Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Regulation of Microtubule: Current Concepts and Relevance to Neurodegenerative Diseases

Author(s): Anirban Ghosh and Shamsher Singh*

Volume 21, Issue 8, 2022

Published on: 28 July, 2021

Page: [656 - 679] Pages: 24

DOI: 10.2174/1871527320666210728144043

Price: $65

Open Access Journals Promotions 2
Abstract

Neurodevelopmental Disorders (NDDs) are abnormalities linked to neuronal structure and irregularities associated with the proliferation of cells, transportation, and differentiation. NDD also involves synaptic circuitry and neural network alterations known as synaptopathy. Microtubules (MTs) and MTs-associated proteins help to maintain neuronal health as well as their development. The microtubular dynamic structure plays a crucial role in the division of cells and forms mitotic spindles, thus take part in initiating stages of differentiation and polarization for various types of cells. The MTs also take part in cellular death, but MT-based cellular degenerations are not yet well excavated. In the last few years, studies have provided the protagonist activity of MTs in neuronal degeneration. In this review, we largely engrossed our discussion on the change of MT cytoskeleton structure, describing their organization, dynamics, transportation, and their failure causing NDDs. At the end of this review, we are targeting the therapeutic neuroprotective strategies on clinical priority and also try to discuss the clues for the development of new MT-based therapy as a new pharmacological intervention. This will be a new potential site to block not only neurodegeneration but also promotes the regeneration of neurons.

Keywords: Microtubule, MT-based transport, neurodevelopmental disorders, tubulin based therapy, oxidative stresses, inflammatory responses.

Graphical Abstract
[1]
Cajal SR. The structure and connexions of neurons. Noble lecture. Phys Med 1906; 5: 221-53.
[2]
Perlson E, Maday S, Fu MM, Moughamian AJ, Holzbaur EL. Retrograde axonal transport: pathways to cell death? Trends Neurosci 2010; 33(7): 335-44.
[http://dx.doi.org/10.1016/j.tins.2010.03.006] [PMID: 20434225]
[3]
Tischfield MA, Cederquist GY, Gupta ML Jr, Engle EC. Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations. Curr Opin Genet Dev 2011; 21(3): 286-94.
[http://dx.doi.org/10.1016/j.gde.2011.01.003] [PMID: 21292473]
[4]
Millecamps S, Julien JP. Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 2013; 14(3): 161-76.
[http://dx.doi.org/10.1038/nrn3380] [PMID: 23361386]
[5]
Smith BN, Ticozzi N, Fallini C, et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 2014; 84(2): 324-31.
[http://dx.doi.org/10.1016/j.neuron.2014.09.027] [PMID: 25374358]
[6]
Cao YN, Zheng LL, Wang D, Liang XX, Gao F, Zhou XL. Recent advances in microtubule-stabilizing agents. Eur J Med Chem 2018; 143: 806-28.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.062] [PMID: 29223097]
[7]
Kapitein LC, Hoogenraad CC. Building the neuronal microtubule cytoskeleton. Neuron 2015; 87(3): 492-506.
[http://dx.doi.org/10.1016/j.neuron.2015.05.046] [PMID: 26247859]
[8]
Kapitein LC, Schlager MA, Kuijpers M, et al. Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr Biol 2010; 20(4): 290-9.
[http://dx.doi.org/10.1016/j.cub.2009.12.052] [PMID: 20137950]
[9]
McCarthy A, Lonergan R, Olszewska DA, et al. Closing the tau loop: The missing tau mutation. Brain 2015; 138(Pt 10): 3100-9.
[http://dx.doi.org/10.1093/brain/awv234] [PMID: 26297556]
[10]
Zempel H, Mandelkow E. Lost after translation: Missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 2014; 37(12): 721-32.
[http://dx.doi.org/10.1016/j.tins.2014.08.004] [PMID: 25223701]
[11]
Janke C. The tubulin code: Molecular components, readout mechanisms, and functions. J Cell Biol 2014; 206(4): 461-72.
[http://dx.doi.org/10.1083/jcb.201406055] [PMID: 25135932]
[12]
Paturle-Lafanechère L, Manier M, Trigault N, Pirollet F, Mazarguil H, Job D. Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci 1994; 107(Pt 6): 1529-43.
[http://dx.doi.org/10.1242/jcs.107.6.1529] [PMID: 7962195]
[13]
Szyk A, Deaconescu AM, Spector J, et al. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell 2014; 157(6): 1405-15.
[http://dx.doi.org/10.1016/j.cell.2014.03.061] [PMID: 24906155]
[14]
Sharp DJ, Ross JL. Microtubule-severing enzymes at the cutting edge. J Cell Sci 2012; 125(Pt 11): 2561-9.
[http://dx.doi.org/10.1242/jcs.101139] [PMID: 22595526]
[15]
Reed NA, Cai D, Blasius TL, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 2006; 16(21): 2166-72.
[http://dx.doi.org/10.1016/j.cub.2006.09.014] [PMID: 17084703]
[16]
Dunn S, Morrison EE, Liverpool TB, et al. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J Cell Sci 2008; 121(Pt 7): 1085-95.
[http://dx.doi.org/10.1242/jcs.026492] [PMID: 18334549]
[17]
Rogowski K, van Dijk J, Magiera MM, et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 2010; 143(4): 564-78.
[http://dx.doi.org/10.1016/j.cell.2010.10.014] [PMID: 21074048]
[18]
Prota AE, Magiera MM, Kuijpers M, et al. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J Cell Biol 2013; 200(3): 259-70.
[http://dx.doi.org/10.1083/jcb.201211017] [PMID: 23358242]
[19]
Song W, Cho Y, Watt D, Cavalli V. Tubulin-tyrosine ligase (TTL)-mediated increase in tyrosinated α-tubulin in injured axons is required for retrograde injury signaling and axon regeneration. J Biol Chem 2015; 290(23): 14765-75.
[http://dx.doi.org/10.1074/jbc.M114.622753] [PMID: 25911101]
[20]
Marcos S, Moreau J, Backer S, Job D, Andrieux A, Bloch-Gallego E. Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS One 2009; 4(4): e5405.
[http://dx.doi.org/10.1371/journal.pone.0005405] [PMID: 19404406]
[21]
Lewis SA, Tian G, Cowan NJ. The α- and β-tubulin folding pathways. Trends Cell Biol 1997; 7(12): 479-84.
[http://dx.doi.org/10.1016/S0962-8924(97)01168-9] [PMID: 17709011]
[22]
Vemu A, Atherton J, Spector JO, Szyk A, Moores CA, Roll-Mecak A. Structure and dynamics of single-isoform recombinant neuronal human tubulin. J Biol Chem 2016; 291(25): 12907-15.
[http://dx.doi.org/10.1074/jbc.C116.731133] [PMID: 27129203]
[23]
Sirajuddin M, Rice LM, Vale RD. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 2014; 16(4): 335-44.
[http://dx.doi.org/10.1038/ncb2920] [PMID: 24633327]
[24]
Schaedel L, John K, Gaillard J, Nachury MV, Blanchoin L, Théry M. Microtubules self-repair in response to mechanical stress. Nat Mater 2015; 14(11): 1156-63.
[http://dx.doi.org/10.1038/nmat4396] [PMID: 26343914]
[25]
Gardner MK, Zanic M, Gell C, Bormuth V, Howard J. Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe. Cell 2011; 147(5): 1092-103.
[http://dx.doi.org/10.1016/j.cell.2011.10.037] [PMID: 22118464]
[26]
Bowne-Anderson H, Zanic M, Kauer M, Howard J. Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe. BioEssays 2013; 35(5): 452-61.
[http://dx.doi.org/10.1002/bies.201200131] [PMID: 23532586]
[27]
Coombes CE, Yamamoto A, Kenzie MR, Odde DJ, Gardner MK. Evolving tip structures can explain age-dependent microtubule catastrophe. Curr Biol 2013; 23(14): 1342-8.
[http://dx.doi.org/10.1016/j.cub.2013.05.059] [PMID: 23831290]
[28]
Wang L, Ho CL, Sun D, Liem RK, Brown A. Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat Cell Biol 2000; 2(3): 137-41.
[http://dx.doi.org/10.1038/35004008] [PMID: 10707083]
[29]
Maday S, Wallace KE, Holzbaur EL. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 2012; 196(4): 407-17.
[http://dx.doi.org/10.1083/jcb.201106120] [PMID: 22331844]
[30]
Perrot R, Julien JP. Real-time imaging reveals defects of fast axonal transport induced by disorganization of intermediate filaments. FASEB J 2009; 23(9): 3213-25.
[http://dx.doi.org/10.1096/fj.09-129585] [PMID: 19451279]
[31]
Uchida A, Alami NH, Brown A. Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments. Mol Biol Cell 2009; 20(23): 4997-5006.
[http://dx.doi.org/10.1091/mbc.e09-04-0304] [PMID: 19812246]
[32]
Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 2010; 68(4): 610-38.
[http://dx.doi.org/10.1016/j.neuron.2010.09.039] [PMID: 21092854]
[33]
Dogan MY, Can S, Cleary FB, Purde V, Yildiz A. Kinesin’s front head is gated by the backward orientation of its neck linker. Cell Rep 2015; 10(12): 1967-73.
[http://dx.doi.org/10.1016/j.celrep.2015.02.061] [PMID: 25818289]
[34]
Verhey KJ, Meyer D, Deehan R, et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol 2001; 152(5): 959-70.
[http://dx.doi.org/10.1083/jcb.152.5.959] [PMID: 11238452]
[35]
Setou M, Seog DH, Tanaka Y, et al. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 2002; 417(6884): 83-7.
[http://dx.doi.org/10.1038/nature743] [PMID: 11986669]
[36]
Eschbach J, Dupuis L. Cytoplasmic dynein in neurodegeneration. Pharmacol Ther 2011; 130(3): 348-63.
[http://dx.doi.org/10.1016/j.pharmthera.2011.03.004] [PMID: 21420428]
[37]
Schroer TA. Dynactin. Annu Rev Cell Dev Biol 2004; 20: 759-79.
[http://dx.doi.org/10.1146/annurev.cellbio.20.012103.094623] [PMID: 15473859]
[38]
Hammer JA III, Sellers JR. Walking to work: roles for class V myosins as cargo transporters. Nat Rev Mol Cell Biol 2011; 13(1): 13-26.
[http://dx.doi.org/10.1038/nrm3248] [PMID: 22146746]
[39]
Cao TT, Chang W, Masters SE, Mooseker MS. Myosin-Va binds to and mechanochemically couples microtubules to actin filaments. Mol Biol Cell 2004; 15(1): 151-61.
[http://dx.doi.org/10.1091/mbc.e03-07-0504] [PMID: 14565972]
[40]
Rao MV, Mohan PS, Kumar A, et al. The myosin Va head domain binds to the neurofilament-L rod and modulates Endoplasmic Reticulum (ER) content and distribution within axons. PLoS One 2011; 6(2): e17087.
[http://dx.doi.org/10.1371/journal.pone.0017087] [PMID: 21359212]
[41]
Lalli G, Gschmeissner S, Schiavo G. Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons. J Cell Sci 2003; 116(Pt 22): 4639-50.
[http://dx.doi.org/10.1242/jcs.00727] [PMID: 14576357]
[42]
Ali MY, Krementsova EB, Kennedy GG, et al. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc Natl Acad Sci USA 2007; 104(11): 4332-6.
[http://dx.doi.org/10.1073/pnas.0611471104] [PMID: 17360524]
[43]
Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J 2002; 21(3): 281-93.
[http://dx.doi.org/10.1093/emboj/21.3.281] [PMID: 11823421]
[44]
Cross DA, Watt PW, Shaw M, et al. Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Lett 1997; 406(1-2): 211-5.
[http://dx.doi.org/10.1016/S0014-5793(97)00240-8] [PMID: 9109420]
[45]
Ivaska J, Nissinen L, Immonen N, Eriksson JE, Kähäri VM, Heino J. Integrin α 2 β 1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3 β. Mol Cell Biol 2002; 22(5): 1352-9.
[http://dx.doi.org/10.1128/MCB.22.5.1352-1359.2002] [PMID: 11839802]
[46]
Morfini G, Szebenyi G, Brown H, et al. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J 2004; 23(11): 2235-45.
[http://dx.doi.org/10.1038/sj.emboj.7600237] [PMID: 15152189]
[47]
Shea TB, Yabe JT, Ortiz D, et al. Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons. J Cell Sci 2004; 117(Pt 6): 933-41.
[http://dx.doi.org/10.1242/jcs.00785] [PMID: 14762105]
[48]
Jung C, Lee S, Ortiz D, Zhu Q, Julien JP, Shea TB. The high and middle molecular weight neurofilament subunits regulate the association of neurofilaments with kinesin: inhibition by phosphorylation of the high molecular weight subunit. Brain Res Mol Brain Res 2005; 141(2): 151-5.
[http://dx.doi.org/10.1016/j.molbrainres.2005.08.009] [PMID: 16246456]
[49]
Dixit R, Ross JL, Goldman YE, Holzbaur EL. Differential regulation of dynein and kinesin motor proteins by tau. Science 2008; 319(5866): 1086-9.
[http://dx.doi.org/10.1126/science.1152993] [PMID: 18202255]
[50]
McVicker DP, Chrin LR, Berger CL. The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport. J Biol Chem 2011; 286(50): 42873-80.
[http://dx.doi.org/10.1074/jbc.M111.292987] [PMID: 22039058]
[51]
Yuan A, Kumar A, Peterhoff C, Duff K, Nixon RA. Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. J Neurosci 2008; 28(7): 1682-7.
[http://dx.doi.org/10.1523/JNEUROSCI.5242-07.2008] [PMID: 18272688]
[52]
Encalada SE, Szpankowski L, Xia CH, Goldstein LS. Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles. Cell 2011; 144(4): 551-65.
[http://dx.doi.org/10.1016/j.cell.2011.01.021] [PMID: 21335237]
[53]
Klingelhoefer L, Reichmann H. Pathogenesis of Parkinson disease-the gut-brain axis and environmental factors. Nat Rev Neurol 2015; 11(11): 625-36.
[http://dx.doi.org/10.1038/nrneurol.2015.197] [PMID: 26503923]
[54]
Saha AR, Hill J, Utton MA, et al. Parkinson’s disease α-synuclein mutations exhibit defective axonal transport in cultured neurons. J Cell Sci 2004; 117(Pt 7): 1017-24.
[http://dx.doi.org/10.1242/jcs.00967] [PMID: 14996933]
[55]
Shen J. Protein kinases linked to the pathogenesis of Parkinson’s disease. Neuron 2004; 44(4): 575-7.
[http://dx.doi.org/10.1016/j.neuron.2004.11.008] [PMID: 15541303]
[56]
Abou-Sleiman PM, Muqit MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 2006; 7(3): 207-19.
[http://dx.doi.org/10.1038/nrn1868] [PMID: 16495942]
[57]
Law BM, Spain VA, Leinster VH, et al. A direct interaction between leucine-rich repeat kinase 2 and specific β-tubulin isoforms regulates tubulin acetylation. J Biol Chem 2014; 289(2): 895-908.
[http://dx.doi.org/10.1074/jbc.M113.507913] [PMID: 24275654]
[58]
Gillardon F. Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability-a point of convergence in parkinsonian neurodegeneration? J Neurochem 2009; 110(5): 1514-22.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06235.x] [PMID: 19545277]
[59]
Cartelli D, Goldwurm S, Casagrande F, Pezzoli G, Cappelletti G. Microtubule destabilization is shared by genetic and idiopathic Parkinson’s disease patient fibroblasts. PLoS One 2012; 7(5): e37467.
[http://dx.doi.org/10.1371/journal.pone.0037467] [PMID: 22666358]
[60]
Godena VK, Brookes-Hocking N, Moller A, et al. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 2014; 5(1): 5245.
[http://dx.doi.org/10.1038/ncomms6245] [PMID: 25316291]
[61]
Schwab AJ, Ebert AD. Neurite aggregation and calcium dysfunction in iPSC-derived sensory neurons with Parkinson’s disease-related LRRK2 G2019S mutation. Stem Cell Reports 2015; 5(6): 1039-52.
[http://dx.doi.org/10.1016/j.stemcr.2015.11.004] [PMID: 26651604]
[62]
Yang F, Jiang Q, Zhao J, Ren Y, Sutton MD, Feng J. Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem 2005; 280(17): 17154-62.
[http://dx.doi.org/10.1074/jbc.M500843200] [PMID: 15737990]
[63]
Ren Y, Jiang H, Yang F, Nakaso K, Feng J. Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J Biol Chem 2009; 284(6): 4009-17.
[http://dx.doi.org/10.1074/jbc.M806245200] [PMID: 19074146]
[64]
Ren Y, Jiang H, Hu Z, et al. Parkin mutations reduce the complexity of neuronal processes in iPSC-derived human neurons. Stem Cells 2015; 33(1): 68-78.
[http://dx.doi.org/10.1002/stem.1854] [PMID: 25332110]
[65]
Alim MA, Hossain MS, Arima K, et al. Tubulin seeds alpha-synuclein fibril formation. J Biol Chem 2002; 277(3): 2112-7.
[http://dx.doi.org/10.1074/jbc.M102981200] [PMID: 11698390]
[66]
Esteves AR, Arduíno DM, Swerdlow RH, Oliveira CR, Cardoso SM. Microtubule depolymerization potentiates alpha-synuclein oligomerization. Front Aging Neurosci 2010; 1: 5.
[http://dx.doi.org/10.3389/neuro.24.005.2009] [PMID: 20552056]
[67]
Nakayama K, Suzuki Y, Yazawa I. Microtubule depolymerization suppresses alpha-synuclein accumulation in a mouse model of multiple system atrophy. Am J Pathol 2009; 174(4): 1471-80.
[http://dx.doi.org/10.2353/ajpath.2009.080503] [PMID: 19286568]
[68]
Alim MA, Ma QL, Takeda K, et al. Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. J Alzheimers Dis 2004; 6(4): 435-42.
[http://dx.doi.org/10.3233/JAD-2004-6412] [PMID: 15345814]
[69]
Chen L, Jin J, Davis J, et al. Oligomeric alpha-synuclein inhibits tubulin polymerization. Biochem Biophys Res Commun 2007; 356(3): 548-53.
[http://dx.doi.org/10.1016/j.bbrc.2007.02.163] [PMID: 17374364]
[70]
Cartelli D, Aliverti A, Barbiroli A, et al. α-Synuclein is a novel microtubule dynamase. Sci Rep 2016; 6(1): 33289.
[http://dx.doi.org/10.1038/srep33289] [PMID: 27628239]
[71]
Wang X, Winter D, Ashrafi G, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011; 147(4): 893-906.
[http://dx.doi.org/10.1016/j.cell.2011.10.018] [PMID: 22078885]
[72]
Farrer MJ, Hulihan MM, Kachergus JM, et al. DCTN1 mutations in Perry syndrome. Nat Genet 2009; 41(2): 163-5.
[http://dx.doi.org/10.1038/ng.293] [PMID: 19136952]
[73]
Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 2012; 135(Pt 7): 2058-73.
[http://dx.doi.org/10.1093/brain/aws133] [PMID: 22719003]
[74]
Hardy J. A hundred years of Alzheimer’s disease research. Neuron 2006; 52(1): 3-13.
[http://dx.doi.org/10.1016/j.neuron.2006.09.016] [PMID: 17015223]
[75]
Baek ST, Gibbs EM, Gleeson JG, Mathern GW. Hemimegalencephaly, a paradigm for somatic postzygotic neurodevelopmental disorders. Curr Opin Neurol 2013; 26(2): 122-7.
[http://dx.doi.org/10.1097/WCO.0b013e32835ef373] [PMID: 23449172]
[76]
Salamon N, Andres M, Chute DJ, et al. Contralateral hemimicrencephaly and clinical-pathological correlations in children with hemimegalencephaly. Brain 2006; 129(Pt 2): 352-65.
[http://dx.doi.org/10.1093/brain/awh681] [PMID: 16291806]
[77]
Flores-Sarnat L, Sarnat HB, Dávila-Gutiérrez G, Álvarez A. Hemimegalencephaly: Part 2. Neuropathology suggests a disorder of cellular lineage. J Child Neurol 2003; 18(11): 776-85.
[http://dx.doi.org/10.1177/08830738030180111101] [PMID: 14696906]
[78]
Iqbal K, Liu F, Gong CX, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 2010; 7(8): 656-64.
[http://dx.doi.org/10.2174/156720510793611592] [PMID: 20678074]
[79]
Götz J, Probst A, Spillantini MG, et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J 1995; 14(7): 1304-13.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07116.x] [PMID: 7729409]
[80]
Müller WE, Eckert A, Kurz C, Eckert GP, Leuner K. Mitochondrial dysfunction: Common final pathway in brain aging and Alzheimer’s disease-therapeutic aspects. Mol Neurobiol 2010; 41(2-3): 159-71.
[http://dx.doi.org/10.1007/s12035-010-8141-5] [PMID: 20461558]
[81]
Maas T, Eidenmüller J, Brandt R. Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem 2000; 275(21): 15733-40.
[http://dx.doi.org/10.1074/jbc.M000389200] [PMID: 10747907]
[82]
Sarnat HB, Flores-Sarnat L. Infantile tauopathies: hemimegalencephaly; tuberous sclerosis complex; focal cortical dysplasia 2; ganglioglioma. Brain Dev 2015; 37(6): 553-62.
[http://dx.doi.org/10.1016/j.braindev.2014.08.010] [PMID: 25451314]
[83]
Stokin GB, Lillo C, Falzone TL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 2005; 307(5713): 1282-8.
[http://dx.doi.org/10.1126/science.1105681] [PMID: 15731448]
[84]
Salehi A, Delcroix JD, Belichenko PV, et al. Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 2006; 51(1): 29-42.
[http://dx.doi.org/10.1016/j.neuron.2006.05.022] [PMID: 16815330]
[85]
Lazarov O, Morfini GA, Pigino G, et al. Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer’s disease-linked mutant presenilin 1. J Neurosci 2007; 27(26): 7011-20.
[http://dx.doi.org/10.1523/JNEUROSCI.4272-06.2007] [PMID: 17596450]
[86]
Zhang B, Higuchi M, Yoshiyama Y, et al. Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci 2004; 24(19): 4657-67.
[http://dx.doi.org/10.1523/JNEUROSCI.0797-04.2004] [PMID: 15140937]
[87]
Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS. Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP. Nature 2001; 414(6864): 643-8.
[http://dx.doi.org/10.1038/414643a] [PMID: 11740561]
[88]
Lazarov O, Morfini GA, Lee EB, et al. Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J Neurosci 2005; 25(9): 2386-95.
[http://dx.doi.org/10.1523/JNEUROSCI.3089-04.2005] [PMID: 15745965]
[89]
Goldsbury C, Mocanu MM, Thies E, et al. Inhibition of APP trafficking by tau protein does not increase the generation of amyloid-β peptides. Traffic 2006; 7(7): 873-88.
[http://dx.doi.org/10.1111/j.1600-0854.2006.00434.x] [PMID: 16734669]
[90]
Hiruma H, Katakura T, Takahashi S, Ichikawa T, Kawakami T. Glutamate and amyloid β-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci 2003; 23(26): 8967-77.
[http://dx.doi.org/10.1523/JNEUROSCI.23-26-08967.2003] [PMID: 14523099]
[91]
Pigino G, Morfini G, Atagi Y, et al. Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc Natl Acad Sci USA 2009; 106(14): 5907-12.
[http://dx.doi.org/10.1073/pnas.0901229106] [PMID: 19321417]
[92]
Seitz A, Kojima H, Oiwa K, Mandelkow EM, Song YH, Mandelkow E. Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J 2002; 21(18): 4896-905.
[http://dx.doi.org/10.1093/emboj/cdf503] [PMID: 12234929]
[93]
Morfini G, Pigino G, Mizuno N, Kikkawa M, Brady ST. Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res 2007; 85(12): 2620-30.
[http://dx.doi.org/10.1002/jnr.21154] [PMID: 17265463]
[94]
Kanaan NM, Morfini GA, LaPointe NE, et al. Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases. J Neurosci 2011; 31(27): 9858-68.
[http://dx.doi.org/10.1523/JNEUROSCI.0560-11.2011] [PMID: 21734277]
[95]
Duff K, Knight H, Refolo LM, et al. Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol Dis 2000; 7(2): 87-98.
[http://dx.doi.org/10.1006/nbdi.1999.0279] [PMID: 10783293]
[96]
Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999; 402(6762): 615-22.
[http://dx.doi.org/10.1038/45159] [PMID: 10604467]
[97]
Brinkman RR, Mezei MM, Theilmann J, Almqvist E, Hayden MR. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am J Hum Genet 1997; 60(5): 1202-10.
[PMID: 9150168]
[98]
Li H, Li SH, Yu ZX, Shelbourne P, Li XJ. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J Neurosci 2001; 21(21): 8473-81.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08473.2001] [PMID: 11606636]
[99]
Szebenyi G, Morfini GA, Babcock A, et al. Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 2003; 40(1): 41-52.
[http://dx.doi.org/10.1016/S0896-6273(03)00569-5] [PMID: 14527432]
[100]
Gunawardena S, Her LS, Brusch RG, et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 2003; 40(1): 25-40.
[http://dx.doi.org/10.1016/S0896-6273(03)00594-4] [PMID: 14527431]
[101]
Trushina E, Dyer RB, Badger JD II, et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 2004; 24(18): 8195-209.
[http://dx.doi.org/10.1128/MCB.24.18.8195-8209.2004] [PMID: 15340079]
[102]
McGuire JR, Rong J, Li SH, Li XJ. Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J Biol Chem 2006; 281(6): 3552-9.
[http://dx.doi.org/10.1074/jbc.M509806200] [PMID: 16339760]
[103]
Caviston JP, Ross JL, Antony SM, Tokito M, Holzbaur EL. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc Natl Acad Sci USA 2007; 104(24): 10045-50.
[http://dx.doi.org/10.1073/pnas.0610628104] [PMID: 17548833]
[104]
Caviston JP, Zajac AL, Tokito M, Holzbaur EL. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes. Mol Biol Cell 2011; 22(4): 478-92.
[http://dx.doi.org/10.1091/mbc.e10-03-0233] [PMID: 21169558]
[105]
Gauthier LR, Charrin BC, Borrell-Pagès M, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004; 118(1): 127-38.
[http://dx.doi.org/10.1016/j.cell.2004.06.018] [PMID: 15242649]
[106]
Twelvetrees AE, Yuen EY, Arancibia-Carcamo IL, et al. Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 2010; 65(1): 53-65.
[http://dx.doi.org/10.1016/j.neuron.2009.12.007] [PMID: 20152113]
[107]
Colin E, Zala D, Liot G, et al. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J 2008; 27(15): 2124-34.
[http://dx.doi.org/10.1038/emboj.2008.133] [PMID: 18615096]
[108]
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325(5942): 834-40.
[http://dx.doi.org/10.1126/science.1175371] [PMID: 19608861]
[109]
Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 2007; 27(13): 3571-83.
[http://dx.doi.org/10.1523/JNEUROSCI.0037-07.2007] [PMID: 17392473]
[110]
Bobrowska A, Paganetti P, Matthias P, Bates GP. Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington’s disease. PLoS One 2011; 6(6): e20696.
[http://dx.doi.org/10.1371/journal.pone.0020696] [PMID: 21677773]
[111]
Iwata A, Riley BE, Johnston JA, Kopito RR. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 2005; 280(48): 40282-92.
[http://dx.doi.org/10.1074/jbc.M508786200] [PMID: 16192271]
[112]
Morfini GA, You YM, Pollema SL, et al. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat Neurosci 2009; 12(7): 864-71.
[http://dx.doi.org/10.1038/nn.2346] [PMID: 19525941]
[113]
Ackerley S, Grierson AJ, Brownlees J, et al. Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol 2000; 150(1): 165-76.
[http://dx.doi.org/10.1083/jcb.150.1.165] [PMID: 10893265]
[114]
Brownlees J, Yates A, Bajaj NP, et al. Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b/Jun N-terminal kinase-3. J Cell Sci 2000; 113(Pt 3): 401-7.
[http://dx.doi.org/10.1242/jcs.113.3.401] [PMID: 10639328]
[115]
Morfini G, Pigino G, Szebenyi G, You Y, Pollema S, Brady ST. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat Neurosci 2006; 9(7): 907-16.
[http://dx.doi.org/10.1038/nn1717] [PMID: 16751763]
[116]
Al-Chalabi A, Andersen PM, Nilsson P, et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet 1999; 8(2): 157-64.
[http://dx.doi.org/10.1093/hmg/8.2.157] [PMID: 9931323]
[117]
Gros-Louis F, Larivière R, Gowing G, et al. A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J Biol Chem 2004; 279(44): 45951-6.
[http://dx.doi.org/10.1074/jbc.M408139200] [PMID: 15322088]
[118]
Lariviere RC, Julien JP. Functions of intermediate filaments in neuronal development and disease. J Neurobiol 2004; 58(1): 131-48.
[http://dx.doi.org/10.1002/neu.10270] [PMID: 14598376]
[119]
Millecamps S, Robertson J, Lariviere R, Mallet J, Julien JP. Defective axonal transport of neurofilament proteins in neurons overexpressing peripherin. J Neurochem 2006; 98(3): 926-38.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03932.x] [PMID: 16787413]
[120]
Swarup V, Phaneuf D, Bareil C, et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain 2011; 134(Pt 9): 2610-26.
[http://dx.doi.org/10.1093/brain/awr159] [PMID: 21752789]
[121]
Volkening K, Leystra-Lantz C, Yang W, Jaffee H, Strong MJ. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res 2009; 1305: 168-82.
[http://dx.doi.org/10.1016/j.brainres.2009.09.105] [PMID: 19815002]
[122]
Bruijn LI, Becher MW, Lee MK, et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 1997; 18(2): 327-38.
[http://dx.doi.org/10.1016/S0896-6273(00)80272-X] [PMID: 9052802]
[123]
Williamson TL, Cleveland DW. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 1999; 2(1): 50-6.
[http://dx.doi.org/10.1038/4553] [PMID: 10195180]
[124]
Tortarolo M, Veglianese P, Calvaresi N, et al. Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression. Mol Cell Neurosci 2003; 23(2): 180-92.
[http://dx.doi.org/10.1016/S1044-7431(03)00022-8] [PMID: 12812752]
[125]
Nguyen MD, Larivière RC, Julien JP. Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 2001; 30(1): 135-47.
[http://dx.doi.org/10.1016/S0896-6273(01)00268-9] [PMID: 11343650]
[126]
Bosco DA, Morfini G, Karabacak NM, et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 2010; 13(11): 1396-403.
[http://dx.doi.org/10.1038/nn.2660] [PMID: 20953194]
[127]
De Vos KJ, Chapman AL, Tennant ME, et al. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet 2007; 16(22): 2720-8.
[http://dx.doi.org/10.1093/hmg/ddm226] [PMID: 17725983]
[128]
Bilsland LG, Sahai E, Kelly G, Golding M, Greensmith L, Schiavo G. Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci USA 2010; 107(47): 20523-8.
[http://dx.doi.org/10.1073/pnas.1006869107] [PMID: 21059924]
[129]
Vande Velde C, McDonald KK, Boukhedimi Y, et al. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS One 2011; 6(7): e22031.
[http://dx.doi.org/10.1371/journal.pone.0022031] [PMID: 21779368]
[130]
Marinković P, Reuter MS, Brill MS, Godinho L, Kerschensteiner M, Misgeld T. Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 2012; 109(11): 4296-301.
[http://dx.doi.org/10.1073/pnas.1200658109] [PMID: 22371592]
[131]
LaMonte BH, Wallace KE, Holloway BA, et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 2002; 34(5): 715-27.
[http://dx.doi.org/10.1016/S0896-6273(02)00696-7] [PMID: 12062019]
[132]
Puls I, Jonnakuty C, LaMonte BH, et al. Mutant dynactin in motor neuron disease. Nat Genet 2003; 33(4): 455-6.
[http://dx.doi.org/10.1038/ng1123] [PMID: 12627231]
[133]
Laird FM, Farah MH, Ackerley S, et al. Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J Neurosci 2008; 28(9): 1997-2005.
[http://dx.doi.org/10.1523/JNEUROSCI.4231-07.2008] [PMID: 18305234]
[134]
Chevalier-Larsen ES, Wallace KE, Pennise CR, Holzbaur EL. Lysosomal proliferation and distal degeneration in motor neurons expressing the G59S mutation in the p150Glued subunit of dynactin. Hum Mol Genet 2008; 17(13): 1946-55.
[http://dx.doi.org/10.1093/hmg/ddn092] [PMID: 18364389]
[135]
Teuling E, van Dis V, Wulf PS, et al. A novel mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)-like features in motor neurons and improves lifespan in SOD1-ALS mice. Hum Mol Genet 2008; 17(18): 2849-62.
[http://dx.doi.org/10.1093/hmg/ddn182] [PMID: 18579581]
[136]
Otomo A, Hadano S, Okada T, et al. ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Hum Mol Genet 2003; 12(14): 1671-87.
[http://dx.doi.org/10.1093/hmg/ddg184] [PMID: 12837691]
[137]
Gros-Louis F, Kriz J, Kabashi E, et al. Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish. Hum Mol Genet 2008; 17(17): 2691-702.
[http://dx.doi.org/10.1093/hmg/ddn171] [PMID: 18558633]
[138]
Teuling E, Ahmed S, Haasdijk E, et al. Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates. J Neurosci 2007; 27(36): 9801-15.
[http://dx.doi.org/10.1523/JNEUROSCI.2661-07.2007] [PMID: 17804640]
[139]
Kim SY, Choi US, Park SY, et al. Abnormal activation of the social brain network in children with autism spectrum disorder: an FMRI study. Psychiatry Investig 2015; 12(1): 37-45.
[http://dx.doi.org/10.4306/pi.2015.12.1.37] [PMID: 25670944]
[140]
Goldberg MC, Spinelli S, Joel S, Pekar JJ, Denckla MB, Mostofsky SH. Children with high functioning autism show increased prefrontal and temporal cortex activity during error monitoring. Dev Cogn Neurosci 2011; 1(1): 47-56.
[http://dx.doi.org/10.1016/j.dcn.2010.07.002] [PMID: 21151713]
[141]
Clery H, Andersson F, Bonnet-Brilhault F, Philippe A, Wicker B, Gomot M. fMRI investigation of visual change detection in adults with autism. Neuroimage Clin 2013; 2: 303-12.
[http://dx.doi.org/10.1016/j.nicl.2013.01.010] [PMID: 24179785]
[142]
Helsmoortel C, Vulto-van Silfhout AT, Coe BP, et al. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat Genet 2014; 46(4): 380-4.
[http://dx.doi.org/10.1038/ng.2899] [PMID: 24531329]
[143]
Jouroukhin Y, Ostritsky R, Assaf Y, Pelled G, Giladi E, Gozes I. NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport. Neurobiol Dis 2013; 56: 79-94.
[http://dx.doi.org/10.1016/j.nbd.2013.04.012] [PMID: 23631872]
[144]
Bakos J, Bacova Z, Grant SG, Castejon AM, Ostatnikova D. Are molecules involved in neuritogenesis and axon guidance related to autism pathogenesis? Neuromolecular Med 2015; 17(3): 297-304.
[http://dx.doi.org/10.1007/s12017-015-8357-7] [PMID: 25989848]
[145]
Kozma R, Sarner S, Ahmed S, Lim L. Rho family GTPases and neuronal growth cone remodelling: Relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 1997; 17(3): 1201-11.
[http://dx.doi.org/10.1128/MCB.17.3.1201] [PMID: 9032247]
[146]
Berg JM, Lee C, Chen L, et al. JAKMIP1, a Novel Regulator of Neuronal Translation, Modulates Synaptic Function and Autistic- like Behaviors in Mouse. Neuron 2015; 88(6): 1173-91.
[http://dx.doi.org/10.1016/j.neuron.2015.10.031] [PMID: 26627310]
[147]
Steindler C, Li Z, Algarté M, et al. Jamip1 (marlin-1) defines a family of proteins interacting with janus kinases and microtubules. J Biol Chem 2004; 279(41): 43168-77.
[http://dx.doi.org/10.1074/jbc.M401915200] [PMID: 15277531]
[148]
Deloulme JC, Gory-Fauré S, Mauconduit F, et al. Microtubule-associated protein 6 mediates neuronal connectivity through Semaphorin 3E-dependent signalling for axonal growth. Nat Commun 2015; 6(1): 7246.
[http://dx.doi.org/10.1038/ncomms8246] [PMID: 26037503]
[149]
Wei H, Ma Y, Liu J, Ding C, Hu F, Yu L. Proteomic analysis of cortical brain tissue from the BTBR mouse model of autism: Evidence for changes in STOP and myelin-related proteins. Neuroscience 2016; 312: 26-34.
[http://dx.doi.org/10.1016/j.neuroscience.2015.11.003] [PMID: 26562433]
[150]
Wei H, Sun S, Li Y, Yu S. Reduced plasma levels of microtubule-associated STOP/MAP6 protein in autistic patients. Psychiatry Res 2016; 245: 116-8.
[http://dx.doi.org/10.1016/j.psychres.2016.08.024] [PMID: 27541346]
[151]
Fournet V, Schweitzer A, Chevarin C, et al. The deletion of STOP/MAP6 protein in mice triggers highly altered mood and impaired cognitive performances. J Neurochem 2012; 121(1): 99-114.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07615.x] [PMID: 22146001]
[152]
Guerin A, Stavropoulos DJ, Diab Y, et al. Interstitial deletion of 11q-implicating the KIRREL3 gene in the neurocognitive delay associated with Jacobsen syndrome. Am J Med Genet A 2012; 158A(10): 2551-6.
[http://dx.doi.org/10.1002/ajmg.a.35621] [PMID: 22965935]
[153]
Henríquez DR, Bodaleo FJ, Montenegro-Venegas C, González- Billault C. The light chain 1 subunit of the microtubule-associated protein 1B (MAP1B) is responsible for Tiam1 binding and Rac1 activation in neuronal cells. PLoS One 2012; 7(12): e53123.
[http://dx.doi.org/10.1371/journal.pone.0053123] [PMID: 23300879]
[154]
Hori K, Hoshino M. Neuronal migration and auts2 syndrome. Brain Sci 2017; 7(5): E54.
[http://dx.doi.org/10.3390/brainsci7050054] [PMID: 28505103]
[155]
Kawauchi T, Chihama K, Nabeshima Y, Hoshino M. The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J 2003; 22(16): 4190-201.
[http://dx.doi.org/10.1093/emboj/cdg413] [PMID: 12912917]
[156]
Cornell B, Wachi T, Zhukarev V, Toyo-Oka K. Regulation of neuronal morphogenesis by 14-3-3epsilon (Ywhae) via the microtubule binding protein, doublecortin. Hum Mol Genet 2016; 25(20): 4610.
[http://dx.doi.org/10.1093/hmg/ddx023] [PMID: 28158563]
[157]
Matenia D, Mandelkow EM. The tau of MARK: A polarized view of the cytoskeleton. Trends Biochem Sci 2009; 34(7): 332-42.
[http://dx.doi.org/10.1016/j.tibs.2009.03.008] [PMID: 19559622]
[158]
Maussion G, Carayol J, Lepagnol-Bestel AM, et al. Convergent evidence identifying MAP/microtubule affinity-regulating kinase 1 (MARK1) as a susceptibility gene for autism. Hum Mol Genet 2008; 17(16): 2541-51.
[http://dx.doi.org/10.1093/hmg/ddn154] [PMID: 18492799]
[159]
Neale BM, Kou Y, Liu L, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485(7397): 242-5.
[http://dx.doi.org/10.1038/nature11011] [PMID: 22495311]
[160]
Williams MR, Fricano-Kugler CJ, Getz SA, et al. A retroviral crispr-cas9 system for cellular autism-associated phenotype discovery in developing neurons. Sci Rep 2016; 6: 25611.
[http://dx.doi.org/10.1038/srep25611] [PMID: 27161796]
[161]
Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011; 14(3): 285-93.
[http://dx.doi.org/10.1038/nn.2741] [PMID: 21346746]
[162]
Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 2011; 12(12): 773-86.
[http://dx.doi.org/10.1038/nrm3227] [PMID: 22086369]
[163]
Marchisella F, Coffey ET, Hollos P. Microtubule and microtubule associated protein anomalies in psychiatric disease. Cytoskeleton (Hoboken) 2016; 73(10): 596-611.
[http://dx.doi.org/10.1002/cm.21300] [PMID: 27112918]
[164]
Lang B, Pu J, Hunter I, et al. Recurrent deletions of ULK4 in schizophrenia: A gene crucial for neuritogenesis and neuronal motility. J Cell Sci 2014; 127(Pt 3): 630-40.
[http://dx.doi.org/10.1242/jcs.137604] [PMID: 24284070]
[165]
Song Y, Brady ST. Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol 2015; 25(3): 125-36.
[http://dx.doi.org/10.1016/j.tcb.2014.10.004] [PMID: 25468068]
[166]
Javitt DC, Sweet RA. Auditory dysfunction in schizophrenia: integrating clinical and basic features. Nat Rev Neurosci 2015; 16(9): 535-50.
[http://dx.doi.org/10.1038/nrn4002] [PMID: 26289573]
[167]
Lefèvre J, Savarin P, Gans P, et al. Structural basis for the association of MAP6 protein with microtubules and its regulation by calmodulin. J Biol Chem 2013; 288(34): 24910-22.
[http://dx.doi.org/10.1074/jbc.M113.457267] [PMID: 23831686]
[168]
Bradshaw NJ, Porteous DJ. DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 2012; 62(3): 1230-41.
[http://dx.doi.org/10.1016/j.neuropharm.2010.12.027] [PMID: 21195721]
[169]
Dresner E, Agam G, Gozes I. Activity-dependent neuroprotective protein (ADNP) expression level is correlated with the expression of the sister protein ADNP2: deregulation in schizophrenia. Eur Neuropsychopharmacol 2011; 21(5): 355-61.
[http://dx.doi.org/10.1016/j.euroneuro.2010.06.004] [PMID: 20598862]
[170]
Edgar PF, Douglas JE, Cooper GJ, Dean B, Kydd R, Faull RL. Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophrenia. Mol Psychiatry 2000; 5(1): 85-90.
[http://dx.doi.org/10.1038/sj.mp.4000580] [PMID: 10673773]
[171]
Falsafi SK, Dierssen M, Ghafari M, Pollak A, Lubec G. Reduced cortical neurotransmitter receptor complex levels in fetal Down syndrome brain. Amino Acids 2016; 48(1): 103-16.
[http://dx.doi.org/10.1007/s00726-015-2062-6] [PMID: 26269195]
[172]
Anderson JS, Nielsen JA, Ferguson MA, et al. Abnormal brain synchrony in Down Syndrome. Neuroimage Clin 2013; 2: 703-15.
[http://dx.doi.org/10.1016/j.nicl.2013.05.006] [PMID: 24179822]
[173]
Kimura N, Okabayashi S, Ono F. Dynein dysfunction disrupts intracellular vesicle trafficking bidirectionally and perturbs synaptic vesicle docking via endocytic disturbances a potential mechanism underlying age-dependent impairment of cognitive function. Am J Pathol 2012; 180(2): 550-61.
[http://dx.doi.org/10.1016/j.ajpath.2011.10.037] [PMID: 22182700]
[174]
Soppa U, Schumacher J, Florencio Ortiz V, Pasqualon T, Tejedor FJ, Becker W. The Down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and Cyclin D1 and induces cell cycle exit and neuronal differentiation. Cell Cycle 2014; 13(13): 2084-100.
[http://dx.doi.org/10.4161/cc.29104] [PMID: 24806449]
[175]
Dowjat K, Adayev T, Kaczmarski W, Wegiel J, Hwang YW. Gene dosage-dependent association of DYRK1A with the cytoskeleton in the brain and lymphocytes of down syndrome patients. J Neuropathol Exp Neurol 2012; 71(12): 1100-12.
[http://dx.doi.org/10.1097/NEN.0b013e31827733c8] [PMID: 23147510]
[176]
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: a lifelong relationship. Pharmacol Ther 2019; 194: 199-221.
[http://dx.doi.org/10.1016/j.pharmthera.2018.09.010] [PMID: 30268771]
[177]
Kim YO, Nam TS, Park C, et al. Familial pachygyria in both genders related to a DCX mutation. Brain Dev 2016; 38(6): 585-9.
[http://dx.doi.org/10.1016/j.braindev.2015.12.005] [PMID: 26743950]
[178]
Sun JJ, Huang M, Xiao F, Xi ZQ. Echinoderm microtubule-associated protein -like protein 5 in anterior temporal neocortex of patients with intractable epilepsy. Iran J Basic Med Sci 2015; 18(10): 1008-13.
[PMID: 26730336]
[179]
Eichenmuller B, Everley P, Palange J, Lepley D, Suprenant KA. The human EMAP-like protein-70 (ELP70) is a microtubule destabilizer that localizes to the mitotic apparatus. J Biol Chem 2002; 277(2): 1301-9.
[http://dx.doi.org/10.1074/jbc.M106628200] [PMID: 11694528]
[180]
Cairns NJ, Lee VM, Trojanowski JQ. The cytoskeleton in neurodegenerative diseases. The J pathol 2004; 204(4): 438-49.
[http://dx.doi.org/10.1002/path.1650]
[181]
An SJ, See MO, Kim HS, et al. Accumulation of microtubule-associated proteins in the hippocampal neurons of seizure-sensitive gerbils. Mol Cells 2003; 15(2): 200-7.
[PMID: 12803483]
[182]
Wu Y, Wang XF, Mo XA, et al. Expression of laminin β1 and integrin α2 in the anterior temporal neocortex tissue of patients with intractable epilepsy. Int J Neurosci 2011; 121(6): 323-8.
[http://dx.doi.org/10.3109/00207454.2011.558224] [PMID: 21370991]
[183]
Lei WL, Xing SG, Deng CY, Ju XC, Jiang XY, Luo ZG. Laminin/β1 integrin signal triggers axon formation by promoting microtubule assembly and stabilization. Cell Res 2012; 22(6): 954-72.
[http://dx.doi.org/10.1038/cr.2012.40] [PMID: 22430151]
[184]
Bonar NA, Petersen CP. Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration. Development 2017; 144(5): 784-94.
[http://dx.doi.org/10.1242/dev.139964] [PMID: 28126842]
[185]
Xu X, Hu Y, Xiong Y, et al. Association of Microtubule Dynamics with Chronic Epilepsy. Mol Neurobiol 2016; 53(7): 5013-24.
[http://dx.doi.org/10.1007/s12035-015-9431-8] [PMID: 26377107]
[186]
Berntsson SG, Malmer B, Bondy ML, Qu M, Smits A. Tumor-associated epilepsy and glioma: Are there common genetic pathways? Acta Oncol 2009; 48(7): 955-63.
[http://dx.doi.org/10.1080/02841860903104145] [PMID: 19639468]
[187]
Larti F, Kahrizi K, Musante L, et al. A defect in the CLIP1 gene (CLIP-170) can cause autosomal recessive intellectual disability. Eur J Hum Genet 2015; 23(3): 331-6.
[http://dx.doi.org/10.1038/ejhg.2014.13] [PMID: 24569606]
[188]
Kevenaar JT, Bianchi S, van Spronsen M, et al. Kinesin-binding protein controls microtubule dynamics and cargo trafficking by regulating kinesin motor activity. Curr Biol 2016; 26(7): 849-61.
[http://dx.doi.org/10.1016/j.cub.2016.01.048] [PMID: 26948876]
[189]
Esmaeeli Nieh S, Madou MR, Sirajuddin M, et al. De novo mutations in KIF1A cause progressive encephalopathy and brain atrophy. Ann Clin Transl Neurol 2015; 2(6): 623-35.
[http://dx.doi.org/10.1002/acn3.198] [PMID: 26125038]
[190]
Hempel M, Cremer K, Ockeloen CW, et al. De Novo mutations in CHAMP1 cause intellectual disability with severe speech impairment. Am J Hum Genet 2015; 97(3): 493-500.
[http://dx.doi.org/10.1016/j.ajhg.2015.08.003] [PMID: 26340335]
[191]
Banks G, Lassi G, Hoerder-Suabedissen A, et al. A missense mutation in Katnal1 underlies behavioural, neurological and ciliary anomalies. Mol Psychiatry 2018; 23(3): 713-22.
[http://dx.doi.org/10.1038/mp.2017.54] [PMID: 28373692]
[192]
Gholkar AA, Senese S, Lo YC, et al. The x-linked-intellectual-disability-associated ubiquitin ligase mid2 interacts with astrin and regulates astrin levels to promote cell division. Cell Rep 2016; 14(2): 180-8.
[http://dx.doi.org/10.1016/j.celrep.2015.12.035] [PMID: 26748699]
[193]
Brunden KR, Zhang B, Carroll J, et al. Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci 2010; 30(41): 13861-6.
[http://dx.doi.org/10.1523/JNEUROSCI.3059-10.2010] [PMID: 20943926]
[194]
Andrieux A, Salin P, Schweitzer A, et al. Microtubule stabilizer ameliorates synaptic function and behavior in a mouse model for schizophrenia. Biol Psychiatry 2006; 60(11): 1224-30.
[http://dx.doi.org/10.1016/j.biopsych.2006.03.048] [PMID: 16806091]
[195]
Mandel S, Spivak-Pohis I, Gozes I. ADNP differential nucleus/cytoplasm localization in neurons suggests multiple roles in neuronal differentiation and maintenance. J Mol Neurosci 2008; 35(2): 127-41.
[http://dx.doi.org/10.1007/s12031-007-9013-y] [PMID: 18286385]
[196]
Gozes I. Activity-dependent neuroprotective protein (ADNP): From autism to Alzheimer’s disease. Springerplus 2015; 4(1)(Suppl. 1): L37.
[http://dx.doi.org/10.1186/2193-1801-4-S1-L37] [PMID: 27386198]
[197]
Merenlender-Wagner A, Malishkevich A, Shemer Z, et al. Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatry 2015; 20(1): 126-32.
[http://dx.doi.org/10.1038/mp.2013.174] [PMID: 24365867]
[198]
Oz S, Kapitansky O, Ivashco-Pachima Y, et al. The NAP motif of activity-dependent neuroprotective protein (ADNP) regulates dendritic spines through microtubule end binding proteins. Mol Psychiatry 2014; 19(10): 1115-24.
[http://dx.doi.org/10.1038/mp.2014.97] [PMID: 25178163]
[199]
Quraishe S, Cowan CM, Mudher A. NAP (davunetide) rescues neuronal dysfunction in a Drosophila model of tauopathy. Mol Psychiatry 2013; 18(7): 834-42.
[http://dx.doi.org/10.1038/mp.2013.32] [PMID: 23587881]
[200]
Vaisburd S, Shemer Z, Yeheskel A, Giladi E, Gozes I. Risperidone and NAP protect cognition and normalize gene expression in a schizophrenia mouse model. Sci Rep 2015; 5: 16300.
[http://dx.doi.org/10.1038/srep16300] [PMID: 26553741]
[201]
Merenlender-Wagner A, Shemer Z, Touloumi O, et al. New horizons in schizophrenia treatment: autophagy protection is coupled with behavioral improvements in a mouse model of schizophrenia. Autophagy 2014; 10(12): 2324-32.
[http://dx.doi.org/10.4161/15548627.2014.984274] [PMID: 25484074]
[202]
Politte LC, Henry CA, McDougle CJ. Psychopharmacological interventions in autism spectrum disorder. Harv Rev Psychiatry 2014; 22(2): 76-92.
[http://dx.doi.org/10.1097/HRP.0000000000000030] [PMID: 24614763]
[203]
Altun A, Ugur-Altun B. Melatonin: therapeutic and clinical utilization. Int J Clin Pract 2007; 61(5): 835-45.
[http://dx.doi.org/10.1111/j.1742-1241.2006.01191.x] [PMID: 17298593]
[204]
Parésys L, Hoffmann K, Froger N, et al. Effects of the Synthetic Neurosteroid: 3β-Methoxypregnenolone (MAP4343) on Behavioral and Physiological Alterations Provoked by Chronic Psychosocial Stress in Tree Shrews. Int J Neuropsychopharmacol 2016; 19(4): pyv119.
[http://dx.doi.org/10.1093/ijnp/pyv119] [PMID: 26476437]
[205]
Ballatore C, Brunden KR, Trojanowski JQ, Lee VM, Smith AB III. Non-naturally occurring small molecule microtubule-stabilizing agents: A potential tactic for CNS-directed therapies. ACS Chem Neurosci 2017; 8(1): 5-7.
[http://dx.doi.org/10.1021/acschemneuro.6b00384] [PMID: 28095679]
[206]
Zhang N, Ayral-Kaloustian S, Nguyen T, et al. Synthesis and SAR of [1,2,4]triazolo[1,5-a]pyrimidines, a class of anticancer agents with a unique mechanism of tubulin inhibition. J Med Chem 2007; 50(2): 319-27.
[http://dx.doi.org/10.1021/jm060717i] [PMID: 17228873]
[207]
Lou K, Yao Y, Hoye AT, et al. Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer’s disease and related tauopathies. J Med Chem 2014; 57(14): 6116-27.
[http://dx.doi.org/10.1021/jm5005623] [PMID: 24992153]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy