Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

Circular RNA NF1-419 Inhibits Proliferation and Induces Apoptosis by Regulating Lipid Metabolism in Astroglioma Cells

Author(s): Ran Li, Xiaocui Tang, Changqiong Xu, Yinrui Guo, Longkai Qi, Shan Li, Qiuyun Ren, Wu Jie* and Diling Chen*

Volume 17, Issue 2, 2022

Published on: 29 July, 2021

Page: [162 - 177] Pages: 16

DOI: 10.2174/1574892816666210729125802

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Astroglioma is the most common primary tumor of the central nervous system. Currently, there is no effective treatment for astroglioma. In the present study, the extract (L3) from Ganoderma Lucidum (G. lucidum) was found to inhibit the growth of astroglioma U87 cells and change the expression of circular RNAs (circRNAs). One of these, including the circular NF1-419 (circNF1-419), was of interest because NF1 gene is a classic tumor suppressor gene.

Objectives: The functional role of circ-NF1-419 in the inhibition of astroglioma cells remains unknown. This study focuses on the role of circNF1-419 in functional abnormalities of U87 astroglioma cells and aims to elaborate on its regulatory mechanism.

Methods: The circNF1-419 overexpressing U87 (U87-NF1-419) cells were constructed. We generated U87-NF1-419 to evaluate the role of circNF1-419 on cell cycle, apoptosis, proliferation, tumor growth and metabolic regulation. Finally, we used docking screening to identify compounds in G. lucidum extracts that target circ-419.

Results: U87-NF1-419 can promote cell apoptosis and regulate lipid metabolism through glycerophospholipid metabolism and retrograde endocannabinoid signaling. Further examinations revealed that the expression of metabolic regulators, such as L-type voltage-operated calcium channels (L-VOCC), phospholipase C-β3 (PLCβ3), Mucin1, cationic amino acid transporter 4 (CAT4), cationic amino acid transporter 1 (CAT1) and a kinase (PRKA) anchor protein 4 (AKAP4) was inhibited, while phosphatidylserine synthase 1 (PTDSS1) was enhanced in U87-NF1-419 cells. In vivo experiments showed that circNF1-419 inhibits tumor growth in BALB/C nude mice, and enhanced AKAP4 and PTDSS1 in tumor tissues. The virtual docking screening results supported that ganosporeric acid A, ganodermatriol, ganoderic acid B and α-D-Arabinofuranosyladenine in L3 could activate circNF1-419 in astroglioma treatment.

Conclusion: This study indicated that circNF1-419 could be a therapeutic target for the clinical treatment of astroglioma. L3 from Ganoderma Lucidum (G. lucidum) could inhibit astroglioma growth by activating circNF1-419.

Keywords: Circular RNA, circNF1-419, lipid metabolism, apoptosis, U87 astroglioma cell, Ganoderma lucidum.

[1]
Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet 2013; 9(9): e1003777.
[http://dx.doi.org/10.1371/journal.pgen.1003777] [PMID: 24039610]
[2]
Zhang J, Liu H, Hou L, et al. Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer 2017; 16(1): 151.
[http://dx.doi.org/10.1186/s12943-017-0719-3] [PMID: 28893265]
[3]
Meng S, Zhou H, Feng Z, et al. CircRNA: Functions and properties of a novel potential biomarker for cancer. Mol Cancer 2017; 16(1): 94.
[http://dx.doi.org/10.1186/s12943-017-0663-2] [PMID: 28535767]
[4]
Yang P, Qiu Z, Jiang Y, et al. Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/β- catenin signaling pathway. Oncotarget 2016; 7(39): 63449-55.
[http://dx.doi.org/10.18632/oncotarget.11523] [PMID: 27613831]
[5]
Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang J.L, Yang L, Chen L.L. The Biogenesis of Nascent Circular RNAs. Cell Rep 2016; 15(3): 611-24.
[http://dx.doi.org/10.1016/j.celrep.2016.03.058]
[6]
Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 2017; 38(18): 1402-12.
[http://dx.doi.org/10.1093/eurheartj/ehw001] [PMID: 26873092]
[7]
Yang Y, Gao X, Zhang M, et al. Novel role of FBXW7 Circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 2018; 110(3): 304-15.
[http://dx.doi.org/10.1093/jnci/djx166] [PMID: 28903484]
[8]
Minghua W, Hecheng Z, Peiyao L, et al. Diagnostic marker of glioma, has_circ_0021827 and its application. CN107937532B, (2020).
[9]
Stefanie D, Nicolas J, Niels B, Andreas MZ. Circular RNA for the diagnosis of cardiovascular and inflammatory diseases. US20180023079(A1), (2018).
[10]
Huilin G, Jingwei L, Ping L, Jiangwei Z. circspecC1 for the treatment of brain glioma and its application. CN111304205A, (2020).
[11]
Wang C, Shi S, Chen Q, et al. Antitumor and immunomodulatory activities of Ganoderma lucidum polysaccharides in glioma-bearing rats. Integr Cancer Ther 2018; 17(3): 674-83.
[http://dx.doi.org/10.1177/1534735418762537] [PMID: 29607690]
[12]
Lee YH, Kim JH, Song CH, et al. Ethanol extract of Ganoderma lucidum augments cellular anti-oxidant defense through activation of Nrf2/HO-1. J Pharmacopuncture 2016; 19(1): 59-69.
[http://dx.doi.org/10.3831/KPI.2016.19.008] [PMID: 27280051]
[13]
Lai G, Guo Y, Chen D, et al. Alcohol extracts from Ganoderma lucidum delay the progress of alzheimer’s disease by regulating DNA methylation in rodents. Front Pharmacol 2019; 10: 272.
[http://dx.doi.org/10.3389/fphar.2019.00272] [PMID: 30971923]
[14]
Zhang GL, Wang YH, Ni W, Teng HL, Lin ZB. Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice. World J Gastroenterol 2002; 8(4): 728-33.
[http://dx.doi.org/10.3748/wjg.v8.i4.728] [PMID: 12174387]
[15]
Chen S, Li X, Yong T, et al. Cytotoxic lanostane-type triterpenoids from the fruiting bodies of Ganoderma lucidum and their structure-activity relationships. Oncotarget 2017; 8(6): 10071-84.
[http://dx.doi.org/10.18632/oncotarget.14336] [PMID: 28052025]
[16]
Soccol CR, Bissoqui LY, Rodrigues C, et al. Pharmacological properties of biocompounds from spores of the lingzhi or reishi medicinal mushroom ganoderma lucidum (agaricomycetes): A review. Int J Med Mushrooms 2016; 18(9): 757-67.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v18.i9.10] [PMID: 27910768]
[17]
Li X, Wu Q, Bu M, et al. Ergosterol peroxide activates Foxo3-mediated cell death signaling by inhibiting AKT and c-Myc in human hepatocellular carcinoma cells. Oncotarget 2016; 7(23): 33948-59.
[http://dx.doi.org/10.18632/oncotarget.8608] [PMID: 27058618]
[18]
Pan H, Han Y, Huang J, et al. Purification and identification of a polysaccharide from medicinal mushroom Amauroderma rude with immunomodulatory activity and inhibitory effect on tumor growth. Oncotarget 2015; 6(19): 17777-91.
[http://dx.doi.org/10.18632/oncotarget.4397] [PMID: 26219260]
[19]
Wu N, Xie Y, Yang BB. Anti-cancer drugs for cardioprotection. Cell Cycle 2017; 16(2): 155-6.
[http://dx.doi.org/10.1080/15384101.2016.1242536] [PMID: 27801617]
[20]
Xie YZ, Yang F, Tan W, et al. The anti-cancer components of Ganoderma lucidum possesses cardiovascular protective effect by regulating circular RNA expression. Oncoscience 2016; 3(7-8): 203-7.
[http://dx.doi.org/10.18632/oncoscience.316] [PMID: 27713910]
[21]
Gao L, Chen B, Li J, et al. Wnt/β-catenin signaling pathway inhibits the proliferation and apoptosis of U87 glioma cells via different mechanisms. PLoS One 2017; 12(8): e0181346.
[http://dx.doi.org/10.1371/journal.pone.0181346] [PMID: 28837560]
[22]
Su W, Xu M, Chen X, et al. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer. Mol Cancer 2017; 16(1): 142.
[http://dx.doi.org/10.1186/s12943-017-0711-y] [PMID: 28830551]
[23]
Diling C, Yinrui G, Longkai Q, et al. Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. Aging (Albany NY) 2019; 11(24): 12002-31.
[http://dx.doi.org/10.18632/aging.102529] [PMID: 31860870]
[24]
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4): 357-9.
[http://dx.doi.org/10.1038/nmeth.1923] [PMID: 22388286]
[25]
Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011; 12: 323.
[http://dx.doi.org/10.1186/1471-2105-12-323] [PMID: 21816040]
[26]
Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26(1): 139-40.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[27]
Dobin A, Davis CA, Schlesinger F, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15-21.
[http://dx.doi.org/10.1093/bioinformatics/bts635] [PMID: 23104886]
[28]
Cheng J, Metge F, Dieterich C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 2016; 32(7): 1094-6.
[http://dx.doi.org/10.1093/bioinformatics/btv656] [PMID: 26556385]
[29]
Chen S, Huang V, Xu X, et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 2019; 176(4): 831-843.e22.
[http://dx.doi.org/10.1016/j.cell.2019.01.025] [PMID: 30735634]
[30]
Diling C, Longkai Q, Yinrui G, et al. CircNF1-419 improves the gut microbiome structure and function in AD-like mice. Aging (Albany NY) 2020; 12(1): 260-87.
[http://dx.doi.org/10.18632/aging.102614] [PMID: 31905172]
[31]
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 2016; 44(6): 2846-58.
[http://dx.doi.org/10.1093/nar/gkw027] [PMID: 26861625]
[32]
Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016; 37(33): 2602-11.
[http://dx.doi.org/10.1093/eurheartj/ehv713] [PMID: 26802132]
[33]
Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 2016; 7: 11215.
[http://dx.doi.org/10.1038/ncomms11215] [PMID: 27050392]
[34]
Mahalingam M. NF1 and neurofibromin: Emerging players in the genetic landscape of desmoplastic melanoma. Adv Anat Pathol 2017; 24(1): 1-14.
[http://dx.doi.org/10.1097/PAP.0000000000000131] [PMID: 27941538]
[35]
Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: The neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer 2015; 15(5): 290-301.
[http://dx.doi.org/10.1038/nrc3911] [PMID: 25877329]
[36]
Ehara Y, Yamamoto O, Kosaki K, Yoshida Y. Natural course and characteristics of cutaneous neurofibromas in neurofibromatosis 1. J Dermatol 2018; 45(1): 53-7.
[http://dx.doi.org/10.1111/1346-8138.14025] [PMID: 28891076]
[37]
Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 2015; 58(5): 870-85.
[http://dx.doi.org/10.1016/j.molcel.2015.03.027] [PMID: 25921068]
[38]
Li R, Xu CQ, Shen JX, et al. 4-Methoxydalbergione is a potent inhibitor of human astroglioma U87 cells in vitro and in vivo. Acta Pharmacol Sin 2021; 42: 1507-15.
[http://dx.doi.org/10.1038/s41401-020-00560-w] [PMID: 33311599]
[39]
Huang C, Freter C. Lipid metabolism, apoptosis and cancer therapy. Int J Mol Sci 2015; 16(1): 924-49.
[http://dx.doi.org/10.3390/ijms16010924] [PMID: 25561239]
[40]
Matthews GM, Howarth GS, Butler RN. Short-chain fatty acids induce apoptosis in colon cancer cells associated with changes to intracellular redox state and glucose metabolism. Chemotherapy 2012; 58(2): 102-9.
[http://dx.doi.org/10.1159/000335672] [PMID: 22488147]
[41]
Jan G, Belzacq AS, Haouzi D, et al. Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 2002; 9(2): 179-88.
[http://dx.doi.org/10.1038/sj.cdd.4400935] [PMID: 11840168]
[42]
Wang B, Li L, Fu J, et al. Effects of long-chain and medium-chain fatty acids on apoptosis and oxidative stress in human liver cells with steatosis. J Food Sci 2016; 81(3): H794-800.
[http://dx.doi.org/10.1111/1750-3841.13210] [PMID: 26799523]
[43]
Tillman EM, Guan P, Howze TJ, Helms RA, Black DD. Role of PPARα in the attenuation of bile acid-induced apoptosis by omega-3 long-chain polyunsaturated fatty acids in cultured hepatocytes. Pediatr Res 2016; 79(5): 754-8.
[http://dx.doi.org/10.1038/pr.2016.2] [PMID: 26756785]
[44]
Tanaka A, Yamamoto A, Murota K, Tsujiuchi T, Iwamori M, Fukushima N. Polyunsaturated fatty acids induce ovarian cancer cell death through ROS-dependent MAP kinase activation. Biochem Biophys Res Commun 2017; 493(1): 468-73.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.168] [PMID: 28882592]
[45]
Moolenaar WH, Kruijer W, Tilly BC, Verlaan I, Bierman AJ, de Laat SW. Growth factor-like action of phosphatidic acid. Nature 1986; 323(6084): 171-3.
[http://dx.doi.org/10.1038/323171a0] [PMID: 3748188]
[46]
Arroyo A, Modrianský M, Serinkan FB, et al. NADPH oxidase-dependent oxidation and externalization of phosphatidylserine during apoptosis in Me2SO-differentiated HL-60 cells. Role in phagocytic clearance. J Biol Chem 2002; 277(51): 49965-75.
[http://dx.doi.org/10.1074/jbc.M204513200] [PMID: 12376550]
[47]
Souabni H, Machillot P, Baciou L. Contribution of lipid environment to NADPH oxidase activity: Influence of stero. Biochimie. 2014; 107(Pt A): 33-42.
[http://dx.doi.org/10.1016/j.biochi.2014.10.006]
[48]
Cheng Q, Li X, Wang Y, Dong M, Zhan FH, Liu J. The ceramide pathway is involved in the survival, apoptosis and exosome functions of human multiple myeloma cells in vitro. Acta Pharmacol Sin 2018; 39(4): 561-8.
[http://dx.doi.org/10.1038/aps.2017.118] [PMID: 28858294]
[49]
Gong ZH, Ji J, Yao J, et al. SphK1-targeted miR-6784 inhibits functions of skin squamous cell carcinoma cells. Aging 2021; 13(3): 3726-41.
[50]
Lee S, Kang HG, Jeong PS, et al. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs. Sci Total Environ 2021; 755(Pt 1): 144144.
[http://dx.doi.org/10.1016/j.scitotenv.2020.144144] [PMID: 33288257]
[51]
Wilhelm R, Eckes T, Imre G, et al. C6 ceramide (d18:1/6:0) as a novel treatment of cutaneous t cell lymphoma. Cancers (Basel) 2021; 13(2): 270.
[http://dx.doi.org/10.3390/cancers13020270] [PMID: 33450826]
[52]
Di Scala C, Mazzarino M, Yahi N, et al. Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells. Chem Phys Lipids 2017; 205: 11-7.
[http://dx.doi.org/10.1016/j.chemphyslip.2017.04.001] [PMID: 28389107]
[53]
Saddoughi SA, Ogretmen B. Diverse functions of ceramide in cancer cell death and proliferation. Adv Cancer Res 2013; 117: 37-58.
[http://dx.doi.org/10.1016/B978-0-12-394274-6.00002-9] [PMID: 23290776]
[54]
Gándola YB, Pérez SE, Irene PE, et al. Mitogenic effects of phosphatidylcholine nanoparticles on MCF-7 breast cancer cells. BioMed Res Int 2014; 2014: 687037.
[http://dx.doi.org/10.1155/2014/687037] [PMID: 24772432]
[55]
Demirkan A, van Duijn CM, Ugocsai P, et al. Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations. PLoS Genet 2012; 8(2): e1002490.
[http://dx.doi.org/10.1371/journal.pgen.1002490] [PMID: 22359512]
[56]
Joo EJ, Weyers A, Li G, et al. Carbohydrate-containing molecules as potential biomarkers in colon cancer. OMICS 2014; 18(4): 231-41.
[http://dx.doi.org/10.1089/omi.2013.0128] [PMID: 24502776]
[57]
Chang MK, Binder CJ, Torzewski M, Witztum JL. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids. Proc Natl Acad Sci USA 2002; 99(20): 13043-8.
[http://dx.doi.org/10.1073/pnas.192399699] [PMID: 12244213]
[58]
Guo L, Chen Z, Amarnath V, Davies SS. Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxidation. Free Radic Biol Med 2012; 53(6): 1226-38.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.07.077] [PMID: 22898174]
[59]
Rockenfeller P, Koska M, Pietrocola F, et al. Phosphatidylethanolamine positively regulates autophagy and longevity. Cell Death Differ 2015; 22(3): 499-508.
[http://dx.doi.org/10.1038/cdd.2014.219] [PMID: 25571976]
[60]
Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine metabolism in health and disease. Int Rev Cell Mol Biol 2016; 321: 29-88.
[http://dx.doi.org/10.1016/bs.ircmb.2015.10.001] [PMID: 26811286]
[61]
Xiao W, Kashiwakura J, Hong H, et al. Phospholipase C-β3 regulates FcɛRI-mediated mast cell activation by recruiting the protein phosphatase SHP-1. Immunity 2011; 34(6): 893-904.
[http://dx.doi.org/10.1016/j.immuni.2011.04.010] [PMID: 21683628]
[62]
Gallier S, Cui J, Olson TD, et al. In vivo digestion of bovine milk fat globules: Effect of processing and interfacial structural changes. I. Gastric digestion. Food Chem 2013; 141(3): 3273-81.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.020] [PMID: 23871087]
[63]
Zhuang GZ, Keeler B, Grant J, et al. Carbonic anhydrase-8 regulates inflammatory pain by inhibiting the ITPR1-cytosolic free calcium pathway. PLoS One 2015; 10(3): e0118273.
[http://dx.doi.org/10.1371/journal.pone.0118273] [PMID: 25734498]
[64]
Cocci P, Mozzicafreddo M, Angeletti M, Mosconi G, Palermo FA. Differential tissue regulation of peroxisome proliferator-activated receptor α (PPARα) and cannabinoid receptor 1 (CB1) gene transcription pathways by diethylene glycol dibenzoate (DEGB): Preliminary observations in a seabream (Sparus aurata) in vivo model. Environ Toxicol Pharmacol 2017; 55: 87-93.
[http://dx.doi.org/10.1016/j.etap.2017.08.015] [PMID: 28843100]
[65]
Nam DH, Lee MH, Kim JE, et al. Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in db/db mice. Endocrinology 2012; 153(3): 1387-96.
[http://dx.doi.org/10.1210/en.2011-1423] [PMID: 22234468]
[66]
de Oliveira MR, Peres A, Ferreira GC. Pinocembrin attenuates mitochondrial dysfunction in human neuroblastoma SH-SY5Y cells exposed to methylglyoxal: Role for the Erk1/2-Nrf2 signaling pathway. Neurochem Res 2017; 42(4): 1057-72.
[http://dx.doi.org/10.1007/s11064-016-2140-5] [PMID: 28000163]
[67]
Khan AS, Subramaniam S, Dramane G, Khelifi D, Khan NA. ERK1 and ERK2 activation modulates diet-induced obesity in mice. Biochimie 2017; 137: 78-87.
[http://dx.doi.org/10.1016/j.biochi.2017.03.004] [PMID: 28302472]
[68]
Meneses ME, Martínez-Carrera D, Torres N, et al. Hypocholesterolemic properties and prebiotic effects of mexican Ganoderma lucidum in C57BL/6 mice. PLoS One 2016; 11(7): e0159631.
[http://dx.doi.org/10.1371/journal.pone.0159631] [PMID: 27438015]
[69]
Kabir Y, Kimura S, Tamura T. Dietary effect of Ganoderma lucidum mushroom on blood pressure and lipid levels in spontaneously hypertensive rats (SHR). J Nutr Sci Vitaminol 1988; 34(4): 433-8.
[http://dx.doi.org/10.3177/jnsv.34.433] [PMID: 3236086]
[70]
Shieh YH, Liu CF, Huang YK, et al. Evaluation of the hepatic and renal-protective effects of Ganoderma lucidum in mice. Am J Chin Med 2001; 29(3-4): 501-7.
[http://dx.doi.org/10.1142/S0192415X01000526] [PMID: 11789593]
[71]
Li F, Zhang Y, Zhong Z. Antihyperglycemic effect of Ganoderma lucidum polysaccharides on streptozotocin-induced diabetic mice. Int J Mol Sci 2011; 12(9): 6135-45.
[http://dx.doi.org/10.3390/ijms12096135] [PMID: 22016649]
[72]
Liu YJ, Du JL, Cao LP, et al. Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio L.). Int Immunopharmacol 2015; 25(1): 112-20.
[http://dx.doi.org/10.1016/j.intimp.2015.01.023] [PMID: 25639226]
[73]
Wang F, Zhou Z, Ren X, et al. Effect of Ganoderma lucidum spores intervention on glucose and lipid metabolism gene expression profiles in type 2 diabetic rats. Lipids Health Dis 2015; 14: 49.
[http://dx.doi.org/10.1186/s12944-015-0045-y] [PMID: 25994182]
[74]
Ou S, Diling C, Qingping W, Yizhen X, Bohua Y, Xiaocui T. A refined polysaccharide from G.lucidum fruiting body with significant auxiliary anti-tumor activity and its preparation method and application. CN107602719B, (2020).
[75]
Ou S, Diling C, Qingping W, Yizhen X, Bohua Y, Xupen T. A refined polysaccharide from G.lucidum spore powder with significant auxiliary anti-tumor activity and its preparation method and application. CN107722131B, (2020).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy