Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Compendium of Conventional and Targeted Drug Delivery Formulation Used for the Treatment and Management of the Wound Healing

Author(s): Ajay Singh, Zeba Maqsood, Mohammad Kashif Iqubal, Javed Ali and Sanjula Baboota*

Volume 19, Issue 2, 2022

Published on: 04 January, 2022

Page: [192 - 211] Pages: 20

DOI: 10.2174/1567201818666210727165916

Price: $65

Open Access Journals Promotions 2
Abstract

Wound healing is a complex and dynamic phenomenon that involves the restoration of normal physiology and functioning of injured tissue. The process of wound healing is primarily regulated by various cytokines, inflammatory mediators, and growth factors at the molecular level. Any intervention in the normal wound healing process leads to further tissue damage, which in turn leads to delayed wound healing. Several natural, synthetic drugs and their combinations were used to restore and accelerate the wound healing process. However, the conventional delivery carriers were not much effective, and thus, nowadays, nanocarriers are gaining much popularity since they are playing a pivotal role in drug delivery. Since nanocarriers have their own applicability and benefits (enhance the bioavailability, site-specific targeting) so, they can accelerate wound healing more efficiently. This review briefly discussed about the various events that take place during the wound healing process with emphasis on various natural, synthetic, and combination drug therapy used for accelerating wound healing and the role of nanotechnology-based approaches in chronic wound healing.

Keywords: Wound healing, clinical trial, natural drug, combination therapy, kinds of wounds, phytoconstituents.

Graphical Abstract
[1]
Enoch, S.; Leaper, D.J. Basic science of wound healing. Surgery, 2005, 23(2), 37-42.
[http://dx.doi.org/10.1383/surg.23.2.37.60352]
[3]
Demidova-Rice, T.N.; Hamblin, M.R.; Herman, I.M. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv. Skin Wound Care, 2012, 25(7), 304-314.
[http://dx.doi.org/10.1097/01.ASW.0000416006.55218.d0] [PMID: 22713781]
[4]
Thakur, R.; Jain, N.; Pathak, R.; Sandhu, S.S. Practices in wound healing studies of plants. Evid. Based Complement. Alternat. Med., 2011, 2011, 438056.
[http://dx.doi.org/10.1155/2011/438056] [PMID: 21716711]
[5]
Sen, C.K. Human wounds and its burden: an updated compendium of estimates. Adv. Wound Care (New Rochelle), 2019, 8(2), 39-48.
[http://dx.doi.org/10.1089/wound.2019.0946] [PMID: 30809421]
[6]
Kloth, L. The Roles of Physical Therapists in Wound Management, Part II: Patient and Wound Evaluation. J. Am. Col. Certif. Wound Spec., 2009, 1(2), 49-50.
[http://dx.doi.org/10.1016/j.jcws.2009.03.003] [PMID: 24527113]
[7]
MacDonald, J. Global initiative for wound and lymphoedema care (GIWLC). J. Lymphoedema, 2009, 4(2), 92-95.
[8]
Tresierra-Ayala, M.Á.; Rojas, A.G. Association between peripheral arterial disease and diabetic foot ulcers in patients with diabetes mellitus type 2. Medicina Universitaria, 2017, 19(76), 123-126.
[http://dx.doi.org/10.1016/j.rmu.2017.07.002]
[9]
Zhang, P.; Lu, J.; Jing, Y.; Tang, S.; Zhu, D.; Bi, Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis . Ann. Med., 2017, 49(2), 106-116.
[http://dx.doi.org/10.1080/07853890.2016.1231932] [PMID: 27585063]
[10]
Schreml, S.; Berneburg, M. The global burden of diabetic wounds. Br. J. Dermatol., 2017, 176(4), 845-846.
[http://dx.doi.org/10.1111/bjd.15254] [PMID: 28418142]
[11]
Ruke, G.M.; Savai, J. Chronic Wound Management during COVID-19 Pandemic. Endocrinol. Metabol. Res., 2020, 37-46.
[12]
Nussbaum, S.R.; Carter, M.J.; Fife, C.E.; DaVanzo, J.; Haught, R.; Nusgart, M.; Cartwright, D. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health, 2018, 21(1), 27-32.
[http://dx.doi.org/10.1016/j.jval.2017.07.007] [PMID: 29304937]
[13]
Shukla, V.K.; Ansari, M.A.; Gupta, S.K. Wound healing research: a perspective from India. Int. J. Low. Extrem. Wounds, 2005, 4(1), 7-8.
[http://dx.doi.org/10.1177/1534734604273660] [PMID: 15860447]
[14]
Phillips, C.J.; Humphreys, I.; Fletcher, J.; Harding, K.; Chamberlain, G.; Macey, S. Estimating the costs associated with the management of patients with chronic wounds using linked routine data. Int. Wound J., 2016, 13(6), 1193-1197.
[http://dx.doi.org/10.1111/iwj.12443] [PMID: 25818405]
[15]
McGuckin, M.; Goldman, R.; Bolton, L.; Salcido, R. The clinical relevance of microbiology in acute and chronic wounds. Adv. Skin Wound Care, 2003, 16(1), 12-23.
[http://dx.doi.org/10.1097/00129334-200301000-00011] [PMID: 12582302]
[16]
Fletcher, J. Differences between acute and chronic wounds and the role of wound bed preparation. Nursing Standard, 2008.
[http://dx.doi.org/10.7748/ns2008.02.22.24.62.c6412]
[17]
Rudolph, D. M. Why wonʼt this wound heal? Am. J. Nursing, 2002, 102(2), 24DD-24HH.
[http://dx.doi.org/10.1097/00000446-200202000-00013]
[18]
Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med., 2014, 6(265), 265sr6.
[http://dx.doi.org/10.1126/scitranslmed.3009337] [PMID: 25473038]
[19]
Sidhu, G.S.; Singh, A.K.; Thaloor, D.; Banaudha, K.K.; Patnaik, G.K.; Srimal, R.C.; Maheshwari, R.K. Enhancement of wound healing by curcumin in animals. Wound Repair Regen., 1998, 6(2), 167-177.
[http://dx.doi.org/10.1046/j.1524-475X.1998.60211.x] [PMID: 9776860]
[20]
Lansdown, A.B. Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen., 2002, 10(5), 271-285.
[http://dx.doi.org/10.1046/j.1524-475X.2002.10502.x] [PMID: 12406163]
[21]
Palmieri, B.; Vadalà, M.; Laurino, C. Review of the molecular mechanisms in wound healing: new therapeutic targets? J. Wound Care, 2017, 26(12), 765-775.
[http://dx.doi.org/10.12968/jowc.2017.26.12.765] [PMID: 29244975]
[22]
Süntar, I.; Çetinkaya, S.; Panieri, E.; Saha, S.; Buttari, B.; Profumo, E.; Saso, L. Regulatory Role of Nrf2 signaling pathway in wound healing process. Molecules, 2021, 26(9), 2424.
[http://dx.doi.org/10.3390/molecules26092424] [PMID: 33919399]
[23]
Ross, R.; Glomset, J.; Kariya, B.; Harker, L. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc. Natl. Acad. Sci. USA, 1974, 71(4), 1207-1210.
[http://dx.doi.org/10.1073/pnas.71.4.1207] [PMID: 4208546]
[24]
Engelhardt, E.; Toksoy, A.; Goebeler, M.; Debus, S.; Bröcker, E.B.; Gillitzer, R. Chemokines IL-8, GROalpha, MCP-1, IP-10, and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing. Am. J. Pathol., 1998, 153(6), 1849-1860.
[http://dx.doi.org/10.1016/S0002-9440(10)65699-4] [PMID: 9846975]
[25]
de Oliveira, S.; Rosowski, E.E.; Huttenlocher, A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat. Rev. Immunol., 2016, 16(6), 378-391.
[http://dx.doi.org/10.1038/nri.2016.49] [PMID: 27231052]
[26]
Dupasquier, M.; Stoitzner, P.; van Oudenaren, A.; Romani, N.; Leenen, P.J. Macrophages and dendritic cells constitute a major subpopulation of cells in the mouse dermis. J. Invest. Dermatol., 2004, 123(5), 876-879.
[http://dx.doi.org/10.1111/j.0022-202X.2004.23427.x] [PMID: 15482474]
[27]
Kiwanuka, E.; Junker, J.; Eriksson, E. Harnessing growth factors to influence wound healing. Clin. Plast. Surg., 2012, 39(3), 239-248.
[http://dx.doi.org/10.1016/j.cps.2012.04.003] [PMID: 22732373]
[28]
Pierce, G.F.; Mustoe, T.A.; Altrock, B.W.; Deuel, T.F.; Thomason, A. Role of platelet-derived growth factor in wound healing. J. Cell. Biochem., 1991, 45(4), 319-326.
[http://dx.doi.org/10.1002/jcb.240450403] [PMID: 2045423]
[29]
Spear, M. Acute or chronic? What’s the difference? Plast. Surg. Nurs., 2013, 33(2), 98-100.
[http://dx.doi.org/10.1097/PSN.0b013e3182965e94] [PMID: 23727727]
[30]
Caley, M.P.; Martins, V.L.; O’Toole, E.A. Metalloproteinases and wound healing. Adv. Wound Care (New Rochelle), 2015, 4(4), 225-234.
[http://dx.doi.org/10.1089/wound.2014.0581] [PMID: 25945285]
[31]
James, T.J.; Hughes, M.A.; Cherry, G.W.; Taylor, R.P. Evidence of oxidative stress in chronic venous ulcers. Wound Repair Regen., 2003, 11(3), 172-176.
[http://dx.doi.org/10.1046/j.1524-475X.2003.11304.x] [PMID: 12753597]
[32]
Robson, M.C.; Stenberg, B.D.; Heggers, J.P. Wound healing alterations caused by infection. Clin. Plast. Surg., 1990, 17(3), 485-492.
[http://dx.doi.org/10.1016/S0094-1298(20)30623-4] [PMID: 2199139]
[33]
Thomson, C.H. Biofilms: do they affect wound healing? Int. Wound J., 2011, 8(1), 63-67.
[http://dx.doi.org/10.1111/j.1742-481X.2010.00749.x] [PMID: 21159126]
[34]
Davis, S.C.; Ricotti, C.; Cazzaniga, A.; Welsh, E.; Eaglstein, W.H.; Mertz, P.M. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen., 2008, 16(1), 23-29.
[http://dx.doi.org/10.1111/j.1524-475X.2007.00303.x] [PMID: 18211576]
[35]
Mast, B.A.; Schultz, G.S. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen., 1996, 4(4), 411-420.
[http://dx.doi.org/10.1046/j.1524-475X.1996.40404.x] [PMID: 17309691]
[36]
Bennett, N.T.; Schultz, G.S. Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am. J. Surg., 1993, 165(6), 728-737.
[http://dx.doi.org/10.1016/S0002-9610(05)80797-4] [PMID: 8506974]
[37]
Hunt, T.K.; Linsey, M.; Grislis, H.; Sonne, M.; Jawetz, E. The effect of differing ambient oxygen tensions on wound infection. Ann. Surg., 1975, 181(1), 35-39.
[http://dx.doi.org/10.1097/00000658-197501000-00009] [PMID: 804296]
[38]
Stadelmann, W.K.; Digenis, A.G.; Tobin, G.R. Impediments to wound healing. Am. J. Surg., 1998, 176(2A)(Suppl.), 39S-47S.
[http://dx.doi.org/10.1016/S0002-9610(98)00184-6] [PMID: 9777971]
[39]
Figueiredo, F.F.; Cechinel Filho, V.; Damazo, A.S.; Arunachalam, K.; Colodel, E.M.; Ribeiro, M.; Venturini, C.L.; Oliveira, D.M.; Machado, M.T.M.; Pavan, E.; Paes, R.L.; Tenfen, A.; Almeida, P.O.A.; Siebert, D.A.; Vitali, L.; Macho, A.; Martins, D.T.O. Sorocea guilleminiana Gaudich.: Wound healing activity, action mechanisms, and chemical characterization of the leaf infusion. J. Ethnopharmacol., 2020, 248, 112307.
[http://dx.doi.org/10.1016/j.jep.2019.112307] [PMID: 31629026]
[40]
Iqubal, M.K.; Saleem, S.; Iqubal, A.; Chaudhuri, A.; Pottoo, F.H.; Ali, J.; Baboota, S. Natural, synthetic and their combinatorial nanocarriers based drug delivery system in the treatment paradigm for wound healing via dermal targeting. Curr. Pharm. Des., 2020, 26(36), 4551-4568.
[http://dx.doi.org/10.2174/1381612826666200612164511] [PMID: 32532188]
[41]
Fronza, M.; Heinzmann, B.; Hamburger, M.; Laufer, S.; Merfort, I. Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. J. Ethnopharmacol., 2009, 126(3), 463-467.
[http://dx.doi.org/10.1016/j.jep.2009.09.014] [PMID: 19781615]
[42]
Dinda, M.; Dasgupta, U.; Singh, N.; Bhattacharyya, D.; Karmakar, P. PI3K-mediated proliferation of fibroblasts by Calendula officinalis tincture: implication in wound healing. Phytother. Res., 2015, 29(4), 607-616.
[http://dx.doi.org/10.1002/ptr.5293] [PMID: 25641010]
[43]
Dinda, M.; Mazumdar, S.; Das, S.; Ganguly, D.; Dasgupta, U.B.; Dutta, A.; Jana, K.; Karmakar, P. The water fraction of Calendula officinalis hydroethanol extract stimulates in vitro and in vivo proliferation of dermal fibroblasts in wound healing. Phytother. Res., 2016, 30(10), 1696-1707.
[http://dx.doi.org/10.1002/ptr.5678] [PMID: 27426257]
[44]
Gao, S.Q.; Chang, C.; Niu, X.Q.; Li, L.J.; Zhang, Y.; Gao, J.Q. Topical application of Hydroxysafflor Yellow A accelerates the wound healing in streptozotocin induced T1DM rats. Eur. J. Pharmacol., 2018, 823, 72-78.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.018] [PMID: 29408092]
[45]
Priya, K.S.; Arumugam, G.; Rathinam, B.; Wells, A.; Babu, M. Celosia argentea Linn. leaf extract improves wound healing in a rat burn wound model. Wound Repair Regen., 2004, 12(6), 618-625.
[http://dx.doi.org/10.1111/j.1067-1927.2004.12603.x] [PMID: 15555053]
[46]
Negahdari, S.; Galehdari, H.; Kesmati, M.; Rezaie, A.; Shariati, G. Wound healing activity of extracts and formulations of aloe vera, henna, adiantum capillus-veneris, and myrrh on mouse dermal fibroblast cells. Int. J. Prev. Med., 2017, 8(1), 18.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_338_16] [PMID: 28382194]
[47]
Su, X.; Liu, X.; Wang, S.; Li, B.; Pan, T.; Liu, D.; Wang, F.; Diao, Y.; Li, K. Wound-healing promoting effect of total tannins from Entada phaseoloides (L.) Merr. in rats. Burns, 2017, 43(4), 830-838.
[http://dx.doi.org/10.1016/j.burns.2016.10.010] [PMID: 28040363]
[48]
Shen, H.M.; Chen, C.; Jiang, J.Y.; Zheng, Y.L.; Cai, W.F.; Wang, B.; Ling, Z.; Tang, L.; Wang, Y.H.; Shi, G.G. The N-butyl alcohol extract from Hibiscus rosa-sinensis L. flowers enhances healing potential on rat excisional wounds. J. Ethnopharmacol., 2017, 198, 291-301.
[http://dx.doi.org/10.1016/j.jep.2017.01.016] [PMID: 28088494]
[49]
Chen, W.C.; Liou, S.S.; Tzeng, T.F.; Lee, S.L.; Liu, I.M. Wound repair and anti-inflammatory potential of Lonicera japonica in excision wound-induced rats. BMC Complement. Altern. Med., 2012, 12(1), 226.
[http://dx.doi.org/10.1186/1472-6882-12-226] [PMID: 23173654]
[50]
Zeng, Z.; Zhu, B.H. Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats. J. Ethnopharmacol., 2014, 154(3), 653-662.
[http://dx.doi.org/10.1016/j.jep.2014.04.038] [PMID: 24794013]
[51]
Wang, R.; Lechtenberg, M.; Sendker, J.; Petereit, F.; Deters, A.; Hensel, A. Wound-healing plants from TCM: in vitro investigations on selected TCM plants and their influence on human dermal fibroblasts and keratinocytes. Fitoterapia, 2013, 84, 308-317.
[http://dx.doi.org/10.1016/j.fitote.2012.12.020] [PMID: 23266731]
[52]
Wu, J.G.; Wei, Y.J.; Ran, X.; Zhang, H.; Nian, H.; Qin, L.P. Inhibitory effects of essential oil from rhizomes of Ligusticum chuanxiong on hypertrophic scarring in the rabbit ear model. Pharm. Biol., 2011, 49(7), 764-769.
[http://dx.doi.org/10.3109/13880209.2010.542761] [PMID: 21639690]
[53]
Tang, T.; Yin, L.; Yang, J.; Shan, G. Emodin, an anthraquinone derivative from Rheum officinale Baill, enhances cutaneous wound healing in rats. Eur. J. Pharmacol., 2007, 567(3), 177-185.
[http://dx.doi.org/10.1016/j.ejphar.2007.02.033] [PMID: 17540366]
[54]
Kumar, A.; Dhawan, S.; Aggarwal, B.B. Emodin (3-methyl-1,6,8-trihydroxyanthraquinone) inhibits TNF-induced NF-kappaB activation, IkappaB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene, 1998, 17(7), 913-918.
[http://dx.doi.org/10.1038/sj.onc.1201998] [PMID: 9780008]
[55]
Chen, Y.S.; Lee, S.M.; Lin, Y.J.; Chiang, S.H.; Lin, C.C. Effects of Danshensu and Salvianolic Acid B from Salvia miltiorrhiza Bunge (Lamiaceae) on cell proliferation and collagen and melanin production. Molecules, 2014, 19(2), 2029-2041.
[http://dx.doi.org/10.3390/molecules19022029] [PMID: 24531218]
[56]
Wang, Q.L.; Tao, Y.Y.; Yuan, J.L.; Shen, L.; Liu, C.H. Salvianolic acid B prevents epithelial-to-mesenchymal transition through the TGF-β1 signal transduction pathway in vivo and in vitro. BMC Cell Biol., 2010, 11(1), 31.
[http://dx.doi.org/10.1186/1471-2121-11-31] [PMID: 20441599]
[57]
Zhang, H.; Chen, J.; Cen, Y. Burn wound healing potential of a polysaccharide from Sanguisorba officinalis L. in mice. Int. J. Biol. Macromol., 2018, 112, 862-867.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.214] [PMID: 29425875]
[58]
Yang, J.H.; Yoo, J.M.; Cho, W.K.; Ma, J.Y. Anti-inflammatory effects of Sanguisorbae Radix water extract on the suppression of mast cell degranulation and STAT-1/Jak-2 activation in BMMCs and HaCaT keratinocytes. BMC Complement. Altern. Med., 2016, 16(1), 347.
[http://dx.doi.org/10.1186/s12906-016-1317-4] [PMID: 27599590]
[59]
Shedoeva, A.; Leavesley, D.; Upton, Z.; Fan, C. Wound healing and the use of medicinal plants. Evid. Based Complement. Alternat. Med., 2019, 2019, 2684108.
[http://dx.doi.org/10.1155/2019/2684108] [PMID: 31662773]
[60]
Mohanty, C.; Sahoo, S.K. Curcumin and its topical formulations for wound healing applications. Drug Discov. Today, 2017, 22(10), 1582-1592.
[http://dx.doi.org/10.1016/j.drudis.2017.07.001] [PMID: 28711364]
[61]
Khezri, K.; Farahpour, M.R.; Mounesi Rad, S. Accelerated infected wound healing by topical application of encapsulated Rosemary essential oil into nanostructured lipid carriers. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 980-988.
[http://dx.doi.org/10.1080/21691401.2019.1582539] [PMID: 30857435]
[62]
Alam, P.; Ansari, M.J.; Anwer, M.K.; Raish, M.; Kamal, Y.K.; Shakeel, F. Wound healing effects of nanoemulsion containing clove essential oil. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 591-597.
[http://dx.doi.org/10.3109/21691401.2016.1163716] [PMID: 28211300]
[63]
Ghodrati, M.; Farahpour, M.R.; Hamishehkar, H. Encapsulation of Peppermint essential oil in nanostructured lipid carriers: In-vitro antibacterial activity and accelerative effect on infected wound healing. Colloids Surf. A Physicochem. Eng. Asp., 2019, 564, 161-169.
[http://dx.doi.org/10.1016/j.colsurfa.2018.12.043]
[64]
Shukla, A.; Rasik, A.M.; Jain, G.K.; Shankar, R.; Kulshrestha, D.K.; Dhawan, B.N. In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. J. Ethnopharmacol., 1999, 65(1), 1-11.
[http://dx.doi.org/10.1016/S0378-8741(98)00141-X] [PMID: 10350364]
[65]
Liu, M.; Dai, Y.; Li, Y.; Luo, Y.; Huang, F.; Gong, Z.; Meng, Q. Madecassoside isolated from Centella asiatica herbs facilitates burn wound healing in mice. Planta Med., 2008, 74(8), 809-815.
[http://dx.doi.org/10.1055/s-2008-1074533] [PMID: 18484522]
[66]
Maquart, F.X.; Chastang, F.; Simeon, A.; Birembaut, P.; Gillery, P.; Wegrowski, Y. Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur. J. Dermatol., 1999, 9(4), 289-296.
[PMID: 10356407]
[67]
Mori, H.M.; Kawanami, H.; Kawahata, H.; Aoki, M. Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC Complement. Altern. Med., 2016, 16(1), 144.
[http://dx.doi.org/10.1186/s12906-016-1128-7] [PMID: 27229681]
[68]
Gad, H.A.; Abd El-Rahman, F.A.; Hamdy, G.M. Chamomile oil loaded solid lipid nanoparticles: A naturally formulated remedy to enhance the wound healing. J. Drug Deliv. Sci. Technol., 2019, 50, 329-338.
[http://dx.doi.org/10.1016/j.jddst.2019.01.008]
[69]
Hotkar, M.S.; Avachat, A.M.; Bhosale, S.S.; Oswal, Y.M. Preliminary investigation of topical nitroglycerin formulations containing natural wound healing agent in diabetes-induced foot ulcer. Int. Wound J., 2015, 12(2), 210-217.
[http://dx.doi.org/10.1111/iwj.12084] [PMID: 23731451]
[70]
Han, X.; Tao, Y.; Deng, Y.; Yu, J.; Sun, Y.; Jiang, G. Metformin accelerates wound healing in type 2 diabetic db/db mice. Mol. Med. Rep., 2017, 16(6), 8691-8698.
[http://dx.doi.org/10.3892/mmr.2017.7707] [PMID: 28990070]
[71]
Asai, J.; Takenaka, H.; Hirakawa, S.; Sakabe, J.; Hagura, A.; Kishimoto, S.; Maruyama, K.; Kajiya, K.; Kinoshita, S.; Tokura, Y.; Katoh, N. Topical simvastatin accelerates wound healing in diabetes by enhancing angiogenesis and lymphangiogenesis. Am. J. Pathol., 2012, 181(6), 2217-2224.
[http://dx.doi.org/10.1016/j.ajpath.2012.08.023] [PMID: 23138019]
[72]
Dev, D.J.; Jayaprakash, J.S. PK, K.; Akhila, A.R.; Saraf, N.S. Formulation and evaluation of different topical dosage forms for wound healing properties. Intl. J. Res. Pharm. Sci., 2020, 11(1), 730-746.
[http://dx.doi.org/10.26452/ijrps.v11i1.1886]
[73]
Farmoudeh, A.; Akbari, J.; Saeedi, M.; Ghasemi, M.; Asemi, N.; Nokhodchi, A. Methylene blue-loaded niosome: preparation, physicochemical characterization, and in vivo wound healing assessment. Drug Deliv. Transl. Res., 2020, 10(5), 1428-1441.
[http://dx.doi.org/10.1007/s13346-020-00715-6] [PMID: 32100265]
[74]
Mojiri-Forushani, H. The role of calcium channel blockers in wound healing. Iran. J. Basic Med. Sci., 2018, 21(12), 1198-1199.
[http://dx.doi.org/10.22038/ijbms.2018.29753.7182] [PMID: 30627361]
[75]
Valizadeh, A.; Shirzad, M.; Pourmand, M.R.; Farahmandfar, M.; Sereshti, H.; Amani, A. Levofloxacin nanoemulsion gel has a powerful healing effect on infected wound in streptozotocin-induced diabetic rats. Drug Deliv. Transl. Res., 2021, 11(1), 292-304.
[http://dx.doi.org/10.1007/s13346-020-00794-5] [PMID: 32529392]
[76]
Sabitha, M.; Rajiv, S. Preparation and characterization of ampicillin-incorporated electrospun polyurethane scaffolds for wound healing and infection control. Polym. Eng. Sci., 2015, 55(3), 541-548.
[http://dx.doi.org/10.1002/pen.23917]
[77]
Puoci, F.; Piangiolino, C.; Givigliano, F.; Parisi, O.I.; Cassano, R.; Trombino, S.; Curcio, M.; Iemma, F.; Cirillo, G.; Spizzirri, U.G.; Restuccia, D.; Muzzalupo, R.; Picci, N. Ciprofloxacin-collagen conjugate in the wound healing treatment. J. Funct. Biomater., 2012, 3(2), 361-371.
[http://dx.doi.org/10.3390/jfb3020361] [PMID: 24955537]
[78]
Horng, H.C.; Chang, W.H.; Yeh, C.C.; Huang, B.S.; Chang, C.P.; Chen, Y.J.; Tsui, K.H.; Wang, P.H. Estrogen effects on wound healing. Int. J. Mol. Sci., 2017, 18(11), 1-14.
[http://dx.doi.org/10.3390/ijms18112325] [PMID: 29099810]
[79]
Vandervoort, J.M.; Nieves, M.A.; Fales-Williams, A.; Evans, R.; Mason, D.R. An investigation of misoprostol in the promotion of wound healing. Vet. Comp. Orthop. Traumatol., 2006, 19(4), 191-195.
[http://dx.doi.org/10.1055/s-0038-1633000] [PMID: 17143390]
[80]
Zhang, S.; Liu, Y.; Zhang, X.; Zhu, D.; Qi, X.; Cao, X.; Fang, Y.; Che, Y.; Han, Z.C.; He, Z.X.; Han, Z.; Li, Z. Prostaglandin E2 hydrogel improves cutaneous wound healing via M2 macrophages polarization. Theranostics, 2018, 8(19), 5348-5361.
[http://dx.doi.org/10.7150/thno.27385] [PMID: 30555551]
[81]
Wang, Y.; Ying, T.; Li, J.; Xu, Y.; Wang, R.; Ke, Q.; Shen, S.G.; Xu, H.; Lin, K. Hierarchical micro/nanofibrous scaffolds incorporated with curcumin and zinc ion eutectic metal organic frameworks for enhanced diabetic wound healing via anti-oxidant and anti-inflammatory activities. Chem. Eng. J., 2020, 402, 1-14.
[http://dx.doi.org/10.1016/j.cej.2020.126273]
[82]
Heal, C.F.; Banks, J.L.; Lepper, P.D.; Kontopantelis, E.; van Driel, M.L. Topical antibiotics for preventing surgical site infection in wounds healing by primary intention. Cochrane Database Syst. Rev., 2016, 11, CD011426.
[http://dx.doi.org/10.1002/14651858.CD011426.pub2] [PMID: 27819748]
[83]
Ghaffari, S.; Alihosseini, F.; Rezayat Sorkhabadi, S.M.; Arbabi Bidgoli, S.; Mousavi, S.E.; Haghighat, S.; Afshar Nasab, A.; Kianvash, N. Nanotechnology in wound healing; semisolid dosage forms containing curcumin-ampicillin solid lipid nanoparticles, in- vitro, ex-vivo and in-vivo characteristics. Adv. Pharm. Bull., 2018, 8(3), 395-400.
[http://dx.doi.org/10.15171/apb.2018.046] [PMID: 30276135]
[84]
Abbas, M.M.; Al-Rawi, N.; Abbas, M.A.; Al-Khateeb, I. Naringenin potentiated β-sitosterol healing effect on the scratch wound assay. Res. Pharm. Sci., 2019, 14(6), 566-573.
[http://dx.doi.org/10.4103/1735-5362.272565] [PMID: 32038736]
[85]
Kant, V.; Kumar, D.; Prasad, R.; Gopal, A.; Pathak, N.N.; Kumar, P.; Tandan, S.K. Combined effect of substance P and curcumin on cutaneous wound healing in diabetic rats. J. Surg. Res., 2017, 212, 130-145.
[http://dx.doi.org/10.1016/j.jss.2017.01.011] [PMID: 28550899]
[86]
Pereira, R.F.; Bártolo, P.J. Traditional therapies for skin wound healing. Adv. Wound Care (New Rochelle), 2016, 5(5), 208-229.
[http://dx.doi.org/10.1089/wound.2013.0506] [PMID: 27134765]
[87]
Ziv-Polat, O.; Topaz, M.; Brosh, T.; Margel, S. Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials, 2010, 31(4), 741-747.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.093] [PMID: 19850336]
[88]
Lajevardi, A.; Yaraki, M.T.; Masjedi, A.; Nouri, A.; Sadr, M.H. Green synthesis of MOF@ Ag nanocomposites for catalytic reduction of methylene blue. J. Mol. Liq., 2019, 276, 371-378.
[http://dx.doi.org/10.1016/j.molliq.2018.12.002]
[89]
Nouri, A.; Yaraki, M.T.; Lajevardi, A.; Rezaei, Z.; Ghorbanpour, M.; Tanzifi, M. Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity. Colloid Interface Sci. Commun., 2020, 35, 100252.
[http://dx.doi.org/10.1016/j.colcom.2020.100252]
[90]
Robles-Martínez, M.; Patiño-Herrera, R.; Pérez-Vázquez, F.J.; Montejano-Carrizales, J.M.; González, J.F.; Pérez, E. Mentha piperita as a natural support for silver nanoparticles: A new Anti- candida albicans treatment. Colloid Interface Sci. Commun., 2020, 35, 100253.
[http://dx.doi.org/10.1016/j.colcom.2020.100253]
[91]
Venkatachalam, P.; Sangeetha, P.; Geetha, N.; Sahi, S.V. Phytofabrication of bioactive molecules encapsulated metallic silver nanoparticles from Cucumis sativus L. and its enhanced wound healing potential in rat model. J. Nanomater., 2015, 1-9.
[http://dx.doi.org/10.1155/2015/753193]
[92]
Kumarasamyraja, D.; Swamivelmanickam, M. Evaluation of wound healing activity of biosynthesized silver nanoparticles from aqueous extract of Cassia auriculata L. Int. J. Phytopharm., 2014, 5(3), 201-209.
[93]
Al-Shmgani, H.S.A.; Mohammed, W.H.; Sulaiman, G.M.; Saadoon, A.H. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif. Cells Nanomed. Biotechnol., 2017, 45(6), 1-7.
[http://dx.doi.org/10.1080/21691401.2016.1220950] [PMID: 27534756]
[94]
Bhuvaneswari, T.; Thiyagarajan, M.; Geetha, N.; Venkatachalam, P. Bioactive compound loaded stable silver nanoparticle synthesis from microwave irradiated aqueous extracellular leaf extracts of Naringi crenulata and its wound healing activity in experimental rat model. Acta Trop., 2014, 135, 55-61.
[http://dx.doi.org/10.1016/j.actatropica.2014.03.009] [PMID: 24681224]
[95]
Shankar, S.; Jaiswal, L.; Aparna, R.S.; Prasad, R.G.; Kumar, G.P.; Manohara, C.M. Wound healing potential of green synthesized silver nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Express, 2015, 5(2), 159-164.
[http://dx.doi.org/10.1166/mex.2015.1225]
[96]
Sivaranjani, V.; Philominathan, P. Synthesize of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Med., 2016, 12, 1-5.
[http://dx.doi.org/10.1016/j.wndm.2015.11.002]
[97]
Sankar, R.; Baskaran, A.; Shivashangari, K.S.; Ravikumar, V. Inhibition of pathogenic bacterial growth on excision wound by green synthesized copper oxide nanoparticles leads to accelerated wound healing activity in Wistar Albino rats. J. Mater. Sci. Mater. Med., 2015, 26(7), 214.
[http://dx.doi.org/10.1007/s10856-015-5543-y] [PMID: 26194977]
[98]
Selvaraj, S.; Fathima, N.N. Fenugreek Incorporated Silk Fibroin Nanofibers-A Potential Antioxidant Scaffold for Enhanced Wound Healing. ACS Appl. Mater. Interfaces, 2017, 9(7), 5916-5926.
[http://dx.doi.org/10.1021/acsami.6b16306] [PMID: 28125204]
[99]
Vargas, E.A.; do Vale Baracho, N.C.; de Brito, J.; de Queiroz, A.A. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater., 2010, 6(3), 1069-1078.
[http://dx.doi.org/10.1016/j.actbio.2009.09.018] [PMID: 19788943]
[100]
Yang, Y.; Wang, F.; Yin, D.; Fang, Z.; Huang, L. Astragulus polysaccharide-loaded fibrous mats promote the restoration of microcirculation in/around skin wounds to accelerate wound healing in a diabetic rat model. Colloids Surf. B Biointerfaces, 2015, 136, 111-118.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.006] [PMID: 26370325]
[101]
Dai, X.Y.; Nie, W.; Wang, Y.C.; Shen, Y.; Li, Y.; Gan, S.J. Electrospun emodin polyvinylpyrrolidone blended nanofibrous membrane: a novel medicated biomaterial for drug delivery and accelerated wound healing. J. Mater. Sci. Mater. Med., 2012, 23(11), 2709-2716.
[http://dx.doi.org/10.1007/s10856-012-4728-x] [PMID: 22875606]
[102]
Akbarzadeh, I.; Yaraki, M.T.; Ahmadi, S.; Chiani, M.; Nourouzian, D. Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation. Adv. Powder Technol., 2020, 31(9), 4064-4071.
[http://dx.doi.org/10.1016/j.apt.2020.08.011]
[103]
Aghajani, A.; Kazemi, T.; Enayatifard, R.; Amiri, F.T.; Narenji, M. Investigating the skin penetration and wound healing properties of niosomal pentoxifylline cream. Eur. J. Pharm. Sci., 2020, 151, 105434.
[http://dx.doi.org/10.1016/j.ejps.2020.105434] [PMID: 32590122]
[104]
Ali, M.; Abdel Motaal, A.; Ahmed, M.A.; Alsayari, A.; El-Gazayerly, O.N. An in vivo study of Hypericum perforatum in a niosomal topical drug delivery system. Drug Deliv., 2018, 25(1), 417-425.
[http://dx.doi.org/10.1080/10717544.2018.1431977] [PMID: 29382233]
[105]
Akbarzadeh, I.; Yaraki, M.T.; Bourbour, M.; Noorbazargan, H.; Lajevardi, A.; Shilsar, S.M.; Heidari, F.; Mousavian, S.M. Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in-vitro investigation. J. Drug Deliv. Sci. Technol., 2020, 57, 101715.
[http://dx.doi.org/10.1016/j.jddst.2020.101715]
[106]
Ghafelehbashi, R.; Akbarzadeh, I.; Tavakkoli Yaraki, M.; Lajevardi, A.; Fatemizadeh, M.; Heidarpoor Saremi, L. Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int. J. Pharm., 2019, 569, 118580.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118580] [PMID: 31374239]
[107]
Jangde, R.; Singh, D. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 635-641.
[http://dx.doi.org/10.3109/21691401.2014.975238] [PMID: 25375215]
[108]
Günal, M.Y.; Ayla, Ş.; Bedri, N.; Beker, M.Ç.; Çağlayan, A.B.; Aslan, İ.; Özdemir, E.M.; Yeşilada, E.; Kılıç, Ü. The effects of topical liposomal resveratrol on incisional and excisional wound healing process. Turkderm, 2019, 53(4), 128-134.
[http://dx.doi.org/10.4274/turkderm.galenos.2019.82612]
[109]
Lu, K.J.; Wang, W.; Xu, X.L.; Jin, F.Y.; Qi, J.; Wang, X.J.; Kang, X.Q.; Zhu, M.L.; Huang, Q.L.; Yu, C.H.; You, J.; Du, Y.Z. A dual deformable liposomal ointment functionalized with retinoic acid and epidermal growth factor for enhanced burn wound healing therapy. Biomater. Sci., 2019, 7(6), 2372-2382.
[http://dx.doi.org/10.1039/C8BM01569D] [PMID: 30916681]
[110]
Wang, X.; Liu, B.; Xu, Q.; Sun, H.; Shi, M.; Wang, D.; Guo, M.; Yu, J.; Zhao, C.; Feng, B. GHK-Cu-liposomes accelerate scald wound healing in mice by promoting cell proliferation and angiogenesis. Wound Repair Regen., 2017, 25(2), 270-278.
[http://dx.doi.org/10.1111/wrr.12520] [PMID: 28370978]
[111]
Ahmad, N.; Ahmad, R.; Al-Qudaihi, A.; Alaseel, S.E.; Fita, I.Z.; Khalid, M.S.; Pottoo, F.H. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Adv., 2019, 9(35), 20192-20206.
[http://dx.doi.org/10.1039/C9RA03102B]
[112]
Akrawi, S.H.; Gorain, B.; Nair, A.B.; Choudhury, H.; Pandey, M.; Shah, J.N.; Venugopala, K.N. Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing. Pharmaceutics, 2020, 12(9), 893.
[http://dx.doi.org/10.3390/pharmaceutics12090893] [PMID: 32962195]
[113]
Kaur, T.; Kapoor, D.N. Development and evaluation of sea buckthorn (Hippophae rhamnoides L.) seed oil nanoemulsion gel for wound healing. Pharmacogn. Mag., 2018, 14(58), 647.
[http://dx.doi.org/10.4103/pm.pm_375_18]
[114]
Vijayanand, P.; Jyothi, V.; Mounika, A. Hibiscus Rosa Sinensis loaded solid lipid nanoparticles and in vivo wound healing activity in wistar albino rats. Int. J. Curr. Pharm. Res., 2020, 12, 78-83.
[http://dx.doi.org/10.22159/ijcpr.2020v12i3.38311]
[115]
Fumakia, M.; Ho, E.A. Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol. Pharm., 2016, 13(7), 2318-2331.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00099] [PMID: 27182713]
[116]
Sandri, G.; Bonferoni, M.C.; D’Autilia, F.; Rossi, S.; Ferrari, F.; Grisoli, P.; Sorrenti, M.; Catenacci, L.; Del Fante, C.; Perotti, C.; Caramella, C. Wound dressings based on silver sulfadiazine solid lipid nanoparticles for tissue repairing. Eur. J. Pharm. Biopharm., 2013, 84(1), 84-90.
[http://dx.doi.org/10.1016/j.ejpb.2012.11.022] [PMID: 23207329]
[117]
Moglad, E.H.; Fatima, F.; Ahmed, M.M.; Seshadri, V.D.; Anwer, M.K.; Aldawsari, M.F. Development of topical antibacterial gel loaded with cefadroxil solid lipid nanoparticles: in vivo wound healing activity and epithelialization study. Int. J. Pharmacol., 2020, 16(4), 298-309.
[http://dx.doi.org/10.3923/ijp.2020.298.309]
[118]
Arantes, V.T.; Faraco, A.A.G.; Ferreira, F.B.; Oliveira, C.A.; Martins-Santos, E.; Cassini-Vieira, P.; Barcelos, L.S.; Ferreira, L.A.M.; Goulart, G.A.C. Retinoic acid-loaded solid lipid nanoparticles surrounded by chitosan film support diabetic wound healing in in vivo study. Colloids Surf. B Biointerfaces, 2020, 188, 110749.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110749] [PMID: 31927466]
[119]
Lee, H.J.; Jeong, M.; Na, Y.G.; Kim, S.J.; Lee, H.K.; Cho, C.W. An EGF- and curcumin-co-encapsulated nanostructured lipid carrier accelerates chronic-wound Healing in diabetic rats. Molecules, 2020, 25(20), 4610.
[http://dx.doi.org/10.3390/molecules25204610] [PMID: 33050393]
[120]
Alven, S.; Nqoro, X.; Aderibigbe, B.A. Polymer-Based Materials Loaded with Curcumin for wound healing applications. Polymers (Basel), 2020, 12(10), 2286.
[http://dx.doi.org/10.3390/polym12102286] [PMID: 33036130]
[121]
Salguero, Y.; Valenti, L.; Rojas, R.; García, M.C. Ciprofloxacin-intercalated layered double hydroxide-in-hybrid films as composite dressings for controlled antimicrobial topical delivery. Mater. Sci. Eng. C, 2020, 111, 110859.
[http://dx.doi.org/10.1016/j.msec.2020.110859] [PMID: 32279819]
[122]
Mishra, R.K.; Ramasamy, K.; Lim, S.M.; Ismail, M.F.; Majeed, A.B. Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. J. Mater. Sci. Mater. Med., 2014, 25(8), 1925-1939.
[http://dx.doi.org/10.1007/s10856-014-5228-y] [PMID: 24831081]
[123]
Vimala, K.; Yallapu, M.M.; Varaprasad, K.; Reddy, N.N.; Ravindra, S.; Naidu, N.S.; Raju, K.M. Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J. Biomater. Nanobiotechnol., 2011, 2(01), 55.
[http://dx.doi.org/10.4236/jbnb.2011.21008]
[124]
Cr, R.; Ps, S.; O, M.; Pp, S.; A, S. Nanochitosan enriched poly ε- caprolactone electrospun wound dressing membranes: A fine tuning of physicochemical properties, hemocompatibility and curcumin release profile. Int. J. Biol. Macromol., 2018, 108, 1261-1272.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.035] [PMID: 29128593]
[125]
Cavalu, S.; Pasca, P.M.; Brocks, M. Natural polymeric film encapsulating propolis nano-formulation for cutaneous wound healing. Mater. Plast., 2019, 56(3), 479.
[http://dx.doi.org/10.37358/MP.19.3.5213]
[126]
Li, X.; Nan, K.; Li, L.; Zhang, Z.; Chen, H. In vivo evaluation of curcumin nanoformulation loaded methoxy poly (ethylene glycol)-graft-chitosan composite film for wound healing application. Carbohydr. Polym., 2012, 88(1), 84-90.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.068] [PMID: 23218269]
[127]
Dhurai, B.; Saraswathy, N.; Maheswaran, R.; Sethupathi, P.; Vanitha, P.; Vigneshwaran, S.; Rameshbabu, V. Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics. Front. Mater. Sci., 2013, 7(4), 350-361.
[http://dx.doi.org/10.1007/s11706-013-0222-8]
[128]
Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Agarwal, S.; Gupta, V.K. Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. Int. J. Biol. Macromol., 2018, 109, 1219-1231.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.119] [PMID: 29169945]
[129]
Nouri, A.; Yaraki, M.T.; Lajevardi, A.; Rahimi, T.; Tanzifi, M.; Ghorbanpour, M. An investigation of the role of fabrication process in the physicochemical properties of κ-carrageenan-based films incorporated with Zataria multiflora extract and nanoclay. Food Packag. Shelf Life, 2020, 23, 100435.
[http://dx.doi.org/10.1016/j.fpsl.2019.100435]
[130]
Farhan, A.; Hani, N.M. Active edible films based on semi-refined κ-carrageenan: Antioxidant and color properties and application in chicken breast packaging. Food Packag. Shelf Life, 2020, 24, 100476.
[http://dx.doi.org/10.1016/j.fpsl.2020.100476]
[131]
Maralit Bruan, M.J.; Tianco, E.A. Efficacy and safety of 4% Hibiscus rosa-sinensis leaf extract ointment as an adjunct treatment to compression stockings on the closure of venous leg ulcers: a pilot study. Wounds, 2019, 31(9), 236-241.
[PMID: 31298659]
[132]
Mansour, G.; Ouda, S.; Shaker, A.; Abdallah, H.M. Clinical efficacy of new aloe vera- and myrrh-based oral mucoadhesive gels in the management of minor recurrent aphthous stomatitis: a randomized, double-blind, vehicle-controlled study. J. Oral Pathol. Med., 2014, 43(6), 405-409.
[http://dx.doi.org/10.1111/jop.12130] [PMID: 24164309]
[133]
Paocharoen, V. The efficacy and side effects of oral Centella asiatica extract for wound healing promotion in diabetic wound patients. J. Med. Assoc. Thai., 2010, 93(Suppl. 7), S166-S170.
[PMID: 21298840]
[134]
Saeidinia, A.; Keihanian, F.; Lashkari, A.P.; Lahiji, H.G.; Mobayyen, M.; Heidarzade, A.; Golchai, J. Partial-thickness burn wounds healing by topical treatment: A randomized controlled comparison between silver sulfadiazine and centiderm. Medicine (Baltimore), 2017, 96(9), e6168.
[http://dx.doi.org/10.1097/MD.0000000000006168] [PMID: 28248871]
[135]
Afzali, H.; Jafari Kashi, A.H.; Momen-Heravi, M.; Razzaghi, R.; Amirani, E.; Bahmani, F.; Gilasi, H.R.; Asemi, Z. The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. Wound Repair Regen., 2019, 27(3), 277-284.
[http://dx.doi.org/10.1111/wrr.12701] [PMID: 30693609]
[136]
Gallelli, G.; Cione, E.; Serra, R.; Leo, A.; Citraro, R.; Matricardi, P.; Di Meo, C.; Bisceglia, F.; Caroleo, M.C.; Basile, S.; Gallelli, L. Nano-hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study. Int. Wound J., 2020, 17(2), 485-490.
[http://dx.doi.org/10.1111/iwj.13299] [PMID: 31876118]
[137]
Jiang, R.; Zhao, S.; Wang, R.; Feng, H.; Zhang, J.; Li, X.; Mao, Y.; Yuan, X.; Fei, Z.; Zhao, Y.; Yu, X.; Poon, W.S.; Zhu, X.; Liu, N.; Kang, D.; Sun, T.; Jiao, B.; Liu, X.; Yu, R.; Zhang, J.; Gao, G.; Hao, J.; Su, N.; Yin, G.; Zhu, X.; Lu, Y.; Wei, J.; Hu, J.; Hu, R.; Li, J.; Wang, D.; Wei, H.; Tian, Y.; Lei, P.; Dong, J.F.; Zhang, J. Safety and efficacy of atorvastatin for chronic subdural hematoma in Chinese patients: A randomized Clinical Trial. JAMA Neurol., 2018, 75(11), 1338-1346.
[http://dx.doi.org/10.1001/jamaneurol.2018.2030] [PMID: 30073290]
[138]
Jayaprasad, K.; Ramu, J.; Iyer, S. C R, K.; Pattatheyil, A. Open labelled pilot study of topically applied curcumin versus standard treatment on chronic wound healing. Intl. J. Contemp. Med. Res., 2018, 5(10), 31-37.
[http://dx.doi.org/10.21276/ijcmr.2018.5.10.30]
[139]
Panahi, Y.; Izadi, M.; Sayyadi, N.; Rezaee, R.; Jonaidi-Jafari, N.; Beiraghdar, F.; Zamani, A.; Sahebkar, A. Comparative trial of Aloe vera/olive oil combination cream versus phenytoin cream in the treatment of chronic wounds. J. Wound Care, 2015, 24(10), 459-460, 462-465.
[http://dx.doi.org/10.12968/jowc.2015.24.10.459] [PMID: 26488737]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy