Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Synthetic Methods and Pharmacological Potential of Different Oxazine Analogs

Author(s): Mohammad Asif* and Mohd. Imran

Volume 19, Issue 4, 2022

Published on: 05 August, 2021

Page: [513 - 521] Pages: 9

DOI: 10.2174/1570193X18666210805110323

Price: $65

Open Access Journals Promotions 2
Abstract

Oxazine analog is a vital class of heterocyclic compounds and has attracted synthetic interest owing to their wide range of biological activities. Oxazine analogs are valuable in medicinal organic chemistry and exhibit different varieties of biological activities such as antimicrobial, anticancer, antimalarial, antitubercular, sedative, anticonvulsant, analgesic, anti-inflammatory, antipyretic, etc. Oxazine can be derived from benzene by appropriate substitution of carbon atoms of the ring by nitrogen and oxygen atoms. Nowadays, the development of drug resistance is a key problem, and to defeat this problem, it is crucial to synthesize novel compounds. So, novel oxazine analogs may play a crucial role to overcome these problems. Oxazine analogs are prepared by reaction of chalcone derivatives with thiourea in the presence of alcohol and sodium hydroxide. The present aims of this review are to give an outline of some different synthetic methods and different types of biological activities of oxazine analogs. We hope that this review will be motivating for researchers concerned with oxazine analogs.

Keywords: Oxazines, antimicrobial, antitubercular, antitumor, anti-inflammatory, biological activities, synthetic methods.

Graphical Abstract
[1]
Bansal, R.K. Heterocyclic Chemistry. Fourth edition; New Age International Publishers, p. 501‒502.
[2]
Katritzky, A.R. The Principles of Heterocyclic Chemistry. Pharma Med Press Publishers, p. 80‒81.
[3]
Acheson, R.M. An Introduction to the Chemistry of Heterocyclic Compounds. 3rd Ed. A Wiely -Inter Science Publication, p. 410‒ 414.
[4]
Mbaba, M.; Dingle, L.M.K.; Zulu, A.I.; Laming, D.; Swart, T.; de la Mare, J-A.; Hoppe, H.C.; Edkins, A.L.; Khanye, S.D. Coumarin-annulated ferrocenyl 1,3-oxazine derivatives possessing in vitro antimalarial and antitrypanosomal potency. Molecules, 2021, 26(5), 1333.
[http://dx.doi.org/10.3390/molecules26051333] [PMID: 33801371]
[5]
Asif, M.; Imran, M. Pharmacological profile of oxazine and its derivatives: A mini review. Int. J. New. Chem., 2020, 7(1), 60-73.
[6]
Turgut, Z.; Pelit, E.; Köycü, A. Synthesis of new 1,3-disubstituted-2,3-dihydro-1H-naphth[1,2e][1,3]oxazines. Molecules, 2007, 12(3), 345-352.
[http://dx.doi.org/10.3390/12030345] [PMID: 17851393]
[7]
Sindhu, T.J.; Sonia, D.; Vincent, A.G.; Chandran, M.; Bhat, A.R.; Krishnakumar, K. Biological activities of oxazine and its derivatives: A review. Int. J. Pharm. Sci. Res., 2013, 4, 134-143.
[8]
Thompson, A.M.; Sutherland, H.S.; Palmer, B.D.; Kmentova, I.; Blaser, A.; Franzblau, S.G.; Wan, B.; Wang, Y.; Ma, Z.; Denny, W.A. Synthesis and structure-activity relationships of varied ether linker analogues of the antitubercular drug (6S)-2-nitro-6-[4-(trifluoromethoxy)benzyl]oxy-6,7-dihydro-5h-imidazo[2,1-b][1,3]oxazine (PA-824). J. Med. Chem., 2011, 54(19), 6563-6585.
[http://dx.doi.org/10.1021/jm200377r] [PMID: 21846109]
[9]
Yakovlev, I.P.; Prepyalov, A.V.; Ivin, B.A. Unsaturated 4H-1,3-oxazines. Chem. Heterocycl. Compd., 1994, 30, 255-271.
[http://dx.doi.org/10.1007/BF01165688]
[10]
Manjula, M.K.; Rai, K.M.L.; Gaonkar, S.L.; Raveesha, K.A.; Satish, S. Synthesis of new series of 5,6-dihydro-4H-1,2-oxazines via hetero Diels-Alder reaction and evaluation of antimicrobial activity. Eur. J. Med. Chem., 2009, 44(1), 280-288.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.027] [PMID: 18420309]
[11]
Mathew, B.P.; Kumar, A.; Sharma, S.; Shukla, P.K.; Nath, M. An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives. Eur. J. Med. Chem., 2010, 45(4), 1502-1507.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.058] [PMID: 20116901]
[12]
Elarfi, M.J.; Al-Difar, H.A. Synthesis of some heterocyclic compounds derived from chalcones. Sci. Rev. Chem. Communn, 2012, 2, 103-107.
[13]
Tiwari, V.; Meshram, J.; Ali, P.; Sheikh, J.; Tripathi, U. Novel oxazine skeletons as potential antiplasmodial active ingredients: Synthesis, in vitro and in vivo biology of some oxazine entities produced via cyclization of novel chalcone intermediates. J. Enzyme Inhib. Med. Chem., 2011, 26(4), 569-578.
[http://dx.doi.org/10.3109/14756366.2010.539566] [PMID: 21171899]
[14]
Das, B.C.; Madhukumar, A.V.; Anguiano, J.; Mani, S. Design, synthesis and biological evaluation of 2H-benzo[b][1,4] oxazine derivatives as hypoxia targeted compounds for cancer therapeutics. Bioorg. Med. Chem. Lett., 2009, 19(15), 4204-4206.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.110] [PMID: 19515559]
[15]
Zhou, D.; Harrison, B.L.; Shah, U.; Andree, T.H.; Hornby, G.A.; Scerni, R.; Schechter, L.E.; Smith, D.L.; Sullivan, K.M.; Mewshaw, R.E. Studies toward the discovery of the next generation of antidepressants. Part 5: 3,4-Dihydro-2H-benzo[1,4]oxazine derivatives with dual 5-HT1A receptor and serotonin transporter affinity. Bioorg. Med. Chem. Lett., 2006, 16(5), 1338-1341.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.054] [PMID: 16332439]
[16]
Wang, S.; Li, Y.; Liu, Y.; Lu, A.; You, Q. Novel hexacyclic camptothecin derivatives. Part 1: synthesis and cytotoxicity of camptothecins with an A-ring fused 1,3-oxazine ring. Bioorg. Med. Chem. Lett., 2008, 18(14), 4095-4097.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.103] [PMID: 18554906]
[17]
Ando, Y.; Ando, K.; Yamaguchi, M.; Kunitomo, J.; Koida, M.; Fukuyama, R.; Nakamuta, H.; Yamashita, M.; Ohta, S.; Ohishi, Y. A novel oxazine ring closure reaction affording (Z)-((E)-2-styrylbenzo[b]furo[3,2-d][1,3]oxazin-4-ylideno)acetaldehydes and their anti-osteoclastic bone resorption activity. Bioorg. Med. Chem. Lett., 2006, 16(22), 5849-5854.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.064] [PMID: 16945531]
[18]
Benameur, L.; Bouaziz, Z.; Nebois, P.; Bartoli, M.H.; Boitard, M.; Fillion, H. Synthesis of furonaphth[1,3]oxazine and furo[1,3]oxazinoquinoline derivatives as precursors for an o-quinonemethide structure and potential antitumor agents. Chem. Pharm. Bull. (Tokyo), 1996, 44(3), 605-608.
[http://dx.doi.org/10.1248/cpb.44.605] [PMID: 8882458]
[19]
Roy, K.; Mitra, I.; Saha, A. Molecular shape analysis of antioxidant and squalene synthase inhibitory activities of aromatic tetrahydro-1,4-oxazine derivatives. Chem. Biol. Drug Des., 2009, 74(5), 507-516.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00888.x] [PMID: 19793182]
[20]
Blaser, A.; Palmer, B.D.; Sutherland, H.S.; Kmentova, I.; Franzblau, S.G.; Wan, B.; Wang, Y.; Ma, Z.; Thompson, A.M.; Denny, W.A. Structure-activity relationships for amide-, carbamate-, and urea-linked analogues of the tuberculosis drug (6S)-2-nitro-6-[4-(trifluoromethoxy)benzyl]oxy-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). J. Med. Chem., 2012, 55(1), 312-326.
[http://dx.doi.org/10.1021/jm2012276] [PMID: 22148391]
[21]
Seal, L.; Von Hoff, D.; Lawrence, R.; Izbicka, E.; Jamison, R.M. An in vitro assessment of the antineoplastic potential of 2H-1,3-oxazine-2,6(3H)-dione (3-oxauracil), a novel pyrimidine. Invest. New Drugs, 1997, 15(4), 289-293.
[http://dx.doi.org/10.1023/A:1005962224801] [PMID: 9547671]
[22]
Brudeli, B.; Moltzau, L.R.; Andressen, K.W.; Krobert, K.A.; Klaveness, J.; Levy, F.O. Synthesis and pharmacological properties of novel hydrophilic 5-HT4 receptor antagonists. Bioorg. Med. Chem., 2010, 18(24), 8600-8613.
[http://dx.doi.org/10.1016/j.bmc.2010.10.011] [PMID: 21075638]
[23]
Akhter, M.; Husain, A.; Akhter, N.; Khan, M.S.Y. Synthesis, antiinflammatory and antimicrobial activity of some new 1-(3-Phenyl-3,4-Dihydro-2H-1,3-Benzoxazin-6-yl)-ethanone derivatives. Indian J. Pharm. Sci., 2011, 73(1), 101-104.
[http://dx.doi.org/10.4103/0250-474X.89767] [PMID: 22131632]
[24]
Gothi, D.; Joshi, J.M.; Resistant, T.B.; Resistant, T.B. Newer drugs and community approach. Recent Pat. Antiinfect. Drug Discov, 2011, 6(1), 27-37.
[http://dx.doi.org/10.2174/157489111794407859] [PMID: 21192779]
[25]
Oh, K.S.; Lee, S.; Choi, J.K.; Lee, B.H. Identification of novel scaffolds for IκB kinase beta inhibitor via a high-throughput screening TR-FRET assay. Comb. Chem. High Throughput Screen., 2010, 13(9), 790-797.
[http://dx.doi.org/10.2174/138620710792927367] [PMID: 20615197]
[26]
Cho, S.Y.; Baek, J.Y.; Han, S.S.; Kang, S.K.; Ha, J.D.; Ahn, J.H.; Lee, J.D.; Kim, K.R.; Cheon, H.G.; Rhee, S.D.; Yang, S.D.; Yon, G.H.; Pak, C.S.; Choi, J.K. PTP-1B inhibitors: cyclopenta[d][1,2]-oxazine derivatives. Bioorg. Med. Chem. Lett., 2006, 16(3), 499-502.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.062] [PMID: 16289879]
[27]
Lee, S.F.; Vérolet, Q.; Fürstenberg, A. Improved super-resolution microscopy with oxazine fluorophores in heavy water. Angew. Chem. Int. Ed. Engl., 2013, 52(34), 8948-8951.
[http://dx.doi.org/10.1002/anie.201302341] [PMID: 23828815]
[28]
Kass, L. A selective stain for eosinophils using two oxazine dyes applied sequentially. Biotech. Histochem., 1995, 70(1), 19-23.
[http://dx.doi.org/10.3109/10520299509108311] [PMID: 7540047]
[29]
Kass, L. Identification of neutrophils with an oxazine dye. Biotech. Histochem., 1995, 70, 29-33.
[30]
Jung, C.; Müller, B.K.; Lamb, D.C.; Nolde, F.; Müllen, K.; Bräuchle, C. A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling. J. Am. Chem. Soc., 2006, 128(15), 5283-5291.
[http://dx.doi.org/10.1021/ja0588104] [PMID: 16608365]
[31]
MacMillan, J.H.; Washburne, S.S. Detailed synthetic procedure for 4-(4-bromophenyl)-1,3(3h) oxazine-2,6-dione and related 4 and 5- aryl substituted -1,3(3h) oxazine-2,6-diones. spectroscopic and analytical data are included. 2013. Available from: http://www.archive.org
[32]
Verma, A.K.; Choudhary, D.; Saunthwal, R.K.; Rustagi, V.; Patel, M.; Tiwari, R.K. On water: Silver-catalyzed domino approach for the synthesis of benzoxazine/oxazine-fused isoquinolines and naphthyridines from o-alkynyl aldehydes. J. Org. Chem., 2013, 78(13), 6657-6669.
[http://dx.doi.org/10.1021/jo4009639] [PMID: 23826940]
[33]
Khalilzadeh, M.A.; Yavari, I.; Hossaini, Z.; Sadeghifar, H. N-Methylimidazole promoted efficient synthesis of 1,3-oxazine-4-thiones under solvent-free conditions. Monatsh. Chem., 2009, 140, 467-471.
[http://dx.doi.org/10.1007/s00706-008-0042-]
[34]
Sapkal, S.B.; Shelke, K.F.; Kategaonkar, A.H.; Shingare, M.S. Dual role of ammonium acetate for solvent-free synthesis of 1,3-disubstituted-2,3-dihydro-1H-naphth[1,2e][1,3]-oxazine Green. Chem. Lett., 2009, 2, 57-60.
[35]
Thirunarayanan, G.; Mayavel, P. hirumurthy, K. Fly-ash:H2SO4 catalyzed solvent free efficient synthesis of some aryl chalcones under microwave irradiation. Spectrochim. Acta., 2012, 91A, 18-22.
[36]
Thirunarayanan, G.; Sekar, K.G. Solvent-free synthesis and spectral studies of some 9-Anthryl-1H-Pyrazolines. J. Korean Chem. Soc., 2013, 57, 599-605.
[http://dx.doi.org/10.5012/jkcs.2013.57.5.599]
[37]
Janaki, P.; Sekar, K.G.; Thirunarayanan, G. SiO2-H3PO4 catalyzed solvent free aldol condensation: synthesis and spectral correlations of some antimicrobial potent aryl E 2-propen-1-ones. Org. Chem. An Ind. J, 2013, 9, 68-80.
[38]
George, M.; Joseph, L.; Sadanandan, H.R. A review on screening of novel oxazine derivatives for certain pharmacological activities. Int. J. Pharm. Pharm. Res., 2016, 6, 1-6.
[39]
Anil, N.M. Synthesis and antimicrobial study of new 8-bromo-1,3diaryl2,3dihydro-1-Hnaphthol[1,2e][1,3]oxazines. Int. J. Chem., 2011, 3, 74-86.
[40]
Dabholkar, V.V.; Mishra, S.K.J. Microwave-mediated synthesis of some novel heterocycle containing thiaole, oxazole, thiazine, oxazine, thiadiazine and triazolo-thiadiazine moiety. Indian J. Chem., 2006, 45B, 2112-2117.
[41]
Bhat, K.N. Synthesis and evaluation of antibacterial activity of 1, 4-benzoxazine analogues. Asian J. Res. Chem, 2012, 4-5.
[42]
Parvathy, N.G.; Prathap, M.; Mukesh, M.; Thomas, L. Design, Synthesis and molecular docking studies of benzothiazole derivatives as antimicrobial agents. Int. J. Pharm. Pharm. Sci., 2013, 5, 101-106.
[43]
Bhat, A.R.; Pawar, P.D. Synthesis and biological evaluation of some [1, 4]-thiazine-2-one and [1-4]-oxazin-2-one derivatives. Indian drugs, 2008, 45, 962-965.
[44]
Beena, K.P.; Akelesh, T. Design, synthesis, characterization and evaluation of some 1,3-oxazine derivatives as potent antimicrobial agents. Scholars Res. Lib., 2013, 5, 257-260.
[45]
Sayaji, S.D.; Piste, B.P. Novel one-pot synthesis and anti-microbial activity of 6-chloro-2, 4-diphenyl3,4-dihydro-2H-1,3-benzoxazines derivatives. Int. J. Chemtech Res., 2013, 5, 2199-2203.
[46]
Sunil, D.; Upadhya, S.; Rama, M. Synthesis, characterization and QSAR studies of some New 1, 3-oxazines as patent antimicrobial agents. Res. J. Pharm. Sci., 2013, 2, 15-19.
[47]
Anil, N.M. Synthesis and antimicrobial study of new 8-bromo-1,3-diaryl-2,3-dihydro-1H-naphthol[1,2e][1,3] oxazines. Int. J. Chem., 2011, 3, 74-86.
[48]
Ramesh, L.S.; Mahesh, S.M.; Jyoti, B.W.; Wadekar, B. Synthesis and antimicrobial activity of Schiff Bases of 1,3-oxazines. Int. J. Pharm. Tech. Res., 2012, 4, 1653-1659.
[49]
Sayaji, S.D.; Pravina, B.P. Novel synthesis and antimicrobial activity of bis-oxazine derivatives. J. Chem. Pharm. Res., 2013, 5, 271-274.
[50]
Zanatta, N.; Borchhardt, D.M.; Alves, S.H.; Squizani, M.C.; Marchi, T.M.; Bonacorso, H.G.; Martins, M.P. Synthesis of oxazines and they exhibited significant activity against tested microorganism strains. Bioorg. Med. Chem. Lett., 2006, 15, 3174-3176.
[http://dx.doi.org/10.1016/j.bmc.2005.12.031]
[51]
Tony, G.; Chandran, M.; Bhat, A.R.; Krishnakumar, K. Molecular docking studies: 1,3-thiazine and 1,3-Oxazine derivatives. J. Pharm. Res., 2014, 8, 136-138.
[52]
Narita, T.; Suga, A.; Kobayashi, M.; Hashimoto, K.; Sakagami, H.; Motohashi, N.; Kurihara, T.; Wakabayashi, H. Tumor-specific cytotoxicity and type of cell death induced by benzo[b]cyclohept[e][1,4]oxazine and 2-aminotropone derivatives. Anticancer Res., 2009, 29(4), 1123-1130.
[PMID: 19414354]
[53]
Rao, K.S.; Reddy, C.V. Synthesis 8-isothiocyano-4H-imidazo (1-c)(1,4)-benzoxazine as possible anthelmintic agents. Int. J. Het. Chem., 1992, 2, 103-106.
[54]
Ramesh, L.S.; Mahesh, S.M.; Jyoti, B.W. Anticoagulant potential of Schiff Bases of 1, 3-oxazines. Int. J. Pharma Sci., 2012, 4, 320-323.
[55]
Rose, P.N.; Krishnakumar, K.M.C. Synthesis and biological potential of 1,3-oxazine and 1,4-oxazine derivatives-A review. World J. Pharm. Pharm. Sci., 2018, 7, 1469-1476.
[56]
Anusha, P.; Manichandrika, P.; Shruthi, S.; Nishat, S.U.; Sultana, S. Synthesis of schiffs base derivatives of oxazine from chalcones and evaluation of their antibacterial activity. World J. Pharm. Pharm. Sci., 2005, 4, 886-895.
[57]
Bhat, A.R.; Pawar, P.D. Synthesis and biological evaluation of some [1,4]-oxazine-2-one derivatives. Indian drugs, 2008, 45, 962-965.
[58]
Sayaji, S.D.; Piste, B.P. Novel one-pot synthesis and antimicrobial activity of 6-chloro-2,4-diphenyl3,4-dihydro-2H-1,3-benzoxazines derivatives. Int. J. Chemtech Res., 2013, 5, 2199-2203.
[59]
Sunil, D.; Upadhya, S.; Rama, M. Synthesis, characterization and QSAR studies of some New 1,3-oxazines as potent antimicrobial agent. Res. J. Pharm. Sci., 2013, 2, 15-19.
[60]
Thirunarayanan, G. Solvent-free synthesis, antimicrobial and insect antifeedant potentials of some 4(4-chloro-1-naphthyl)-5,6-dihydro-6-(substituted phenyl)-4H-1,3-oxazine-2-amines. World Sci. News, 2019, 18, 1-16.
[61]
Subramaniapillai, S.G. Mannich reaction-a versatile and convenient approach to bioactive skeletons. J. Chem. Sci., 2013, 125, 467-482.
[http://dx.doi.org/10.1007/s12039-013-0405-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy