Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Oxyprenylated Secondary Metabolites as Modulators of Lipid and Sugar Metabolism

Author(s): Serena Fiorito, Francesco Epifano*, Lorenzo Marchetti, Lucia Palumbo, Ilkay Erdogan Orhan, Majid Sharifi-Rad and Salvatore Genovese

Volume 22, Issue 3, 2022

Published on: 27 July, 2021

Page: [189 - 198] Pages: 10

DOI: 10.2174/1568026621666210727163038

Price: $65

Open Access Journals Promotions 2
Abstract

O-Prenylcoumarins (3,3-dimethylallyl, geranyl-, farnesyl- and related biosynthetic derivatives) represent a class of rarely occurring natural compounds. Most of these secondary metabolites have been obtained from plant species belonging to the Rutaceae, Apiaceae, and Fabaceae families, and from fungi, and bacteria. In the last two decades, prenyloxycoumarins have been found to possess great potential in terms of pharmacological activities. The aim of this comprehensive review is to make a survey of the so far reported literature citations about these valuable phytochemicals and structurally related compounds about their modulatory properties of lipid and sugar metabolism. Literature data have been acquired from the main Internet database. Several oxyprenylated secondary metabolites have been surveyed. Among these, prenyloxycoumarins represented the main group displaying valuable effects as modulators of lipid and sugar metabolism. The title phytochemicals have been found in common fruits and vegetables already known to have beneficial effects, thus enforcing the nutraceutical role of these food plants. All compounds outlined in the present review article have a great potential in future for the prevention and management of acute and chronic metabolic disorders.

Keywords: Apiaceae, Auraptene, Imperatorin, Lipid metabolism, Oxyprenylated coumarins, Oxyprenylated secondary metabolites, Rutaceae, Sugar metabolism.

Graphical Abstract
[1]
Fiorito, S.; Epifano, F.; Preziuso, F.; Taddeo, V.A.; Genovese, S. Biomolecular targets of oxyprenylated phenylpropanoids and polyketides. Prog. Chem. Org. Nat. Prod., 2019, 108, 143-205.
[http://dx.doi.org/10.1007/978-3-030-01099-7_2] [PMID: 30924014]
[2]
Epifano, F.; Genovese, S.; Menghini, L.; Curini, M. Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry, 2007, 68(7), 939-953.
[http://dx.doi.org/10.1016/j.phytochem.2007.01.019] [PMID: 17343885]
[3]
Genovese, S.; Fiorito, S.; Epifano, F.; Taddeo, V.A. A novel class of emerging anticancer compounds: oxyprenylated secondary metabolites from plants and fungi. Curr. Med. Chem., 2015, 22(30), 3426-3433.
[http://dx.doi.org/10.2174/0929867322666150716114758] [PMID: 26180000]
[4]
Fiorito, S.; Epifano, F.; Taddeo, V.A.; Genovese, S. Recent acquisitions on oxyprenylated secondary metabolites as anti-inflammatory agents. Eur. J. Med. Chem., 2018, 153, 116-122.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.038] [PMID: 28844340]
[5]
Fiorito, S.; Epifano, F.; Taddeo, V.A.; Genovese, S.; Preziuso, F. A survey of the anti-microbial properties of naturally occurring prenyloxyphenylpropanoids and related compounds. Curr. Top. Med. Chem., 2018, 18(24), 2097-2101.
[http://dx.doi.org/10.2174/1568026618666181025091927] [PMID: 30360711]
[6]
Genovese, S.; Fiorito, S.; Locatelli, M.; Carlucci, G.; Epifano, F. Analysis of biologically active oxyprenylated ferulic acid derivatives in Citrus fruits. Plant Foods Hum. Nutr., 2014, 69(3), 255-260.
[http://dx.doi.org/10.1007/s11130-014-0427-8] [PMID: 24928688]
[7]
Taddeo, V.A.; Epifano, F.; Fiorito, S.; Genovese, S. Comparison of different extraction methods and HPLC quantification of prenylated and unprenylated phenylpropanoids in raw Italian propolis. J. Pharm. Biomed. Anal., 2016, 129, 219-223.
[http://dx.doi.org/10.1016/j.jpba.2016.07.006] [PMID: 27429372]
[8]
Taddeo, V.A.; Genovese, S.; de Medina, P.; Palmisano, R.; Epifano, F.; Fiorito, S. Quantification of biologically active O-prenylated and unprenylated in dill (Anethum graveolens), anise (Pimpinella anisum), and wild celery (Angelica archangelica). J. Pharm. Biomed. Anal., 2017, 134, 319-324.
[http://dx.doi.org/10.1016/j.jpba.2016.11.048] [PMID: 27916506]
[9]
Fiorito, S.; Epifano, F.; Palmisano, R.; Genovese, S.; Taddeo, V.A. A re-investigation of the phytochemical composition of the edible herb Amaranthus retroflexus L. J. Pharm. Biomed. Anal., 2017, 143, 183-187.
[http://dx.doi.org/10.1016/j.jpba.2017.05.051] [PMID: 28605679]
[10]
Fiorito, S.; Ianni, F.; Preziuso, F.; Epifano, F.; Scotti, L.; Bucciarelli, T.; Genovese, S. UHPLC-UV/Vis quantitative analysis of hydroxylated and O-prenylated coumarins in pomegranate seed extracts. Molecules, 2019, 24(10), 1963.
[http://dx.doi.org/10.3390/molecules24101963] [PMID: 31121819]
[11]
Fioeiro, S.; Ianni, F.; Preziuso, F.; Epifano, F.; Scotti, L.; Bucciarelli, T.; Genovese, S. UHPLC-UV/Vis quantitative analysis of hydroxylated and O-prenylated coumarins in pomegranate seeds extracts. Molecules, 2019, 24, 1963.
[http://dx.doi.org/10.3390/molecules24101963]
[12]
Fiorito, S.; Preziuso, F.; Epifano, F.; Scotti, L.; Bucciarelli, T.; Taddeo, V.A.; Genovese, S. Novel biologically active principles from spinach, goji and quinoa. Food Chem., 2019, 276, 262-265.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.018] [PMID: 30409593]
[13]
Ferrone, V.; Genovese, S.; Carlucci, M.; Tiecco, M.; Germani, R.; Preziuso, F.; Epifano, F.; Carlucci, G.; Taddeo, V.A. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil. Food Chem., 2018, 245, 578-585.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.135] [PMID: 29287412]
[14]
Genovese, S.; Epifano, F.; Preziuso, F.; Stefanucci, A.; Scotti, L.; Bucciarelli, T.; di Profio, P.; Canale, V.; Fiorito, S. A novel and efficient subcritical butane extraction method and UHPLC analysis of oxyprenylated phenylpropanoids from grapefruits peels. J. Pharm. Biomed. Anal., 2020, 184, 113185.
[http://dx.doi.org/10.1016/j.jpba.2020.113185] [PMID: 32113120]
[15]
Curini, M.; Epifano, F.; Maltese, F.; Marcotullio, M.C.; Tubaro, A.; Altinier, G.; Gonzales, S.P.; Rodriguez, J.C. Synthesis and anti-inflammatory activity of natural and semisynthetic geranyloxycoumarins. Bioorg. Med. Chem. Lett., 2004, 14(9), 2241-2243.
[http://dx.doi.org/10.1016/j.bmcl.2004.02.009] [PMID: 15081016]
[16]
Genovese, S.; Epifano, F. Auraptene: a natural biologically active compound with multiple targets. Curr. Drug Targets, 2011, 12(3), 381-386.
[http://dx.doi.org/10.2174/138945011794815248] [PMID: 20955144]
[17]
Eidi, S.; Iranshahi, M.; Mohammadinejad, A.; Mohsenzadeh, M.S.; Farhadi, F.; Mohajeri, S.A. Selective isolation of sesquiterpene coumarins from asafoetida using dummy molecularly imprinted solid phase extraction method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1138, 121943.
[http://dx.doi.org/10.1016/j.jchromb.2019.121943] [PMID: 31911205]
[18]
Fiorito, S.; Ianni, F.; Preziuso, F.; Epifano, F.; Scotti, L.; Bucciarelli, T.; Genovese, S. UHPLC-UV/Vis quantitative analysisof hydroxylated and O-prenylated coumarins in pomegranate seed extracts. Molecules, 2019, 24(10), 1963.
[http://dx.doi.org/10.3390/molecules24101963] [PMID: 31121819]
[19]
Mottaghipisheh, J.; Kúsz, N.; Hohmann, J.; Tsai, Y.C.; Csupor, D. Isolation of secondary metabolites from the Iranian medicinal plant Eremurus persicus. Z. Naturforsch. C J. Biosci., 2020, 76(1-2), 43-47.
[http://dx.doi.org/10.1515/znc-2020-0059] [PMID: 32681789]
[20]
Akashi, S.; Morita, A.; Mochizuki, Y.; Shibuya, F.; Kamei, Y.; Miura, S. Citrus hassaku extract powder increases mitochondrial content and oxidative muscle fibers by upregulation of PGC-1α in skeletal muscle. Nutrients, 2021, 13(2), 497.
[http://dx.doi.org/10.3390/nu13020497] [PMID: 33546195]
[21]
Kuroyanagi, K.; Kang, M.S.; Goto, T.; Hirai, S.; Ohyama, K.; Kusudo, T.; Yu, R.; Yano, M.; Sasaki, T.; Takahashi, N.; Kawada, T. Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun., 2008, 366(1), 219-225.
[http://dx.doi.org/10.1016/j.bbrc.2007.11.119] [PMID: 18060855]
[22]
Lehmann, J.M.; Moore, L.B.; Smith-Oliver, T.A.; Wilkison, W.O.; Willson, T.M.; Kliewer, S.A. An antidiabetic thiazolidinedione is a high affinity ligand for PPAR-gamma. J. Biol. Chem., 1995, 270, 12953-12956.
[http://dx.doi.org/10.1074/jbc.270.22.12953] [PMID: 7768881]
[23]
Lefebvre, P.; Chinetti, G.; Fruchart, J.C.; Staels, B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J. Clin. Invest., 2006, 116(3), 571-580.
[http://dx.doi.org/10.1172/JCI27989] [PMID: 16511589]
[24]
Kim, C.S.; Park, H.S.; Kawada, T.; Kim, J.H.; Lim, D.; Hubbard, N.E.; Kwon, B.S.; Erickson, K.L.; Yu, R. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int. J. Obes., 2006, 30(9), 1347-1355.
[http://dx.doi.org/10.1038/sj.ijo.0803259] [PMID: 16534530]
[25]
Takahashi, N.; Kang, M.S.; Kuroyanagi, K.; Goto, T.; Hirai, S.; Ohyama, K.; Lee, J.Y.; Yu, R.; Yano, M.; Sasaki, T.; Murakami, S.; Kawada, T. Auraptene, a citrus fruit compound, regulates gene expression as a PPARalpha agonist in HepG2 hepatocytes. Biofactors, 2008, 33(1), 25-32.
[http://dx.doi.org/10.1002/biof.5520330103] [PMID: 19276534]
[26]
Nagao, K.; Yamano, N.; Shirouchi, B.; Inoue, N.; Murakami, S.; Sasaki, T.; Yanagita, T. Effects of citrus auraptene (7-geranyloxycoumarin) on hepatic lipid metabolism in vitro and in vivo. J. Agric. Food Chem., 2010, 58(16), 9028-9032.
[http://dx.doi.org/10.1021/jf1020329] [PMID: 20681532]
[27]
Takahashi, N.; Senda, M.; Lin, S.; Goto, T.; Yano, M.; Sasaki, T.; Murakami, S.; Kawada, T. Auraptene regulates gene expression involved in lipid metabolism through PPARα activation in diabetic obese mice. Mol. Nutr. Food Res., 2011, 55(12), 1791-1797.
[http://dx.doi.org/10.1002/mnfr.201100401] [PMID: 22038981]
[28]
Epifano, F.; Genovese, S.; James Squires, E.; Gray, M.A. Nelumal A, the active principle from Ligularia nelumbifolia, is a novel farnesoid X receptor agonist. Bioorg. Med. Chem. Lett., 2012, 22(9), 3130-3135.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.057] [PMID: 22472691]
[29]
Wang, J.; Fu, T.; Dong, R.; Wang, C.; Liu, K.; Sun, H.; Huo, X.; Ma, X.; Yang, X.; Meng, Q. Hepatoprotection of auraptene from the peels of citrus fruits against 17α-ethinylestradiol-induced cholestasis in mice by activating farnesoid X receptor. Food Funct., 2019, 10(7), 3839-3850.
[http://dx.doi.org/10.1039/C9FO00318E] [PMID: 31210195]
[30]
Jang, Y.; Han, J.; Kim, S.J.; Kim, J.; Lee, M.J.; Jeong, S.; Ryu, M.J.; Seo, K.S.; Choi, S.Y.; Shong, M.; Lim, K.; Heo, J.Y.; Kweon, G.R. Suppression of mitochondrial respiration with auraptene inhibits the progression of renal cell carcinoma: Involvement of HIF-1α degradation. Oncotarget, 2015, 6(35), 38127-38138.
[http://dx.doi.org/10.18632/oncotarget.5511] [PMID: 26474388]
[31]
Genovese, S.; Ashida, H.; Yamashita, Y.; Nakgano, T.; Ikeda, M.; Daishi, S.; Epifano, F.; Taddeo, V.A.; Fiorito, S. The interaction of auraptene and other oxyprenylated phenylpropanoids with glucose transporter type 4. Phytomedicine, 2017, 32, 74-79.
[http://dx.doi.org/10.1016/j.phymed.2017.06.005] [PMID: 28732810]
[32]
Ko, J.H.; Nam, D.; Um, J.Y.; Jung, S.H.; Ahn, K.S. Bergamottin inhibits adipogenesis in 3T3-L1 cells and weight regulation in diet-induced obese mice. Am. J. Chin. Med., 2018, 46(3), 601-615.
[http://dx.doi.org/10.1142/S0192415X18500313] [PMID: 29614883]
[33]
Klingenberg, M.; Huang, S.G. Structure and function of the uncoupling protein from brown adipose tissue. Biochim. Biophys. Acta, 1999, 1415(2), 271-296.
[http://dx.doi.org/10.1016/S0005-2736(98)00232-6] [PMID: 9889383]
[34]
Hung, W.L.; Suh, J.H.; Wang, Y. Chemistry and health effects of furanocoumarins in grapefruit. J. Food Drug Anal., 2017, 25(1), 71-83.
[http://dx.doi.org/10.1016/j.jfda.2016.11.008] [PMID: 28911545]
[35]
Li, D.; Wu, L. Coumarins from the roots of Angelica dahurica cause anti-allergic inflammation. Exp. Ther. Med., 2017, 14(1), 874-880.
[http://dx.doi.org/10.3892/etm.2017.4569] [PMID: 28673013]
[36]
Ozek, G.; Yur, S.; Goger, F.; Ozek, T.; Andjelkovic, B.; Godjevac, D.; Sofrenic, I.; Aneva, I.; Todorova, M.; Trendafilova, A. Furanocoumarins content, antioxidant activity and inhibitory potential of Heracleum verticillatum, Heracleum sibiricum, Heracleum angustisectum, and Heracleum terratum extracts against enzymes involved in Alzheimer’s disease and typer 2 diabetes. Chem. Biodivers., 2019, 16(4), e1800672.
[http://dx.doi.org/10.1002/cbdv.201800672] [PMID: 30702800]
[37]
Kviesis, J.; Kļimenkovs, I.; Arbidans, L.; Podjava, A.; Kļaviņš, M.; Liepiņš, E. Evaluation of furanocoumarins from seeds of the wild parsnip (Pastinaca sativa L. s.l.). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1105, 54-66.
[http://dx.doi.org/10.1016/j.jchromb.2018.12.012] [PMID: 30562630]
[38]
Shin, H.K.; Chung, M.S.; Cho, T.S. Effects of furanocoumarins from Angelica dahurica on aldose reductase and galatosemic cataract formation in rats. Arch. Pharm. Res., 1994, 17, 331-336.
[http://dx.doi.org/10.1007/BF02974172]
[39]
Shin, H. K.; Lim, S. S.; Kim, D. K. Effect of byakangelicin, an aldose reductase inhibitor, on galactosemic cataracts, the polyol contents and Na+, K+ ATPase activity in sciatic nerves of streptozocin-induced diabetic rats. Phytomedicine, 1998, 5, 121-127.
[40]
Epifano, F.; Genovese, S.; Marcotullio, M.C.; Curini, M. Chemistry and pharmacology of collinin, active principle of Zanthoxylum spp. Mini Rev. Med. Chem., 2008, 8(12), 1203-1208.
[http://dx.doi.org/10.2174/138955708786141089] [PMID: 18855734]
[41]
Nguyen, P.H.; Zhao, B.T.; Kim, O.; Lee, J.H.; Choi, J.S.; Min, B.S.; Woo, M.H. Anti-inflammatory terpenylated coumarins from the leaves of Zanthoxylum schinifolium with α-glucosidase inhibitory activity. J. Nat. Med., 2016, 70(2), 276-281.
[http://dx.doi.org/10.1007/s11418-015-0957-x] [PMID: 26753624]
[42]
Curini, M.; Epifano, F.; Maltese, F.; Marcotullio, M.C.; Prieto Gonzales, S.; Rodriguez, J.C. Synthesis of collinin, an antiviral coumarin. Aust. J. Chem., 2003, 56, 59-60.
[http://dx.doi.org/10.1071/CH02177]
[43]
Deng, M.; Xie, L.; Zhong, L.; Liao, Y.; Liu, L.; Li, X. Imperatorin: A review of its pharmacology, toxicity and pharmacokinetics. Eur. J. Pharmacol., 2020, 879, 173124.
[http://dx.doi.org/10.1016/j.ejphar.2020.173124] [PMID: 32339515]
[44]
Lu, X.; Yuan, Z.Y.; Yan, X.J.; Lei, F.; Jiang, J.F.; Yu, X.; Yang, X.W.; Xing, D.M.; Du, L.J. Effects of Angelica dahurica on obesity and fatty liver in mice. Chin. J. Nat. Med., 2016, 14(9), 641-652.
[http://dx.doi.org/10.1016/S1875-5364(16)30076-0] [PMID: 27667509]
[45]
Hwang, Y.L.; Im, M.; Lee, M.H.; Roh, S.S.; Choi, B.W.; Kim, S.J.; Sohn, K.C.; Lee, Y.; Seo, Y.J.; Lee, J.H.; Kim, C.D. Inhibitory effect of imperatorin on insulin-like growth factor-1-induced sebum production in human sebocytes cultured in vitro. Life Sci., 2016, 144, 49-53.
[http://dx.doi.org/10.1016/j.lfs.2015.11.027] [PMID: 26631504]
[46]
Wang, L.Y.; Cheng, K.C.; Li, Y.; Niu, C.S.; Cheng, J.T.; Niu, H.S. The dietary furanocoumarin imperatorin increases plasma GLP-1 levels in type 1-like diabetic rats. Nutrients, 2017, 9, 1192.
[http://dx.doi.org/10.3390/nu9111192]
[47]
Karakaya, S.; Gözcü, S.; Güvenalp, Z.; Özbek, H.; Yuca, H.; Dursunoğlu, B.; Kazaz, C.; Kılıç, C.S. The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharm. Biol., 2018, 56(1), 18-24.
[http://dx.doi.org/10.1080/13880209.2017.1414857] [PMID: 29233045]
[48]
Park, E.Y.; Kim, E.H.; Kim, C.Y.; Kim, M.H.; Choung, J.S.; Oh, Y.S.; Moon, H.S.; Jun, H.S. Angelica dahurica extracts improve glucose tolerance through the activation of GRP119. PLoS One, 2016, 11(7), e0158796.
[http://dx.doi.org/10.1371/journal.pone.0158796] [PMID: 27391814]
[49]
Han, H.S.; Jeon, H.; Kang, S.C. Phellopterin isolated from Angelica dahurica reduces blood glucose level in diabetic mice. Heliyon, 2018, 4(3), e00577.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00577] [PMID: 29862342]
[50]
Guiotto, A.; Rodighiero, P.; Quintily, U. Poncimarin, a new coumarin from Poncirus trifoliata L. Z. Naturforsch. C, 1975, 30(3), 420-421.
[http://dx.doi.org/10.1515/znc-1975-5-620] [PMID: 126585]
[51]
Huo, X.; Lu, F.; Qiao, L.; Li, G.; Zhang, Y. A component formula of Chinese medicine for hypercholesterolemia based on virtual screening and biology network. Evid-Based Compl. Alt. Med, 2018, 7, 1-11.
[52]
Nagai, H.; Tanaka, T.; Goto, T.; Kusudo, T.; Takahashi, N.; Kawada, T. Phenolic compounds from leaves of Casimiroa edulis showed adipogenesis activity. Biosci. Biotechnol. Biochem., 2014, 78(2), 296-300.
[http://dx.doi.org/10.1080/09168451.2014.877821] [PMID: 25036684]
[53]
Zhu, X.; Chen, J.; Zhu, S.; He, Y.; Ding, W.; Li, C. Two new compounds from Nigrospora sphaerica ZMT05, a fungus derivated from Oxya chinensis Thunber. Nat. Prod. Res., 2018, 32(20), 2375-2381.
[http://dx.doi.org/10.1080/14786419.2017.1413566] [PMID: 29251515]
[54]
Queiroz, D.P.K.; Ferreira, A.G.; Lima, A.S.; Lima, E.S.; Lima da Paz, M. isolation and identification of α-glucosidase, α-amylase, and lipase inhibitors inhibitors from Hortia longifolia. Int. J. Pharm. Pharm. Sci., 2013, 5, 336-339.
[55]
Tiabou Tchinda, A.; Nahar Khan, S.; Fuendjiep, V.; Ngandeu, F.; Ngono Ngane, A.; Choudhary, M.I. α-glucosidase inhibitors from Millettia conraui. Chem. Pharm. Bull. (Tokyo), 2007, 55(9), 1402-1403.
[http://dx.doi.org/10.1248/cpb.55.1402] [PMID: 17827772]
[56]
Pereira, A.C.; Arruda, M.S.P.; da Silva, E.A.S.; da Silva, M.N.; Lemos, V.S.; Cortes, S.F. Inhibition of α-glucosidase and hypoglycemic effect of stilbenes from the Amazonian plant Deguelia rufescens var. urucu (Ducke) A. M. G. Azevedo (Leguminosae). Planta Med., 2012, 78(1), 36-38.
[http://dx.doi.org/10.1055/s-0031-1280199] [PMID: 21928165]
[57]
Igarashi, Y.; Kyoso, T.; Kim, Y.; Oikawa, T. Simamycin (5′-O-geranyluridine): A new prenylated nucleoside from Streptomyces sp. J. Antibiot. (Tokyo), 2017, 70(5), 607-610.
[http://dx.doi.org/10.1038/ja.2016.163] [PMID: 28096544]
[58]
Takagi, M.; Motohashi, K.; Nagai, A.; Izumikawa, M.; Tanaka, M.; Fuse, S.; Doi, T.; Iwase, K.; Kawaguchi, A.; Nagata, K.; Takahashi, T.; Shin-ya, K. Anti-influenza virus compound from Streptomyces sp. RI18. Org. Lett., 2010, 12(20), 4664-4666.
[http://dx.doi.org/10.1021/ol102007d] [PMID: 20843017]
[59]
Zafrir Ilan, E.; Torres, M.R.; Prudhomme, J.; Le Roch, K.; Jensen, P.R.; Fenical, W. Farnesides A and B, sesquiterpenoid nucleoside ethers from a marine-derived Streptomyces sp., strain CNT-372 from Fiji. J. Nat. Prod., 2013, 76(9), 1815-1818.
[http://dx.doi.org/10.1021/np400351t] [PMID: 23987585]
[60]
Grygiel-Górniak, B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr. J., 2014, 13, 17.
[http://dx.doi.org/10.1186/1475-2891-13-17] [PMID: 24524207]
[61]
Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest., 2006, 116(7), 1784-1792.
[http://dx.doi.org/10.1172/JCI29126] [PMID: 16823476]
[62]
Lin, J.; Kakkar, V.; Lu, X. Impact of MCP-1 in atherosclerosis. Curr. Pharm. Des., 2014, 20(28), 4580-4588.
[http://dx.doi.org/10.2174/1381612820666140522115801] [PMID: 24862889]
[63]
Ginsberg, H.N. Lipoprotein physiology. Endocrinol. Metab. Clin. North Am., 1998, 27(3), 503-519.
[http://dx.doi.org/10.1016/S0889-8529(05)70023-2] [PMID: 9785050]
[64]
Xi, Y.; Li, H. Role of farnesoid X receptor in hepatic steatosis in nonalcoholic fatty liver disease. Biomed. Pharmacother., 2020, 121, 109609.
[http://dx.doi.org/10.1016/j.biopha.2019.109609] [PMID: 31731192]
[65]
Zavala, M.; Castillo, V.; Gonzalez, M.; Castillo, S. GLUT-1 deficiency syndrome. Rev. Neurol., 2019, 69(4), 178-179.
[PMID: 31334562]
[66]
Rabbani, N.; Thornalley, P.J. Hexokinase-2 glycolytic overoload in diabetes and ischemia-reperfusion injury. Trends Endocrinol. Metab., 2019, 30(7), 419-431.
[http://dx.doi.org/10.1016/j.tem.2019.04.011] [PMID: 31221272]
[67]
Sternisha, S.M.; Miller, B.G. Molecular and cellular regulation of human glucokinase. Arch. Biochem. Biophys., 2019, 663, 199-213.
[http://dx.doi.org/10.1016/j.abb.2019.01.011] [PMID: 30641049]
[68]
Adeva-Andany, M.; López-Ojén, M.; Funcasta-Calderón, R.; Ameneiros-Rodríguez, E.; Donapetry-García, C.; Vila-Altesor, M.; Rodríguez-Seijas, J. Mithocondrion, 2014, 17, 76-100.
[http://dx.doi.org/10.1016/j.mito.2014.05.007]
[69]
Klip, A.; McGraw, T.E.; James, D.E. Thirty sweet years of GLUT4. J. Biol. Chem., 2019, 294(30), 11369-11381.
[http://dx.doi.org/10.1074/jbc.REV119.008351] [PMID: 31175156]
[70]
Quattrini, L.; La Motta, C. Aldose reductase inhibitors: 2013-present. Expert Opin. Ther. Pat., 2019, 29(3), 199-213.
[http://dx.doi.org/10.1080/13543776.2019.1582646] [PMID: 30760060]
[71]
Cubbon, R.M.; Kearney, M.T.; Wheatcroft, S.B. Endothelial IGF-1 receptor signaling in diabetes and insulin resistance. Trends Endocrinol. Metab., 2016, 27(2), 96-104.
[http://dx.doi.org/10.1016/j.tem.2015.11.009] [PMID: 26712712]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy