Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Effect of Crude Leaves Extract of Bersama abyssinica on Blood Glucose Level and Serum Lipid Level of Streptozotocin-Induced Diabetic Mice: Evidence for in vivo Antidiabetic Activity

Author(s): Zemene Demelash Kifle*, Agumas Alemu Alehegn, Baye Yrga Adugna, Abebe Basazn Mekuria and Engidaw Fentahun Enyew

Volume 20, Issue 1, 2022

Published on: 26 July, 2021

Page: [67 - 74] Pages: 8

DOI: 10.2174/1871525719666210726114802

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Diabetes mellitus is one of the major and common metabolic and chronic disorders in the world. Several medicinal plants have been used globally for the management of diabetes mellitus. The current study aimed to study the antihyperglycemic and antihyperlipidemic effects of Bersama abyssinica.

Methods: Antidiabetic effect of 80% methanolic crude extract of Bersama abyssinica was studied in a repeated dose-treated STZ-induced diabetic mice model. The activities of Bersama abyssinica on serum lipid level and body weight were investigated on STZ-induced diabetic mice. Data were analyzed using one-way ANOVA and were significant when the p-value was less than 0.05.

Results: All doses of the crude 80% methanolic extract of Bersama abyssinica (100 mg/kg, 200 mg/kg, and 400 mg/kg) exhibited a noticeable BGL reduction when compared with baseline blood glucose level and diabetic control on the 7th and 14th days of administration. Moreover, higher dose of the extract (at 400 mg/kg) significantly (p < 0.001, 54.3%) decreased the BGL in STZ-induced diabetic mice. The maximum decrement in fasting BGL was achieved at the 14th days: 34.92%, 41.10%, 54.30%, and 59.66%, respectively for BAC 100 mg/kg, BAC 200 mg/kg, BAC 400 mg/kg, and GLC 5 mg/kg treated groups. Bersama abyssinica also displayed a significant (p < 0.05) improvement of serum lipid levels and body weight.

Conclusion: Bersama abyssinica crude extract exhibited a significant antidiabetic effect and prevented body weight loss in streptozotocin-induced diabetic mice. The finding also confirmed the valuable biochemical activity of Bersama abyssinica by improving serum lipid levels.

Keywords: Diabetes mellitus, streptozotocin, Bersama abyssinica, medicinal plant, ethiopia, phytochemical.

[1]
Organization, W.H. The burden of chronic diseases in the african region, preventing chronic diseases a vital investment.World Diabetes Foundation Summit; World Health Organization: Africa, 2007.
[2]
Mohammed, H.A.; Hagras, H. A type 2 fuzzy logic based system for basal metabolic rate prediction of diabetes patients in Sudan. IJCTT, 2020, 8(3), 95-104.
[3]
Krogsgaard-Larsen, P.; Christensen, S.; Kofod, H. The role of medicinal plants in drug development.Natural Products and Drug Development; , 1994, pp. 34-45.
[4]
Prabhakar, P.K.; Doble, M. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin. J. Integr. Med., 2011, 17(8), 563-574.
[http://dx.doi.org/10.1007/s11655-011-0810-3] [PMID: 21826590]
[5]
Yessoufou, A.; Gbenou, J.; Grissa, O.; Hichami, A.; Simonin, A.M.; Tabka, Z.; Moudachirou, M.; Moutairou, K.; Khan, N.A. Anti-hyperglycemic effects of three medicinal plants in diabetic pregnancy: modulation of T cell proliferation. BMC Complement. Altern. Med., 2013, 13(1), 77.
[http://dx.doi.org/10.1186/1472-6882-13-77] [PMID: 23565805]
[6]
Mikkelsen, K.; Seberg, O. Morphometric analysis of the Bersama abyssinica Fresen. complex (Melianthaceae) in East Africa. Plant Syst. Evol., 2001, 227(3-4), 157-182.
[http://dx.doi.org/10.1007/s006060170046]
[7]
Njike, G.N.; Watcho, P.; Kamanyi, A. Hypoglycaemic activity of the leaves extracts of Bersama engleriana in rats. African J. Traditional, Complementary Alternative Med., 2005, 2(3), 215-221.
[8]
Heywood, V.H. Flowering plants of the world, 2ed; Oxford University Press: New York, 1993.
[9]
Mathewos Anza, F.W. Solomon Libsu, Fikre Mamo, Milkyas Endale phytochemical screening and antibacterial activity of leaves extract of Bersama abyssinica. J. Adv. Bot. and Zoo., 2015, 3(2), 1-5.
[10]
Schmelzer, G.; Gurib-Fakim, A. plant resources of tropical Africa 11 (1). Medicinal plants 1. Wageningen/Leiden, PROTA foundation; Backhuys Publishers, 2008.
[11]
Amit, L. Phytochemistry and pharmacological activities of Bersama engleriana Guerke-An overview. Sexually Trans. Diseases (STD), 2010, 11, 12.
[12]
Schmelzer, G.H.; Gurib-Fakim, A Medicinal plants, Prota: Africa, 2008.
[13]
Kifle, Z.D.; Enyew, E.F. Evaluation of in vivo antidiabetic, in vitro α-amylase inhibitory, and in vitro antioxidant activity of leaves crude extract and solvent fractions of Bersama abyssinica fresen (Melianthaceae). J Evid Based Integr Med, 2020, 25, 2515690-20935827.
[14]
Kifle, Z.D.; Anteneh, D.A.; Atnafie, S.A. Hypoglycemic, anti-hyperglycemic and anti-hyperlipidemic effects of bersama abyssinica fresen (melianthaceae) leaves’ solvent fractions in normoglycemic and streptozotocin-induced diabetic mice. J. Exp. Pharmacol., 2020, 12, 385-396.
[http://dx.doi.org/10.2147/JEP.S273959] [PMID: 33116953]
[15]
Satyajit, D.; Sarker, Z.L.; Alexander I., Gray. Natural products isolation-second edition. Biotechnology™; Humana Press Inc.: United Kingdom, 2006.
[16]
Geleta, B.; Makonnen, E.; Debella, A.; Tadele, A. In vivo antihypertensive and antihyperlipidemic effects of the crude extracts and fractions of Moringa stenopetala (Baker f.) Cufod. leaves in rats. Front. Pharmacol., 2016, 7, 97.
[http://dx.doi.org/10.3389/fphar.2016.00097] [PMID: 27148056]
[17]
OCDE, O. Acute oral Toxicity: Up and Down Procedure. OECD. Guideline for the testing of chemicals, 2008, 425, 1-2.
[18]
Baquer, N.Z.; Kumar, P.; Taha, A.; Kale, R.K.; Cowsik, S.M.; McLean, P. Metabolic and molecular action of Trigonella foenum-graecum (fenugreek) and trace metals in experimental diabetic tissues. J. Biosci., 2011, 36(2), 383-396.
[http://dx.doi.org/10.1007/s12038-011-9042-0] [PMID: 21654091]
[19]
Toma, A.; Makonnen, E.; Mekonnen, Y.; Debella, A.; Adisakwattana, S. Antidiabetic activities of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med., 2015, 15(1), 242.
[http://dx.doi.org/10.1186/s12906-015-0779-0] [PMID: 26187590]
[20]
Sharma, S. Hypoglycemic potential of alcoholic root extract of Cassia occidentalis Linn. in streptozotocin induced diabetes in albino mice. Bull. Fac. Pharm. Cairo Univ., 2014, 52(2), 211-217.
[http://dx.doi.org/10.1016/j.bfopcu.2014.09.003]
[21]
Bowe, J.E.; Franklin, Z.J.; Hauge-Evans, A.C.; King, A.J.; Persaud, S.J.; Jones, P.M. Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J. Endocrinol., 2014, 222(3), G13-G25.
[http://dx.doi.org/10.1530/JOE-14-0182] [PMID: 25056117]
[22]
Ayala, J.E.; Samuel, V.T.; Morton, G.J.; Obici, S.; Croniger, C.M.; Shulman, G.I.; Wasserman, D.H.; and McGuinness, O.P. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis. Model. Mech., 3(9-10), pp.525-534.
[http://dx.doi.org/10.1242/dmm.006239]
[23]
Sharma, B. Effects of flavonoid-rich extract from seeds of Eugenia jambolana (L.) on carbohydrate and lipid metabolism in diabetic mice. Food Chem., 2008, 110(3), 697-705.
[http://dx.doi.org/10.1016/j.foodchem.2008.02.068]
[24]
Dimo, T.; Rakotonirina, S.V.; Tan, P.V.; Azay, J.; Dongo, E.; Kamtchouing, P.; Cros, G. Effect of Sclerocarya birrea (Anacardiaceae) stem bark methylene chloride/methanol extract on streptozotocin-diabetic rats. J. Ethnopharmacol., 2007, 110(3), 434-438.
[http://dx.doi.org/10.1016/j.jep.2006.10.020] [PMID: 17141993]
[25]
Oliveira, H.C.; dos Santos, M.P.; Grigulo, R.; Lima, L.L.; Martins, D.T.; Lima, J.C.; Stoppiglia, L.F.; Lopes, C.F.; Kawashita, N.H. Antidiabetic activity of Vatairea macrocarpa extract in rats. J. Ethnopharmacol., 2008, 115(3), 515-519.
[http://dx.doi.org/10.1016/j.jep.2007.10.025] [PMID: 18063496]
[26]
Spinas, G.A. The dual role of nitric oxide in islet β-cells. News Physiol. Sci., 1999, 14(2), 49-54.
[http://dx.doi.org/10.1152/physiologyonline.1999.14.2.49] [PMID: 11390819]
[27]
Demoz, M.S.; Gachoki, K.P.; Mungai, K.J. Negusse, B.G. Ethnobotanical survey and preliminary phytochemical studies of plants traditionally used for diabetes in eritrea. European J. Med. Plants, 2015, 1-11.
[http://dx.doi.org/10.9734/EJMP/2015/18777]
[28]
Kifle, Z.D.; Yesuf, J.S.; Atnafie, S.A. Evaluation of in vitro and in vivo Anti-Diabetic, Anti-Hyperlipidemic and Anti-Oxidant Activity of Flower Crude Extract and Solvent Fractions of Hagenia abyssinica (Rosaceae). J. Exp. Pharmacol., 2020, 12, 151-167.
[http://dx.doi.org/10.2147/JEP.S249964] [PMID: 32607006]
[29]
Belayneh, Y.M.; Birhanu, Z.; Birru, E.M.; Getenet, G. Evaluation of in vivo antidiabetic, antidyslipidemic, and in vitro antioxidant activities of hydromethanolic root extract of Datura stramonium L. (Solanaceae). J. Exp. Pharmacol., 2019, 11, 29-38.
[http://dx.doi.org/10.2147/JEP.S192264] [PMID: 31114400]
[30]
Belayneh, Y.M.; Birru, E.M. Antidiabetic activities of hydromethanolic leaf extract of Calpurnia aurea (Ait.) Benth. Subspecies aurea (Fabaceae) in mice. Evid. Based Complement Alternat. Med., 2018, 2018.
[31]
Tomai, F.; Crea, F.; Gaspardone, A.; Versaci, F.; De Paulis, R.; Penta de Peppo, A.; Chiariello, L.; Gioffrè, P.A. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation, 1994, 90(2), pp.700-705.
[32]
Jacobson, T.A.; Miller, M.; Schaefer, E.J. Hypertriglyceridemia and cardiovascular risk reduction. Clin. Ther., 2007, 29(5), 763-777.
[http://dx.doi.org/10.1016/j.clinthera.2007.05.002] [PMID: 17697898]
[33]
Birari, R.B.; Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov. Today, 2007, 12(19-20), 879-889.
[http://dx.doi.org/10.1016/j.drudis.2007.07.024] [PMID: 17933690]
[34]
Tas, S., Tas, B.; Bassalat, N.; Jaradat, N. In vivo, hypoglycemic, hypolipidemic and oxidative stress inhibitory activities of Myrtus communis L. fruits hydroalcoholic extract in normoglycemic and streptozotocin-induced diabetic rats. Biomed. Res., 2018. 29(13).
[35]
Daniel, R.S.; Devi, K.S.; Augusti, K.T.; Nair, C.R. Mechanism of action of antiatherogenic and related effects of Ficus bengalensis Linn. flavonoids in experimental animals. Indian J. Exp. Biol., 2003, 41(4), 296-303.
[36]
Narender, T.; Khaliq, T.; Puri, A.; Chander, R. Antidyslipidemic activity of furano-flavonoids isolated from Indigofera tinctoria. Bioorg. Med. Chem. Lett., 2006, 16(13), 3411-3414.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.001] [PMID: 16644212]
[37]
Han, L-K.; Zheng, Y.N.; Xu, B.J.; Okuda, H.; Kimura, Y. Saponins from platycodi radix ameliorate high fat diet-induced obesity in mice. J. Nutr., 2002, 132(8), 2241-2245.
[http://dx.doi.org/10.1093/jn/132.8.2241] [PMID: 12163669]
[38]
Heidrich, J.E.; Contos, L.M.; Hunsaker, L.A.; Deck, L.M.; Vander Jagt, D.L. Inhibition of pancreatic cholesterol esterase reduces cholesterol absorption in the hamster. BMC Pharmacol., 2004, 4(1), 5.
[http://dx.doi.org/10.1186/1471-2210-4-5] [PMID: 15096274]
[39]
Kaleem, M.; Kirmani, D.; Asif, M.; Ahmed, Q. ; Bano, B. Biochemical effects of Nigella sativa L seeds in diabetic rats. Indian J. Exp. Biol., 2006, 44(9), 745-8.
[40]
Aghajanyan, A.; Nikoyan, A.; Trchounian, A. Biochemical activity and hypoglycemic effects of Rumex obtusifolius L. Seeds used in armenian traditional medicine. BioMed Res. Int., 2018, 2018
[http://dx.doi.org/10.1155/2018/4526352]
[41]
Mousavi, L. Hypoglycemic and anti-hyperglycemic study of Ocimum tenuiflorum L. leaves extract in normal and streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Biomed., 2016, 6(12), 1029-1036.
[http://dx.doi.org/10.1016/j.apjtb.2016.10.002]
[42]
Nabi, S.A.; Kasetti, R.B.; Sirasanagandla, S.; Tilak, T.K.; Kumar, M.V.; Rao, C.A. Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats. BMC Complement. Altern. Med., 2013, 13(1), 37.
[http://dx.doi.org/10.1186/1472-6882-13-37] [PMID: 23414307]
[43]
Ahmad, W.; Khan, I.; Khan, M.A.; Ahmad, M.; Subhan, F.; Karim, N. Evaluation of antidiabetic and antihyperlipidemic activity of Artemisia indica linn (aeriel parts) in Streptozotocin induced diabetic rats. J. Ethnopharmacol., 2014, 151(1), 618-623.
[http://dx.doi.org/10.1016/j.jep.2013.11.012] [PMID: 24252495]
[44]
Alema, N.M.; Periasamy, G.; Sibhat, G.G.; Tekulu, G.H.; Hiben, M.G. Antidiabetic activity of extracts of Terminalia brownii fresen. stem bark in mice. J. Exp. Pharmacol., 2020, 12, 61-71.
[http://dx.doi.org/10.2147/JEP.S240266] [PMID: 32110120]
[45]
Hammeso, W.W.; Emiru, Y.K.; Ayalew Getahun, K.; Kahaliw, W. Antidiabetic and antihyperlipidemic activities of the leaf latex extract of Aloe megalacantha baker (Aloaceae) in streptozotocin-induced diabetic model. Evid. Based Complement. Alternat. Med., 2019, 2019
[46]
Zekeya, N. Analysis of phytochemical composition of Bersama abyssinica by gas chromatography-mass spectrometry. J. Pharmacogn. Phytochem., 2014, 3(4), 246-252.
[47]
Firdous, S. Phytochemicals for treatment of diabetes. Excil Journal, 13: 451-453, metabolomic approach. Diabetes, 2014, 62(2), 639-648.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy