channels and related mechanisms. Br. J. Pharmacol., 2019, 176(19), 3754-3774.
[13]
Rajakulendran, S.; Hanna, M.G. The role of calcium channels in
epilepsy. 21
[20]
Dolphin, A.C. A short history of voltage‐gated calcium channels.
147(7)
[22]
Berrou, L.; Bernatchez, G.; Parent, L. Molecular determinants of inactivation within the I-II linker of alpha1E (CaV2.3) calcium channels. Biophys. J., 80(1), 215-228.
[24]
Shah, V.N.; Chagot, B.; Chazin, W.J. Calcium-dependent regulation of ion channels. Cal. Bind Prot., 2017, 1(4), 203-212.
[39]
Jingxia, Z.; Lanju, X.; Tao, Z.; Guogang, R.; Zhuo, Y. Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal ca3 pyra-midal neurons. Neurotoxicology, 2009, 30(2), 220-230.
[40]
Piscopo, S.; Brown, E.R. Zinc oxide nanoparticles and voltagegated human kv11.1 potassium channels interact through a novel mecha-nism. Small, 2018, 14(15), e1703403.
[44]
Nazroğlu, M. Nanoparticles as potential clinical therapeutic agents in alzheimers disease: Focus on selenium nanoparticles. Expert Rev. Clin. Pharmacol., 2017, 10(7), 773-782.
[47]
Kumar, R. Chapter 8 - lipid-based nanoparticles for drug-delivery
systems.
[49]
Bennewitz, M.F.; Saltzman, W.M. Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics, 2009, 6(2), 323-336.
[60]
Banks, W.A. From blood–brain barrier to blood–brain interface:
New opportunities for cns drug delivery. DRUG Discov., 18
[70]
Nance, E.A.; Woodworth, G.F.; Sailor, K.A.; Shih, T.-Y.; Xu, Q.; Swaminathan, G.; Xiang, D.; Eberhart, C.; Hanes, J. A dense
poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med., 2012, 4,
149ra119-149ra119.
[74]
Dycke, A.V. Local delivery strategies in epilepsy; a focus on adenosine. Seizure, 2011, 20(5), 376-382.
[75]
Ji, Y.; Hu, Y.; Ren, J.; Khanna, R.; Yao, Y.; Chen, Y.; Li, Q.; Sun, L. CRMP2-derived peptide ST2-104 (R9-CBD3) protects SH-SY5Y neuroblastoma cells against A 25-35-induced neurotoxicity by inhibiting the pCRMP2/NMDAR2B signaling pathway. Chem. Biol. Interact., 2019, 305, 28-39.
[76]
Chew, L.A.; Khanna, R. CRMP2 and voltage-gated ion channels: Potential roles in neuropathic pain. Neuronal Signal., 2018, 16.
[78]
Ortner, N.J. L-type calcium channels as drug targets in cns disorders. Channels (Austin), 2016, 10(1), 7-13.
[86]
Argelia Rosillo-de, la Torre; Gabriel, Luna-Bárcenas; Sandra, Orozco-Suárez; Hermelinda, Salgado-Ceballos; Perla, García; Alberto, Laza-rowski; Luisa, Rocha. Pharmacoresistant epilepsy and nanotechnology. Front. Biosci., 2014, 1, 329-340.