Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Effect of Surfactant Chain Length on Emulsification Dynamics of Self Emulsifying Formulation of Poorly Soluble Drug

Author(s): Shailendra Chouhan* and Lalit Singh Chauhan

Volume 19, Issue 8, 2022

Published on: 12 January, 2022

Page: [874 - 888] Pages: 15

DOI: 10.2174/1567201818666210727092639

Price: $65

Abstract

Aim: In this work, the aim was to study the effect of the chain length of surfactant on the self emulsifying system of a poorly soluble drug, aceclofenac. The selection of almond oil as a lipid vehicle was done on the basis of solubility and compatibility of the vehicle with the drug.

Methods: The effect of varying chain length of different surfactants of Tween series, namely Tween 20, Tween 40, Tween 60 and Tween 80, was evaluated on self emulsifying efficiency by constructing the pseudoternary diagrams. PEG-400 was used as a co-surfactant in a definite ratio with all the surfactants to minimize their concentration. The best self emulsifying ability was exhibited by Tween 80: PEG-400 combination followed by Tween 60: PEG-400, Tween 40: PEG-400, Tween 20: PEG-400. This observation indicates that as the chain length of Tweens increases, their ability to form a good microemulsion increases if the same co-surfactant is used.

Results: However, it has also been found that the presence of unsaturated bond in Tween 80 provides it an elasticity which supports good intermixing of oil and water, leading to formation of a fine microemulsion. Six different formulations were prepared using a combination of almond oil, Tween 80, PEG-400 and the drug aceclofenac.

Conclusion: The formulations were subjected to various evaluation parameters, such as dispersibility, transmittance, pH, globule size, polydispersibility, zeta potential, viscosity, refractive index and in vitro dissolution. The best formulation was found to have globule size of less than 100 nm and zeta potential of -3.35 ± 0.60 mV, indicating the formation of a microemulsion of aceclofenac with good stability.

Keywords: Self emulsifying system, pseudoternary diagram, chain length, Tweens, zeta potential, microemulsion.

Graphical Abstract
[1]
Chaudhary, A.; Nagaich, U.; Gulati, N.; Sharma, V.; Khosa, R.; Partapur, M. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. J. Adv. Pharm. Educ. Res., 2012, 2(1), 32-67.
[2]
Gardouh, A.R.; Nasef, A.M.; Mostafa, Y.; Gad, S. Design and evaluation of combined atorvastatin and ezetimibe optimized self- nano emulsifying drug delivery system. J. Drug Deliv. Sci. Technol., 2020, 60(September), 102093.
[http://dx.doi.org/10.1016/j.jddst.2020.102093]
[3]
Abdalla, A.; Klein, S.; Mäder, K. A new self-emulsifying drug delivery system (SEDDS) for poorly soluble drugs: characterization, dissolution, in vitro digestion and incorporation into solid pellets. Eur. J. Pharm. Sci., 2008, 35(5), 457-464.
[http://dx.doi.org/10.1016/j.ejps.2008.09.006] [PMID: 18940249]
[4]
Sriamornsak, P.; Limmatvapirat, S.; Piriyaprasarth, S.; Mansukmanee, P.; Huang, Z. A new self-emulsifying formulation of mefenamic acid with enhanced drug dissolution. Asian. J. Pharm. Sci., 2015, 10(2), 121-127.
[http://dx.doi.org/10.1016/j.ajps.2014.10.003]
[5]
Mishra, V.; Nayak, P.; Yadav, N.; Singh, M.; Tambuwala, M.M.; Aljabali, A.A.A. Orally administered self-emulsifying drug delivery system in disease management: advancement and patents. Expert Opin. Drug Deliv., 2021, 18(3), 315-332.
[http://dx.doi.org/10.1080/17425247.2021.1856073] [PMID: 33232184]
[6]
Desai, H.H.; Bu, P.; Shah, A.V.; Cheng, X.; Serajuddin, A.T.M. Evaluation of cytotoxicity of self-emulsifying formulations containing long-chain lipids using caco-2 cell model: superior safety profile compared to medium-chain lipids. J. Pharm. Sci., 2020, 109(5), 1752-1764.
[http://dx.doi.org/10.1016/j.xphs.2020.01.031] [PMID: 32035926]
[7]
Goyal, U.; Arora, R.; Aggarwal, G. Formulation design and evaluation of a self-microemulsifying drug delivery system of lovastatin. Acta Pharm., 2012, 62(3), 357-370.
[http://dx.doi.org/10.2478/v10007-012-0022-1] [PMID: 23470348]
[8]
Cao, M.; Zhan, M.; Wang, Z.; Wang, Z.; Li, X.M.; Miao, M. Development of an orally bioavailable isoliquiritigenin self-nanoemulsifying drug delivery system to effectively treat ovalbumin-induced asthma. Int. J. Nanomed., 2020, 15, 8945-8961.
[http://dx.doi.org/10.2147/IJN.S269982] [PMID: 33223829]
[9]
Vasconcelos, T.; Marques, S.; Sarmento, B. Measuring the emulsification dynamics and stability of self-emulsifying drug delivery systems. Eur. J. Pharm. Biopharm., 2018, 123, 1-8.
[http://dx.doi.org/10.1016/j.ejpb.2017.11.003] [PMID: 29133172]
[10]
Fanun, M. Surfactant chain length effect on the structural parameters of nonionic microemulsions. J. Dispers. Sci. Technol., 2008, 29(2), 289-296.
[http://dx.doi.org/10.1080/01932690701707704]
[11]
Rajpoot, K.; Tekade, M.; Pandey, V.; Nagaraja, S.H.; Youngren-Ortiz, S.R.; Tekade, R.K. Self-microemulsifying drug-delivery system: Ongoing challenges and future ahead. In: Drug Delivery Systems; Elsevier Inc., 2019, pp. 393-454.
[http://dx.doi.org/10.1016/B978-0-12-814487-9.00009-0]
[12]
Schreier, S.; Malheiros, S.V.P.; de Paula, E. Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim. Biophys. Acta, 2000, 1508(1-2), 210-234.
[http://dx.doi.org/10.1016/S0304-4157(00)00012-5] [PMID: 11090827]
[13]
Samanta, S.; Ghosh, P. Coalescence of bubbles and stability of foams in aqueous solutions of Tween surfactants. Chem. Eng. Res. Des., 2011, 89(11), 2344-2355.
[http://dx.doi.org/10.1016/j.cherd.2011.04.006]
[14]
Obradović, S.; Poša, M. The influence of the structure of selected Brij and Tween homologues on the thermodynamic stability of their binary mixed micelles. J. Chem. Thermodyn., 2017, 110, 41-50.
[http://dx.doi.org/10.1016/j.jct.2017.01.020]
[15]
Chai, J.L.; Liu, N.; Bai, T.T.; Zhang, H.M.; Liu, N.N.; Wang, D. Compositions and physicochemical properties of tween type surfactants-based microemulsions. J. Dispers. Sci. Technol., 2014, 35(3), 441-447.
[http://dx.doi.org/10.1080/01932691.2013.794733]
[16]
Usha, A.N.; Mutalik, S.; Reddy, M.S.; Ranjith, A.K.; Kushtagi, P.; Udupa, N. Preparation and, in vitro, preclinical and clinical studies of aceclofenac spherical agglomerates. Eur. J. Pharm. Biopharm., 2008, 70(2), 674-683.
[http://dx.doi.org/10.1016/j.ejpb.2008.06.010] [PMID: 18606224]
[17]
Yang, J.H.; Suk, K.S.; Lee, B.H.; Jung, W.C.; Kang, Y.M.; Kim, J.H.; Kim, H.S.; Lee, H.M.; Moon, S.H. Efficacy and safety of different aceclofenac treatments for chronic lower back pain: Prospective, randomized, single center, open-label clinical trials. Yonsei Med. J., 2017, 58(3), 637-643.
[http://dx.doi.org/10.3349/ymj.2017.58.3.637] [PMID: 28332372]
[18]
Patel, P.B.; Patel, T.K. Efficacy and safety of aceclofenac in osteoarthritis: A meta-analysis of randomized controlled trials. Eur. J. Rheumatol., 2017, 4(1), 11-18.
[http://dx.doi.org/10.5152/eurjrheum.2017.160080] [PMID: 28293447]
[19]
Atef, E.; Belmonte, A.A. Formulation and in vitro and in vivo characterization of a phenytoin self-emulsifying drug delivery system (SEDDS). Eur. J. Pharm. Sci., 2008, 35(4), 257-263.
[http://dx.doi.org/10.1016/j.ejps.2008.07.004] [PMID: 18706499]
[20]
Gursoy, R.N.; Benita, S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 2004, 58(3), 173-182.
[http://dx.doi.org/10.1016/j.biopha.2004.02.001] [PMID: 15082340]
[21]
Patil, P.; Joshi, P.; Paradkar, A. Effect of formulation variables on preparation and evaluation of gelled self-emulsifying drug delivery system (SEDDS) of ketoprofen. AAPS PharmSciTech, 2004, 5(3), e42.
[http://dx.doi.org/10.1208/pt050342] [PMID: 15760075]
[22]
Ding, W.; Hou, X.; Cong, S.; Zhang, Y.; Chen, M.; Lei, J.; Meng, Y.; Li, X.; Li, G. Co-delivery of honokiol, a constituent of Magnolia species, in a self-microemulsifying drug delivery system for improved oral transport of lipophilic sirolimus. Drug Deliv., 2016, 23(7), 2513-2523.
[http://dx.doi.org/10.3109/10717544.2015.1020119] [PMID: 25835221]
[23]
Vinarov, Z.; Gancheva, G.; Burdzhiev, N.; Tcholakova, S. Solubilization of itraconazole by surfactants and phospholipid-surfactant mixtures: interplay of amphiphile structure, pH and electrostatic interactions. J. Drug Deliv. Sci. Technol., 2020, 57(February), 101688.
[http://dx.doi.org/10.1016/j.jddst.2020.101688]
[24]
Giannopoulou, I.; Saïs, F.; Thomopoulos, R. Linked data annotation and fusion driven by data quality evaluation. Rev des Nouv Technol l’Information. E, 2015, 28, 257-262.
[25]
Graca, M.; Bongaerts, J.H.H.; Stokes, J.R.; Granick, S. Friction and adsorption of aqueous polyoxyethylene (Tween) surfactants at hydrophobic surfaces. J. Colloid Interface Sci., 2007, 315(2), 662-670.
[http://dx.doi.org/10.1016/j.jcis.2007.06.057] [PMID: 17706238]
[26]
Chen, L.; Lin, X.; Yao, M.; Teng, H. Self-nanoemulsions loaded with dihydromyricetin: Insights to their formulation stability. Food Hydrocoll, 2020, 108, 105888.
[27]
Paul, S.; Panda, A.K. Physico-chemical studies on microemulsion: Effect of cosurfactant chain length on the phase behavior, formation dynamics, structural parameters and viscosity of water/(Polysorbate-20 + n-Alkanol)/n-heptane water-in-oil microemulsion. J. Surfactants Deterg., 2011, 14(4), 473-486.
[http://dx.doi.org/10.1007/s11743-011-1256-5]
[28]
Jianxian, C.; Saleem, K.; Ijaz, M.; Ur-Rehman, M.; Murtaza, G.; Asim, M.H. Development and in vitro evaluation of gastro-protective aceclofenac-loaded self-emulsifying drug delivery system. Int. J. Nanomedicine, 2020, 15, 5217-5226.
[http://dx.doi.org/10.2147/IJN.S250242] [PMID: 32801687]
[29]
Ghosh, S.; Barik, B.B. Formulation and in vitro evaluation of once daily sustained release formulation of aceclofenac. Trop. J. Pharm. Res., 2010, 9(3), 265-273.
[http://dx.doi.org/10.4314/tjpr.v9i3.56288]
[30]
Batool, A.; Arshad, R.; Razzaq, S.; Nousheen, K.; Kiani, M.H.; Shahnaz, G. Formulation and evaluation of hyaluronic acid-based mucoadhesive self nanoemulsifying drug delivery system (SNEDDS) of tamoxifen for targeting breast cancer. Int. J. Biol. Macromol., 2020, 152, 503-515.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.275] [PMID: 32112841]
[31]
Scheytt, T.; Mersmann, P.; Lindstädt, R.; Heberer, T. 1-Octanol/water partition coefficients of 5 pharmaceuticals from human medical care: Carbamazepine, clofibric acid, diclofenac, ibuprofen, and propyphenazone. Water Air Soil Pollut., 2005, 165(1-4), 3-11.
[http://dx.doi.org/10.1007/s11270-005-3539-9]
[32]
Asfour, M.H.; Kassem, A.A.; Salama, A.; Abd El-Alim, S.H. Hydrophobic ion pair loaded self-emulsifying drug delivery system (SEDDS): A novel oral drug delivery approach of cromolyn sodium for management of bronchial asthma. Int. J. Pharm., 2020, 585(May), 119494.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119494] [PMID: 32505578]
[33]
Zakkula, A.; Gabani, B.B.; Jairam, R.K.; Kiran, V.; Todmal, U.; Mullangi, R. Preparation and optimization of nilotinib self-micro-emulsifying drug delivery systems to enhance oral bioavailability. Drug Dev. Ind. Pharm., 2020, 46(3), 498-504.
[http://dx.doi.org/10.1080/03639045.2020.1730398] [PMID: 32067499]
[34]
Ansari, M.J.; Alnakhli, M.; Al-Otaibi, T.; Al Meanazel, O.; Anwer, M.K.; Ahmed, M.M. Formulation and evaluation of self-nanoemulsifying drug delivery system of brigatinib: Improvement of solubility, in vitro release, ex-vivo permeation and anticancer activity. J. Drug Deliv. Sci. Technol., 2020, 61, 102204.
[http://dx.doi.org/10.1016/j.jddst.2020.102204]
[35]
Buya, A.B.; Ucakar, B.; Beloqui, A.; Memvanga, P.B.; Préat, V. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDSs) for senicapoc. Int. J. Pharm., 2020, 580(March), 119180.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119180] [PMID: 32135227]
[36]
Guzmán, C.; Rojas, M.A.; Aragón, M. Optimization of ultrasound-assisted emulsification of emollient nanoemulsions of seed oil of Passiflora edulis var. edulis. Cosmetics, 2020, 8(1), 1.
[http://dx.doi.org/10.3390/cosmetics8010001]
[37]
Prajapat, M.D.; Patel, N.J.; Bariya, A.; Patel, S.S.; Butani, S.B. Formulation and evaluation of self-emulsifying drug delivery system for nimodipine, a BCS class II drug. J. Drug Deliv. Sci. Technol., 2020, 2017(39), 59-68.
[http://dx.doi.org/10.1016/j.jddst.2017.02.002]
[38]
Osemeahon, S.; Onyirioha, N.N. Effect of quail egg yolk on the formulation and characterisation of self emulsifying drug delivery systems of simvastatin. ISPR J. Appl. Chem., 2018, 11(7), 30-36.
[39]
Juárez, Z.N.; Bach, H.; Bárcenas-Pozos, M.E.; Hernández, L.R. Impact of the persistence of three essential oils with antifungal activities on stored wheat grains, flour, and baked products. Foods, 2021, 10(2), 213.
[http://dx.doi.org/10.3390/foods10020213] [PMID: 33494180]
[40]
Parmar, K.; Patel, J.; Sheth, N. Self nano-emulsifying drug delivery system for Embelin: Design, characterization and in-vitro studies. Asian J Pharm Sci., 2015, 10(5), 396-404.
[http://dx.doi.org/10.1016/j.ajps.2015.04.006]
[41]
Yang, F.; Fu, C.; Lv, L.; Zhang, F.; Wang, S. Self-microemulsifying delivery system of WPI-Dai nanocomplex mixed with nonionic surfactant and its superiority in delivering daidzein. Food Hydrocoll., 2020, 108(March), 105952.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105952]
[42]
Mehta, S.K.; Kaur, G.; Bhasin, K.K. Tween-embedded microemulsions-physicochemical and spectroscopic analysis for antitubercular drugs. AAPS PharmSciTech, 2010, 11(1), 143-153.
[http://dx.doi.org/10.1208/s12249-009-9356-5] [PMID: 20087697]
[43]
Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 10715-10722.
[http://dx.doi.org/10.1039/C5TC02043C]
[44]
Yeh, D.H.; Pennell, K.D.; Pavlostathis, S.G. Effect of Tween surfactants on methanogenesis and microbial reductive dechlorination of hexachlorobenzene. Environ. Toxicol. Chem., 1999, 18(7), 1408-1416.
[http://dx.doi.org/10.1002/etc.5620180709]
[45]
Szymczyk, K.; Zdziennicka, A.; Jańczuk, B. Adsorption and aggregation properties of some polysorbates at different temperatures. J. Solution Chem., 2018, 47(11), 1824-1840.
[http://dx.doi.org/10.1007/s10953-018-0823-z] [PMID: 30524153]
[46]
Joshi, A.S.; Gahane, A.; Thakur, A.K. Deciphering the mechanism and structural features of polysorbate 80 during adsorption on PLGA nanoparticles by attenuated total reflectance-Fourier transform infrared spectroscopy. RSC Adv., 2016, 6(110), 108545-108557.
[http://dx.doi.org/10.1039/C6RA07699H]
[47]
Sipos, E.; Kósa, N.; Kazsoki, A.; Szabó, Z.I.; Zelkó, R. Formulation and characterization of aceclofenac-loaded nanofiber based orally dissolving webs. Pharmaceutics, 2019, 11(8), 1-11.
[http://dx.doi.org/10.3390/pharmaceutics11080417] [PMID: 31426548]
[48]
Lee, H.S.; Jeong, C.K.; Choi, S.J.; Kim, S.B.; Lee, M.H.; Ko, G.I.; Sohn, D.H. Simultaneous determination of aceclofenac and diclofenac in human plasma by narrowbore HPLC using column-switching. J. Pharm. Biomed. Anal., 2000, 23(5), 775-781.
[http://dx.doi.org/10.1016/S0731-7085(00)00381-2] [PMID: 11022903]
[49]
Matsumoto, A.; Yoshida, R.; Kataoka, K. Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules, 2004, 5(3), 1038-1045.
[http://dx.doi.org/10.1021/bm0345413] [PMID: 15132698]
[50]
Czajkowska-Kośnik, A.; Szekalska, M.; Amelian, A.; Szymańska, E.; Winnicka, K. Development and evaluation of liquid and solid self-emulsifying drug delivery systems for atorvastatin. Molecules, 2015, 20(12), 21010-21022.
[http://dx.doi.org/10.3390/molecules201219745] [PMID: 26610464]
[51]
Pouton, C.W. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S93-S98.
[http://dx.doi.org/10.1016/S0928-0987(00)00167-6] [PMID: 11033431]
[52]
Cho, Y.H.; Kim, S.; Bae, E.K.; Mok, C.K.; Park, J. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures. J. Food Sci., 2008, 73(3), E115-E121.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00688.x] [PMID: 18387105]
[53]
Lagemann, R.T. A relation between viscosity and refractive index. J. Am. Chem. Soc., 1945, 67, 498-499.
[http://dx.doi.org/10.1021/ja01219a509]
[54]
Patel, J.; Garala, K.; Basu, B.; Raval, M.; Dharamsi, A. Solubility of aceclofenac in polyamidoamine dendrimer solutions. Int. J. Pharm. Investig., 2011, 1(3), 135-138.
[http://dx.doi.org/10.4103/2230-973X.85962] [PMID: 23071935]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy