Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Epigenetic Mechanisms Mediate Nicotine-Induced Reward and Behaviour in Zebrafish

Author(s): Maria P. Faillace* and Ramón O. Bernabeu*

Volume 20, Issue 3, 2022

Published on: 07 February, 2022

Page: [510 - 523] Pages: 14

DOI: 10.2174/1570159X19666210716112351

Price: $65

Abstract

Nicotine induces long-term changes in the neural activity of the mesocorticolimbic reward pathway structures. The mechanisms involved in this process have not been fully characterized. The hypothesis discussed here proposed that epigenetic regulation participates in the installation of persistent adaptations and long-lasting synaptic plasticity generated by nicotine action on the mesolimbic dopamine neurons of zebrafish. The epigenetic mechanisms induced by nicotine entail histone and DNA chemical modifications, which have been described to lead to changes in gene expression. Among the enzymes that catalyze epigenetic chemical modifications, histone deacetylases (HDACs) remove acetyl groups from histones, thereby facilitating DNA relaxation and making DNA more accessible to gene transcription. DNA methylation, which is dependent on DNA methyltransferase (DNMTs) activity, inhibits gene expression by recruiting several methyl binding proteins that prevent RNA polymerase binding to DNA. In zebrafish, phenylbutyrate (PhB), an HDAC inhibitor, abolishes nicotine rewarding properties together with a series of typical reward-associated behaviors. Furthermore, PhB and nicotine alter long- and short-term object recognition memory in zebrafish, respectively. Regarding DNA methylation effects, a methyl group donor L-methionine (L-met) was found to dramatically reduce nicotine-induced conditioned place preference (CPP) in zebrafish. Simultaneous treatment with DNMT inhibitor 5-aza-2’-deoxycytidine (AZA) was found to reverse the L-met effect on nicotine-induced CPP as well as nicotine reward-specific effects on genetic expression in zebrafish. Therefore, pharmacological interventions that modulate epigenetic regulation of gene expression should be considered as a potential therapeutic method to treat nicotine addiction.

Keywords: Epigenesis, nicotine reward, zebrafish, histone acetylation, DNA methylation, conditioning place preference, HDAC inhibitor.

Graphical Abstract
[1]
Ahluwalia, I.B.; Arrazola, R.A.; Zhao, L.; Shi, J.; Dean, A.; Rainey, E.; Palipudi, K.; Twentyman, E.; Armour, B.S. Tobacco Use and Tobacco-Related Behaviors - 11 Countries, 2008-2017. MMWR Morb. Mortal. Wkly. Rep., 2019, 68(41), 928-933.
[http://dx.doi.org/10.15585/mmwr.mm6841a1] [PMID: 31622286]
[2]
World Health Organization. WHO report on the global tobacco epidemic, 2017: monitoring tobacco use and prevention policies. Geneva, Switzerland: World Health Organization. 2017. Available from:. https://apps.who.int/iris/bitstream/handle/10665/255874/978 9241512824-eng.pdf;jsessionid=5B12F0106C9C5146FD02389C555F41F2?sequence=1external
[3]
Benowitz, N.L. Nicotine addiction. N. Engl. J. Med., 2010, 362(24), 2295-2303.
[http://dx.doi.org/10.1056/NEJMra0809890] [PMID: 20554984]
[4]
Keyes, K.M.; Hamilton, A.; Kandel, D.B. Birth cohorts analysis of adolescent cigarette smoking and subsequent marijuana and cocaine use. Am. J. Public Health, 2016, 106(6), 1143-1149.
[http://dx.doi.org/10.2105/AJPH.2016.303128] [PMID: 27077359]
[5]
Levine, A.; Huang, Y.; Drisaldi, B.; Griffin, E.A., Jr; Pollak, D.D.; Xu, S.; Yin, D.; Schaffran, C.; Kandel, D.B.; Kandel, E.R. Molecular mechanism for a gateway drug: epigenetic changes initiated by nicotine prime gene expression by cocaine. Sci. Transl. Med., 2011, 3(107)107ra109
[http://dx.doi.org/10.1126/scitranslmed.3003062] [PMID: 22049069]
[6]
Mehra, V.M.; Keethakumar, A.; Bohr, Y.M.; Abdullah, P.; Tamim, H. The association between alcohol, marijuana, illegal drug use and current use of E-cigarette among youth and young adults in Canada: results from Canadian Tobacco, Alcohol and Drugs Survey 2017. BMC Public Health, 2019, 19(1), 1208.
[http://dx.doi.org/10.1186/s12889-019-7546-y] [PMID: 31477067]
[7]
Papke, R.L. Merging old and new perspectives on nicotinic acetylcholine receptors. Biochem. Pharmacol., 2014, 89(1), 1-11.
[http://dx.doi.org/10.1016/j.bcp.2014.01.029] [PMID: 24486571]
[8]
Henderson, B.J.; Lester, H.A. Inside-out neuropharmacology of nicotinic drugs.Neuropharmacology,, 2015, 96(Pt B), 178-93.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.022]
[9]
Nashmi, R.; Lester, H.A. CNS localization of neuronal nicotinic receptors. J. Mol. Neurosci., 2006, 30(1-2), 181-184.
[http://dx.doi.org/10.1385/JMN:30:1:181] [PMID: 17192671]
[10]
Leslie, F.M.; Mojica, C.Y.; Reynaga, D.D. Nicotinic receptors in addiction pathways. Mol. Pharmacol., 2013, 83(4), 753-758.
[http://dx.doi.org/10.1124/mol.112.083659] [PMID: 23247824]
[11]
Changeux, J.P. Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat. Rev. Neurosci., 2010, 11(6), 389-401.
[http://dx.doi.org/10.1038/nrn2849] [PMID: 20485364]
[12]
Bühler, K.M.; Giné, E.; Echeverry-Alzate, V.; Calleja-Conde, J.; de Fonseca, F.R.; López-Moreno, J.A. Common single nucleotide variants underlying drug addiction: more than a decade of research. Addict. Biol., 2015, 20(5), 845-871.
[http://dx.doi.org/10.1111/adb.12204] [PMID: 25603899]
[13]
Egervari, G.; Ciccocioppo, R.; Jentsch, J.D.; Hurd, Y.L. Shaping vulnerability to addiction - the contribution of behavior, neural circuits and molecular mechanisms. Neurosci. Biobehav. Rev., 2018, 85, 117-125.
[http://dx.doi.org/10.1016/j.neubiorev.2017.05.019] [PMID: 28571877]
[14]
Morrow, J.D.; Flagel, S.B. Neuroscience of resilience and vulnerability for addiction medicine: From genes to behavior. Prog. Brain Res., 2016, 223, 3-18.
[http://dx.doi.org/10.1016/bs.pbr.2015.09.004] [PMID: 26806768]
[15]
Ersche, K.D.; Meng, C.; Ziauddeen, H.; Stochl, J.; Williams, G.B.; Bullmore, E.T.; Robbins, T.W. Brain networks underlying vulnerability and resilience to drug addiction. Proc. Natl. Acad. Sci. USA, 2020, 117(26), 15253-15261.
[http://dx.doi.org/10.1073/pnas.2002509117] [PMID: 32541059]
[16]
Amir, R.E.; Van den Veyver, I.B.; Wan, M.; Tran, C.Q.; Francke, U.; Zoghbi, H.Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet., 1999, 23(2), 185-188.
[http://dx.doi.org/10.1038/13810] [PMID: 10508514]
[17]
Takiguchi, M.; Achanzar, W.E.; Qu, W.; Li, G.; Waalkes, M.P. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp. Cell Res., 2003, 286(2), 355-365.
[http://dx.doi.org/10.1016/S0014-4827(03)00062-4] [PMID: 12749863]
[18]
Yan, Y.; Kluz, T.; Zhang, P.; Chen, H.B.; Costa, M. Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicol. Appl. Pharmacol., 2003, 190(3), 272-277.
[http://dx.doi.org/10.1016/S0041-008X(03)00169-8] [PMID: 12902198]
[19]
Hande, M.P.; Azizova, T.V.; Geard, C.R.; Burak, L.E.; Mitchell, C.R.; Khokhryakov, V.F.; Vasilenko, E.K.; Brenner, D.J. Past exposure to densely ionizing radiation leaves a unique permanent signature in the genome. Am. J. Hum. Genet., 2003, 72(5), 1162-1170.
[http://dx.doi.org/10.1086/375041] [PMID: 12679897]
[20]
Levine, A.A.; Guan, Z.; Barco, A.; Xu, S.; Kandel, E.R.; Schwartz, J.H. CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proc. Natl. Acad. Sci. USA, 2005, 102(52), 19186-19191.
[http://dx.doi.org/10.1073/pnas.0509735102] [PMID: 16380431]
[21]
Hwang, J.Y.; Aromolaran, K.A.; Zukin, R.S. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat. Rev. Neurosci., 2017, 18(6), 347-361.
[http://dx.doi.org/10.1038/nrn.2017.46] [PMID: 28515491]
[22]
Qureshi, I.A.; Mehler, M.F. Epigenetic mechanisms underlying nervous system diseases. Handb. Clin. Neurol., 2018, 147, 43-58.
[http://dx.doi.org/10.1016/B978-0-444-63233-3.00005-1] [PMID: 29325627]
[23]
Renthal, W.; Kumar, A.; Xiao, G.; Wilkinson, M.; Covington, H.E., III; Maze, I.; Sikder, D.; Robison, A.J.; LaPlant, Q.; Dietz, D.M.; Russo, S.J.; Vialou, V.; Chakravarty, S.; Kodadek, T.J.; Stack, A.; Kabbaj, M.; Nestler, E.J. Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron, 2009, 62(3), 335-348.
[http://dx.doi.org/10.1016/j.neuron.2009.03.026] [PMID: 19447090]
[24]
Nestler, E.J.; Lüscher, C. The molecular basis of drug addiction: linking epigenetic to synaptic and circuit mechanisms. Neuron, 2019, 102(1), 48-59.
[http://dx.doi.org/10.1016/j.neuron.2019.01.016] [PMID: 30946825]
[25]
Walker, D.M.; Nestler, E.J. Neuroepigenetics and addiction. Handb. Clin. Neurol., 2018, 148, 747-765.
[http://dx.doi.org/10.1016/B978-0-444-64076-5.00048-X] [PMID: 29478612]
[26]
Hamilton, P.J.; Nestler, E.J. Epigenetics and addiction. Curr. Opin. Neurobiol., 2019, 59, 128-136.
[http://dx.doi.org/10.1016/j.conb.2019.05.005] [PMID: 31255844]
[27]
Waddington, C. Canalization of development and the inheritance of acquired characters. Nature, 1942, 150, 563-565.
[http://dx.doi.org/10.1038/150563a0]
[28]
Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet., 2003, 33(Suppl.), 245-254.
[http://dx.doi.org/10.1038/ng1089] [PMID: 12610534]
[29]
Jiang, Y.; Langley, B.; Lubin, F.D.; Renthal, W.; Wood, M.A.; Yasui, D.H.; Kumar, A.; Nestler, E.J.; Akbarian, S.; Beckel-Mitchener, A.C. Epigenetics in the nervous system. J. Neurosci., 2008, 28(46), 11753-11759.
[http://dx.doi.org/10.1523/JNEUROSCI.3797-08.2008] [PMID: 19005036]
[30]
Bernstein, B.E.; Meissner, A.; Lander, E.S. The mammalian epigenome. Cell, 2007, 128(4), 669-681.
[http://dx.doi.org/10.1016/j.cell.2007.01.033] [PMID: 17320505]
[31]
Francis, N.J.; Saurin, A.J.; Shao, Z.; Kingston, R.E. Reconstitution of a functional core polycomb repressive complex. Mol. Cell, 2001, 8(3), 545-556.
[http://dx.doi.org/10.1016/S1097-2765(01)00316-1] [PMID: 11583617]
[32]
Di Croce, L.; Helin, K. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol., 2013, 20(10), 1147-1155.
[http://dx.doi.org/10.1038/nsmb.2669] [PMID: 24096405]
[33]
Christmann, M.; Verbeek, B.; Roos, W.P.; Kaina, B.O. (6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim. Biophys. Acta, 2011, 1816(2), 179-190.
[http://dx.doi.org/10.1016/j.bbcan.2011.06.002] [PMID: 21745538]
[34]
O’Brown, Z.K.; Greer, E.L. N6-methyladenine: a conserved and dynamic DNA mark. Adv. Exp. Med. Biol., 2016, 945, 213-246.
[http://dx.doi.org/10.1007/978-3-319-43624-1_10] [PMID: 27826841]
[35]
Beh, L.Y.; Debelouchina, G.T.; Clay, D.M.; Thompson, R.E.; Lindblad, K.A.; Hutton, E.R.; Bracht, J.R.; Sebra, R.P.; Muir, T.W.; Landweber, L.F. Identification of a DNA N6-adenine methyltransferase complex and its impact on chromatin organization. Cell, 2019, 177(7), 1781-1796.e25.
[http://dx.doi.org/10.1016/j.cell.2019.04.028] [PMID: 31104845]
[36]
Yue, Y.; Liu, J.; He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev., 2015, 29(13), 1343-1355.
[http://dx.doi.org/10.1101/gad.262766.115] [PMID: 26159994]
[37]
Lorsbach, R.B.; Moore, J.; Mathew, S.; Raimondi, S.C.; Mukatira, S.T.; Downing, J.R. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia, 2003, 17(3), 637-641.
[http://dx.doi.org/10.1038/sj.leu.2402834] [PMID: 12646957]
[38]
Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L.; Rao, A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 324(5929), 930-935.
[http://dx.doi.org/10.1126/science.1170116] [PMID: 19372391]
[39]
Ito, S.; Shen, L.; Dai, Q.; Wu, S.C.; Collins, L.B.; Swenberg, J.A.; He, C.; Zhang, Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 2011, 333(6047), 1300-1303.
[http://dx.doi.org/10.1126/science.1210597] [PMID: 21778364]
[40]
Antunes, C.; Sousa, N.; Pinto, L.; Marques, C.J. TET enzymes in neurophysiology and brain function. Neurosci. Biobehav. Rev., 2019, 102, 337-344.
[http://dx.doi.org/10.1016/j.neubiorev.2019.05.006] [PMID: 31078565]
[41]
Lawrence, M.; Daujat, S.; Schneider, R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet., 2016, 32(1), 42-56.
[http://dx.doi.org/10.1016/j.tig.2015.10.007] [PMID: 26704082]
[42]
Tolsma, T.O.; Hansen, J.C. Post-translational modifications and chromatin dynamics. Essays Biochem., 2019, 63(1), 89-96.
[http://dx.doi.org/10.1042/EBC20180067] [PMID: 31015385]
[43]
Kouzarides, T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J., 2000, 19(6), 1176-1179.
[http://dx.doi.org/10.1093/emboj/19.6.1176] [PMID: 10716917]
[44]
Kim, H.D.; Call, T.; Magazu, S.; Ferguson, D. Drug addiction and histone code alterations. Adv. Exp. Med. Biol., 2017, 978, 127-143.
[http://dx.doi.org/10.1007/978-3-319-53889-1_7] [PMID: 28523544]
[45]
Taunton, J.; Hassig, C.A.; Schreiber, S.L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science, 1996, 272(5260), 408-411.
[http://dx.doi.org/10.1126/science.272.5260.408] [PMID: 8602529]
[46]
Schroeder, F.A.; Penta, K.L.; Matevossian, A.; Jones, S.R.; Konradi, C.; Tapper, A.R.; Akbarian, S. Drug-induced activation of dopamine D(1) receptor signaling and inhibition of class I/II histone deacetylase induce chromatin remodeling in reward circuitry and modulate cocaine-related behaviors. Neuropsychopharmacology, 2008, 33(12), 2981-2992.
[http://dx.doi.org/10.1038/npp.2008.15] [PMID: 18288092]
[47]
Shogren-Knaak, M.; Ishii, H.; Sun, J.M.; Pazin, M.J.; Davie, J.R.; Peterson, C.L. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 2006, 311(5762), 844-847.
[http://dx.doi.org/10.1126/science.1124000] [PMID: 16469925]
[48]
Vaissière, T.; Sawan, C.; Herceg, Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat. Res., 2008, 659(1-2), 40-48.
[http://dx.doi.org/10.1016/j.mrrev.2008.02.004] [PMID: 18407786]
[49]
Wang, H.; Huang, Z.Q.; Xia, L.; Feng, Q.; Erdjument-Bromage, H.; Strahl, B.D.; Briggs, S.D.; Allis, C.D.; Wong, J.; Tempst, P.; Zhang, Y. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science, 2001, 293(5531), 853-857.
[http://dx.doi.org/10.1126/science.1060781] [PMID: 11387442]
[50]
Cao, R.; Wang, L.; Wang, H.; Xia, L.; Erdjument-Bromage, H.; Tempst, P.; Jones, R.S.; Zhang, Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 2002, 298(5595), 1039-1043.
[http://dx.doi.org/10.1126/science.1076997] [PMID: 12351676]
[51]
Robison, A.J.; Nestler, E.J. Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci., 2011, 12(11), 623-637.
[http://dx.doi.org/10.1038/nrn3111] [PMID: 21989194]
[52]
Rogge, G.A.; Wood, M.A. The role of histone acetylation in cocaine-induced neural plasticity and behavior. Neuropsychopharmacology, 2013, 38(1), 94-110.
[http://dx.doi.org/10.1038/npp.2012.154] [PMID: 22910457]
[53]
Botia, B.; Legastelois, R.; Alaux-Cantin, S.; Naassila, M. Expression of ethanol-induced behavioral sensitization is associated with alteration of chromatin remodeling in mice. PLoS One, 2012, 7(10)e47527
[http://dx.doi.org/10.1371/journal.pone.0047527] [PMID: 23110077]
[54]
Kumar, A.; Choi, K.H.; Renthal, W.; Tsankova, N.M.; Theobald, D.E.; Truong, H.T.; Russo, S.J.; Laplant, Q.; Sasaki, T.S.; Whistler, K.N.; Neve, R.L.; Self, D.W.; Nestler, E.J. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron, 2005, 48(2), 303-314.
[http://dx.doi.org/10.1016/j.neuron.2005.09.023] [PMID: 16242410]
[55]
Shen, H.Y.; Kalda, A.; Yu, L.; Ferrara, J.; Zhu, J.; Chen, J.F. Additive effects of histone deacetylase inhibitors and amphetamine on histone H4 acetylation, cAMP responsive element binding protein phosphorylation and DeltaFosB expression in the striatum and locomotor sensitization in mice. Neuroscience, 2008, 157(3), 644-655.
[http://dx.doi.org/10.1016/j.neuroscience.2008.09.019] [PMID: 18848971]
[56]
Kondo, Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med. J., 2009, 50(4), 455-463.
[http://dx.doi.org/10.3349/ymj.2009.50.4.455] [PMID: 19718392]
[57]
Sales-Gil, R.; Vagnarelli, P. How HP1 post-translational modifications regulate heterochromatin formation and maintenance. Cells, 2020, 9(6), 1460.
[http://dx.doi.org/10.3390/cells9061460] [PMID: 32545538]
[58]
Weinberg, D.N.; Papillon-Cavanagh, S.; Chen, H.; Yue, Y.; Chen, X.; Rajagopalan, K.N.; Horth, C.; McGuire, J.T.; Xu, X.; Nikbakht, H.; Lemiesz, A.E.; Marchione, D.M.; Marunde, M.R.; Meiners, M.J.; Cheek, M.A.; Keogh, M.C.; Bareke, E.; Djedid, A.; Harutyunyan, A.S.; Jabado, N.; Garcia, B.A.; Li, H.; Allis, C.D.; Majewski, J.; Lu, C. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature, 2019, 573(7773), 281-286.
[http://dx.doi.org/10.1038/s41586-019-1534-3] [PMID: 31485078]
[59]
Lomvardas, S.; Maniatis, T. Histone and DNA modifications as regulators of neuronal development and function. Cold Spring Harb. Perspect. Biol., 2016, 8(7)a024208
[http://dx.doi.org/10.1101/cshperspect.a024208] [PMID: 27371659]
[60]
Miller, C.A.; Campbell, S.L.; Sweatt, J.D. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol. Learn. Mem., 2008, 89(4), 599-603.
[http://dx.doi.org/10.1016/j.nlm.2007.07.016] [PMID: 17881251]
[61]
Barrett, R.M.; Wood, M.A. Beyond transcription factors: the role of chromatin modifying enzymes in regulating transcription required for memory. Learn. Mem., 2008, 15(7), 460-467.
[http://dx.doi.org/10.1101/lm.917508] [PMID: 18583646]
[62]
Du, J.; Johnson, L.M.; Jacobsen, S.E.; Patel, D.J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol., 2015, 16(9), 519-532.
[http://dx.doi.org/10.1038/nrm4043] [PMID: 26296162]
[63]
Di Chiara, G. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur. J. Pharmacol., 2000, 393(1-3), 295-314.
[http://dx.doi.org/10.1016/S0014-2999(00)00122-9] [PMID: 10771025]
[64]
Fagen, Z.M.; Mansvelder, H.D.; Keath, J.R.; McGehee, D.S. Short- and long-term modulation of synaptic inputs to brain reward areas by nicotine. Ann. N. Y. Acad. Sci., 2003, 1003, 185-195.
[http://dx.doi.org/10.1196/annals.1300.011] [PMID: 14684446]
[65]
Mansvelder, H.D.; McGehee, D.S. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron, 2000, 27(2), 349-357.
[http://dx.doi.org/10.1016/S0896-6273(00)00042-8] [PMID: 10985354]
[66]
Saal, D.; Dong, Y.; Bonci, A.; Malenka, R.C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron, 2003, 37(4), 577-582.
[http://dx.doi.org/10.1016/S0896-6273(03)00021-7] [PMID: 12597856]
[67]
Pidoplichko, V.I.; Noguchi, J.; Areola, O.O.; Liang, Y.; Peterson, J.; Zhang, T.; Dani, J.A. Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction.Learn. Mem. (Cold Spring Harb. N.Y.), 2004, 11(1), 60-69.
[http://dx.doi.org/10.1101/lm.70004]
[68]
Kenny, P.J.; Chartoff, E.; Roberto, M.; Carlezon, W.A., Jr; Markou, A. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala. Neuropsychopharmacology, 2009, 34(2), 266-281.
[http://dx.doi.org/10.1038/npp.2008.58] [PMID: 18418357]
[69]
Mao, D.; Gallagher, K.; McGehee, D.S. Nicotine potentiation of excitatory inputs to ventral tegmental area dopamine neurons. J. Neurosci., 2011, 31(18), 6710-6720.
[http://dx.doi.org/10.1523/JNEUROSCI.5671-10.2011] [PMID: 21543600]
[70]
Pistillo, F.; Clementi, F.; Zoli, M.; Gotti, C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog. Neurobiol., 2015, 124, 1-27.
[http://dx.doi.org/10.1016/j.pneurobio.2014.10.002] [PMID: 25447802]
[71]
Ostroumov, A.; Dani, J.A. Inhibitory plasticity of mesocorticolimbic circuits in addiction and mental illness. Trends Neurosci., 2018, 41(12), 898-910.
[http://dx.doi.org/10.1016/j.tins.2018.07.014] [PMID: 30149979]
[72]
Jackson, K.J.; Muldoon, P.P.; De Biasi, M.; Damaj, M.I. New mechanisms and perspectives in nicotine withdrawal.Neuropharmacology, 2015, 96(Pt B), 223-234.
[http://dx.doi.org/10.1016/j.neuropharm.2014.11.009]
[73]
McLaughlin, I.; Dani, J.A.; De Biasi, M. Nicotine withdrawal. Curr. Top. Behav. Neurosci., 2015, 24, 99-123.
[http://dx.doi.org/10.1007/978-3-319-13482-6_4] [PMID: 25638335]
[74]
Dao, D.Q.; Perez, E.E.; Teng, Y.; Dani, J.A.; De Biasi, M. Nicotine enhances excitability of medial habenular neurons via facilitation of neurokinin signaling. J. Neurosci., 2014, 34(12), 4273-4284.
[http://dx.doi.org/10.1523/JNEUROSCI.2736-13.2014] [PMID: 24647947]
[75]
McLaughlin, I.; Dani, J.A.; De Biasi, M. The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation. J. Neurochem., 2017, 142(Suppl. 2), 130-143.
[http://dx.doi.org/10.1111/jnc.14008] [PMID: 28791703]
[76]
Marks, M.J.; Pauly, J.R.; Gross, S.D.; Deneris, E.S.; Hermans-Borgmeyer, I.; Heinemann, S.F.; Collins, A.C. Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J. Neurosci., 1992, 12(7), 2765-2784.
[http://dx.doi.org/10.1523/JNEUROSCI.12-07-02765.1992] [PMID: 1613557]
[77]
Grady, S.R.; Moretti, M.; Zoli, M.; Marks, M.J.; Zanardi, A.; Pucci, L.; Clementi, F.; Gotti, C. Rodent habenulo-interpeduncular pathway expresses a large variety of uncommon nAChR subtypes, but only the alpha3beta4* and alpha3beta3beta4* subtypes mediate acetylcholine release. J. Neurosci., 2009, 29(7), 2272-2282.
[http://dx.doi.org/10.1523/JNEUROSCI.5121-08.2009] [PMID: 19228980]
[78]
Numachi, Y.; Yoshida, S.; Yamashita, M.; Fujiyama, K.; Naka, M.; Matsuoka, H.; Sato, M.; Sora, I. Psychostimulant alters expression of DNA methyltransferase mRNA in the rat brain. Ann. N. Y. Acad. Sci., 2004, 1025, 102-109.
[http://dx.doi.org/10.1196/annals.1316.013] [PMID: 15542706]
[79]
Romieu, P.; Host, L.; Gobaille, S.; Sandner, G.; Aunis, D.; Zwiller, J. Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. J. Neurosci., 2008, 28(38), 9342-9348.
[http://dx.doi.org/10.1523/JNEUROSCI.0379-08.2008] [PMID: 18799668]
[80]
Satta, R.; Maloku, E.; Zhubi, A.; Pibiri, F.; Hajos, M.; Costa, E.; Guidotti, A. Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons. Proc. Natl. Acad. Sci. USA, 2008, 105(42), 16356-16361.
[http://dx.doi.org/10.1073/pnas.0808699105] [PMID: 18852456]
[81]
Huang, Y.Y.; Kandel, D.B.; Kandel, E.R.; Levine, A. Nicotine primes the effect of cocaine on the induction of LTP in the amygdala. Neuropharmacology, 2013, 74, 126-134.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.031] [PMID: 23597510]
[82]
Klee, E.W.; Schneider, H.; Clark, K.J.; Cousin, M.A.; Ebbert, J.O.; Hooten, W.M.; Karpyak, V.M.; Warner, D.O.; Ekker, S.C. Zebrafish: a model for the study of addiction genetics. Hum. Genet., 2012, 131(6), 977-1008.
[http://dx.doi.org/10.1007/s00439-011-1128-0] [PMID: 22207143]
[83]
García-González, J.; Brock, A.J.; Parker, M.O.; Riley, R.J.; Joliffe, D.; Sudwarts, A.; Teh, M.T.; Busch-Nentwich, E.M.; Stemple, D.L.; Martineau, A.R.; Kaprio, J.; Palviainen, T.; Kuan, V.; Walton, R.T.; Brennan, C.H. Identification of slit3 as a locus affecting nicotine preference in zebrafish and human smoking behaviour. eLife, 2020, 9e51295
[http://dx.doi.org/10.7554/eLife.51295] [PMID: 32209227]
[84]
Bossé, G.D.; Peterson, R.T. Development of an opioid self-administration assay to study drug seeking in zebrafish. Behav. Brain Res., 2017, 335, 158-166.
[http://dx.doi.org/10.1016/j.bbr.2017.08.001] [PMID: 28811180]
[85]
Ninkovic, J.; Bally-Cuif, L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods, 2006, 39(3), 262-274.
[http://dx.doi.org/10.1016/j.ymeth.2005.12.007] [PMID: 16809048]
[86]
Darland, T.; Dowling, J.E. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc. Natl. Acad. Sci. USA, 2001, 98(20), 11691-11696.
[http://dx.doi.org/10.1073/pnas.191380698] [PMID: 11553778]
[87]
Mathur, P.; Lau, B.; Guo, S. Conditioned place preference behavior in zebrafish. Nat. Protoc., 2011, 6(3), 338-345.
[http://dx.doi.org/10.1038/nprot.2010.201] [PMID: 21372814]
[88]
Collier, A.D.; Khan, K.M.; Caramillo, E.M.; Mohn, R.S.; Echevarria, D.J. Zebrafish and conditioned place preference: a translational model of drug reward. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 55, 16-25.
[http://dx.doi.org/10.1016/j.pnpbp.2014.05.014] [PMID: 24887295]
[89]
Kily, L.J.; Cowe, Y.C.; Hussain, O.; Patel, S.; McElwaine, S.; Cotter, F.E.; Brennan, C.H. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J. Exp. Biol., 2008, 211(Pt 10), 1623-1634.
[http://dx.doi.org/10.1242/jeb.014399] [PMID: 18456890]
[90]
Kedikian, X.; Faillace, M.P.; Bernabeu, R. Behavioral and molecular analysis of nicotine-conditioned place preference in zebrafish. PLoS One, 2013, 8(7)e69453
[http://dx.doi.org/10.1371/journal.pone.0069453] [PMID: 23894483]
[91]
Brock, A.J.; Goody, S.M.G.; Mead, A.N.; Sudwarts, A.; Parker, M.O.; Brennan, C.H. Assessing the value of the zebrafish conditioned place preference model for predicting human abuse potential. J. Pharmacol. Exp. Ther., 2017, 363(1), 66-79.
[http://dx.doi.org/10.1124/jpet.117.242628] [PMID: 28790193]
[92]
Faillace, M.P.; Bernabeu, R.O. Conditioned place preference and behavioral analysis to evaluate nicotine reinforcement properties in zebrafish.In: Nicotinic Acetylcholine Receptor Technologies; Ming D., Li; Bernabeu, R.O., Ed.; Humana Press and Springer Science, 2016, pp. 51-64.
[http://dx.doi.org/10.1007/978-1-4939-3768-4_3]
[93]
Pisera-Fuster, A.; Rocco, L.; Faillace, M.P.; Bernabeu, R. Sensitization-dependent nicotine place preference in the adult zebrafish. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 92, 457-469.
[http://dx.doi.org/10.1016/j.pnpbp.2019.02.018] [PMID: 30826460]
[94]
Faillace, M.P.; Bernabeu, R.O. Effects of nicotine and histone deacetylase inhibitors on the brain. In: Neuroscience of Nicotine 1st edition, Mechanisms and Treatment; Preedy, V.R., Ed.; Academic Press, Elsevier,; , 2019, pp. 365-373.
[http://dx.doi.org/10.1016/B978-0-12-813035-3.00045-9]
[95]
Faillace, M.P.; Pisera-Fuster, A.; Bernabeu, R. Evaluation of the rewarding properties of nicotine and caffeine by implementation of a five-choice conditioned place preference task in zebrafish Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 84(Pt A), 160-172.
[http://dx.doi.org/10.1016/j.pnpbp.2018.02.001]
[96]
Jung, Y.; Hsieh, L.S.; Lee, A.M.; Zhou, Z.; Coman, D.; Heath, C.J.; Hyder, F.; Mineur, Y.S.; Yuan, Q.; Goldman, D.; Bordey, A.; Picciotto, M.R. An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior. Nat. Neurosci., 2016, 19(7), 905-914.
[http://dx.doi.org/10.1038/nn.4315] [PMID: 27239938]
[97]
Pisera-Fuster, A.; Faillace, M.P.; Bernabeu, R. Pre-exposure to nicotine with nocturnal abstinence induces epigenetic changes that potentiate nicotine preference. Mol. Neurobiol., 2020, 57(4), 1828-1846.
[http://dx.doi.org/10.1007/s12035-019-01843-y] [PMID: 31848934]
[98]
Pastor, V.; Host, L.; Zwiller, J.; Bernabeu, R. Histone deacetylase inhibition decreases preference without affecting aversion for nicotine. J. Neurochem., 2011, 116(4), 636-645.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07149.x] [PMID: 21166804]
[99]
Castino, M.R.; Cornish, J.L.; Clemens, K.J. Inhibition of histone deacetylases facilitates extinction and attenuates reinstatement of nicotine self-administration in rats. PLoS One, 2015, 10(4)e0124796
[http://dx.doi.org/10.1371/journal.pone.0124796] [PMID: 25880762]
[100]
Seto, E.; Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol., 2014, 6(4)a018713
[http://dx.doi.org/10.1101/cshperspect.a018713] [PMID: 24691964]
[101]
Brunmeir, R.; Lagger, S.; Seiser, C. Histone deacetylase HDAC1/HDAC2-controlled embryonic development and cell differentiation. Int. J. Dev. Biol., 2009, 53(2-3), 275-289.
[http://dx.doi.org/10.1387/ijdb.082649rb] [PMID: 19412887]
[102]
Bobadilla, A.C.; Dereschewitz, E.; Vaccaro, L.; Heinsbroek, J.A.; Scofield, M.D.; Kalivas, P.W. Cocaine and sucrose rewards recruit different seeking ensembles in the nucleus accumbens core. Mol. Psychiatry, 2020, 25(12), 3150-3163.
[http://dx.doi.org/10.1038/s41380-020-00888-z] [PMID: 32985600]
[103]
Mayr, B.; Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol., 2001, 2(8), 599-609.
[http://dx.doi.org/10.1038/35085068] [PMID: 11483993]
[104]
Chandramohan, Y.; Droste, S.K.; Reul, J.M. Novelty stress induces phospho-acetylation of histone H3 in rat dentate gyrus granule neurons through coincident signalling via the N-methyl-D-aspartate receptor and the glucocorticoid receptor: relevance for c-fos induction. J. Neurochem., 2007, 101(3), 815-828.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04396.x] [PMID: 17250652]
[105]
Yeh, S.H.; Lin, C.H.; Gean, P.W. Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Mol. Pharmacol., 2004, 65(5), 1286-1292.
[http://dx.doi.org/10.1124/mol.65.5.1286] [PMID: 15102957]
[106]
Hu, M.; Liu, Q.S.; Chang, K.T.; Berg, D.K. Nicotinic regulation of CREB activation in hippocampal neurons by glutamatergic and nonglutamatergic pathways. Mol. Cell. Neurosci., 2002, 21(4), 616-625.
[http://dx.doi.org/10.1006/mcne.2002.1202] [PMID: 12504594]
[107]
Gueorguiev, V.D.; Cheng, S.Y.; Sabban, E.L. Prolonged activation of cAMP-response element-binding protein and ATF-2 needed for nicotine-triggered elevation of tyrosine hydroxylase gene transcription in PC12 cells. J. Biol. Chem., 2006, 281(15), 10188-10195.
[http://dx.doi.org/10.1074/jbc.M513806200] [PMID: 16452470]
[108]
Yang, X.J.; Seto, E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell, 2008, 31(4), 449-461.
[http://dx.doi.org/10.1016/j.molcel.2008.07.002] [PMID: 18722172]
[109]
May, Z.; Morrill, A.; Holcombe, A.; Johnston, T.; Gallup, J.; Fouad, K.; Schalomon, M.; Hamilton, T.J. Object recognition memory in zebrafish. Behav. Brain Res., 2016, 296, 199-210.
[http://dx.doi.org/10.1016/j.bbr.2015.09.016] [PMID: 26376244]
[110]
Faillace, M.P.; Pisera-Fuster, A.; Medrano, M.P.; Bejarano, A.C.; Bernabeu, R.O. Short- and long-term effects of nicotine and the histone deacetylase inhibitor phenylbutyrate on novel object recognition in zebrafish. Psychopharmacology (Berl.), 2017, 234(6), 943-955.
[http://dx.doi.org/10.1007/s00213-017-4532-x] [PMID: 28130648]
[111]
Dean, R.; Duperreault, E.; Newton, D.; Krook, J.; Ingraham, E.; Gallup, J.; Franczak, B.C.; Hamilton, T.J. Opposing effects of acute and repeated nicotine exposure on boldness in zebrafish. Sci. Rep., 2020, 10(1), 8570.
[http://dx.doi.org/10.1038/s41598-020-65382-6] [PMID: 32444782]
[112]
Korzus, E.; Rosenfeld, M.G.; Mayford, M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron, 2004, 42(6), 961-972.
[http://dx.doi.org/10.1016/j.neuron.2004.06.002] [PMID: 15207240]
[113]
Peleg, S.; Sananbenesi, F.; Zovoilis, A.; Burkhardt, S.; Bahari-Javan, S.; Agis-Balboa, R.C.; Cota, P.; Wittnam, J.L.; Gogol-Doering, A.; Opitz, L.; Salinas-Riester, G.; Dettenhofer, M.; Kang, H.; Farinelli, L.; Chen, W.; Fischer, A. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science, 2010, 328(5979), 753-756.
[http://dx.doi.org/10.1126/science.1186088] [PMID: 20448184]
[114]
Hawk, J.D.; Florian, C.; Abel, T. Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term object-location memory. Learn. Mem., 2011, 18(6), 367-370.
[http://dx.doi.org/10.1101/lm.2097411] [PMID: 21576516]
[115]
Stefanko, D.P.; Barrett, R.M.; Ly, A.R.; Reolon, G.K.; Wood, M.A. Modulation of long-term memory for object recognition via HDAC inhibition. Proc. Natl. Acad. Sci. USA, 2009, 106(23), 9447-9452.
[http://dx.doi.org/10.1073/pnas.0903964106] [PMID: 19470462]
[116]
Haettig, J.; Stefanko, D.P.; Multani, M.L.; Figueroa, D.X.; McQuown, S.C.; Wood, M.A. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learn. Mem., 2011, 18(2), 71-79.
[http://dx.doi.org/10.1101/lm.1986911] [PMID: 21224411]
[117]
Jenuwein, T.; Allis, C.D. Translating the histone code. Science, 2001, 293(5532), 1074-1080.
[http://dx.doi.org/10.1126/science.1063127] [PMID: 11498575]
[118]
Maze, I.; Feng, J.; Wilkinson, M.B.; Sun, H.; Shen, L.; Nestler, E.J. Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proc. Natl. Acad. Sci. USA, 2011, 108(7), 3035-3040.
[http://dx.doi.org/10.1073/pnas.1015483108] [PMID: 21300862]
[119]
Maze, I.; Covington, H.E., III; Dietz, D.M.; LaPlant, Q.; Renthal, W.; Russo, S.J.; Mechanic, M.; Mouzon, E.; Neve, R.L.; Haggarty, S.J.; Ren, Y.; Sampath, S.C.; Hurd, Y.L.; Greengard, P.; Tarakhovsky, A.; Schaefer, A.; Nestler, E.J. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science, 2010, 327(5962), 213-216.
[http://dx.doi.org/10.1126/science.1179438] [PMID: 20056891]
[120]
Castino, M.R.; Baker-Andresen, D.; Ratnu, V.S.; Shevchenko, G.; Morris, K.V.; Bredy, T.W.; Youngson, N.A.; Clemens, K.J. Persistent histone modifications at the BDNF and Cdk-5 promoters following extinction of nicotine-seeking in rats. Genes Brain Behav., 2018, 17(2), 98-106.
[http://dx.doi.org/10.1111/gbb.12421] [PMID: 28857504]
[121]
Chase, K.A.; Sharma, R.P. Nicotine induces chromatin remodelling through decreases in the methyltransferases GLP, G9a, Setdb1 and levels of H3K9me2. Int. J. Neuropsychopharmacol., 2013, 16(5), 1129-1138.
[http://dx.doi.org/10.1017/S1461145712001101] [PMID: 23067581]
[122]
Peters, A.H.; Kubicek, S.; Mechtler, K.; O’Sullivan, R.J.; Derijck, A.A.; Perez-Burgos, L.; Kohlmaier, A.; Opravil, S.; Tachibana, M.; Shinkai, Y.; Martens, J.H.; Jenuwein, T. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell, 2003, 12(6), 1577-1589.
[http://dx.doi.org/10.1016/S1097-2765(03)00477-5] [PMID: 14690609]
[123]
Meng, J.; Wang, L.; Wang, J.; Zhao, X.; Cheng, J.; Yu, W.; Jin, D.; Li, Q.; Gong, Z. Methionine adenosyltransferase4 mediates DNA and Histone methylation. Plant Physiol., 2018, 177(2), 652-670.
[http://dx.doi.org/10.1104/pp.18.00183] [PMID: 29572390]
[124]
Pisera-Fuster, A.; Zwiller, J.; Bernabeu, R. Methionine supplementation abolishes nicotine-induced place preference in zebrafish: a behavioral and molecular analysis. Mol. Neurobiol., 2021, 58(6), 2590-2607.
[http://dx.doi.org/10.1007/s12035-020-02260-2] [PMID: 33475949]
[125]
Shimbo, T.; Wade, P.A. Proteins that read DNA methylation. Adv. Exp. Med. Biol., 2016, 945, 303-320.
[http://dx.doi.org/10.1007/978-3-319-43624-1_13] [PMID: 27826844]
[126]
Ng, H.H.; Bird, A. Histone deacetylases: silencers for hire. Trends Biochem. Sci., 2000, 25(3), 121-126.
[http://dx.doi.org/10.1016/S0968-0004(00)01551-6] [PMID: 10694882]
[127]
Lang, Z.; Lei, M.; Wang, X.; Tang, K.; Miki, D.; Zhang, H.; Mangrauthia, S.K.; Liu, W.; Nie, W.; Ma, G.; Yan, J.; Duan, C.G.; Hsu, C.C.; Wang, C.; Tao, W.A.; Gong, Z.; Zhu, J.K. The methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing. Mol. Cell, 2015, 57(6), 971-983.
[http://dx.doi.org/10.1016/j.molcel.2015.01.009] [PMID: 25684209]
[128]
Zhu, H.; Wang, G.; Qian, J. Transcription factors as readers and effectors of DNA methylation. Nat. Rev. Genet., 2016, 17(9), 551-565.
[http://dx.doi.org/10.1038/nrg.2016.83] [PMID: 27479905]
[129]
Wu, H.; Zhang, Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev., 2011, 25(23), 2436-2452.
[http://dx.doi.org/10.1101/gad.179184.111] [PMID: 22156206]
[130]
Koivunen, P.; Laukka, T. The TET enzymes. Cell. Mol. Life Sci.: CMLS, 2018, 75(8), 1339-1348.
[http://dx.doi.org/10.1007/s00018-017-2721-8] [PMID: 29184981]
[131]
Barreto, G.; Schäfer, A.; Marhold, J.; Stach, D.; Swaminathan, S.K.; Handa, V.; Döderlein, G.; Maltry, N.; Wu, W.; Lyko, F.; Niehrs, C. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 2007, 445(7128), 671-675.
[http://dx.doi.org/10.1038/nature05515] [PMID: 17268471]
[132]
Tian, W.; Zhao, M.; Li, M.; Song, T.; Zhang, M.; Quan, L.; Li, S.; Sun, Z.S. Reversal of cocaine-conditioned place preference through methyl supplementation in mice: altering global DNA methylation in the prefrontal cortex. PLoS One, 2012, 7(3)e33435
[http://dx.doi.org/10.1371/journal.pone.0033435] [PMID: 22438930]
[133]
Wright, K.N.; Hollis, F.; Duclot, F.; Dossat, A.M.; Strong, C.E.; Francis, T.C.; Mercer, R.; Feng, J.; Dietz, D.M.; Lobo, M.K.; Nestler, E.J.; Kabbaj, M. Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner. J. Neurosci., 2015, 35(23), 8948-8958.
[http://dx.doi.org/10.1523/JNEUROSCI.5227-14.2015] [PMID: 26063926]
[134]
Kamstra, J.H.; Aleström, P.; Kooter, J.M.; Legler, J. Zebrafish as a model to study the role of DNA methylation in environmental toxicology. Environ. Sci. Pollut. Res. Int., 2015, 22(21), 16262-16276.
[http://dx.doi.org/10.1007/s11356-014-3466-7] [PMID: 25172464]
[135]
Wonnacott, S. The paradox of nicotinic acetylcholine receptor upregulation by nicotine. Trends Pharmacol. Sci., 1990, 11(6), 216-219.
[http://dx.doi.org/10.1016/0165-6147(90)90242-Z] [PMID: 2200178]
[136]
Fonteneau, M.; Filliol, D.; Anglard, P.; Befort, K.; Romieu, P.; Zwiller, J. Inhibition of DNA methyltransferases regulates cocaine self-administration by rats: a genome-wide DNA methylation study. Genes Brain Behav., 2017, 16(3), 313-327.
[http://dx.doi.org/10.1111/gbb.12354] [PMID: 27762100]
[137]
Ohashi, H.; Methylation-specific, PCR. In: PCR Cloning Protocols.Methods in Molecular Biology™; Chen, BY.; Janes, H.W., Eds.; Humana Press 2002, 192, 91-97.
[http://dx.doi.org/10.1385/1-59259-177-9:091]
[138]
Hernández, H.G.; Tse, M.Y.; Pang, S.C.; Arboleda, H.; Forero, D.A. Optimizing methodologies for PCR-based DNA methylation analysis. Biotechniques, 2013, 55(4), 181-197.
[http://dx.doi.org/10.2144/000114087] [PMID: 24107250]
[139]
Vuaden, F.C.; Savio, L.E.B.; Rico, E.P.; Mussulini, B.H.M.; Rosemberg, D.B.; de Oliveira, D.L.; Bogo, M.R.; Bonan, C.D.; Wyse, A.T.S. Methionine exposure alters glutamate uptake and adenine nucleotide hydrolysis in the zebrafish brain. Mol. Neurobiol., 2016, 53(1), 200-209.
[http://dx.doi.org/10.1007/s12035-014-8983-3] [PMID: 25421208]
[140]
Garlick, P.J. Toxicity of methionine in humans. J. Nutr., 2006, 136(6)(Suppl.), 1722S-1725S.
[http://dx.doi.org/10.1093/jn/136.6.1722S] [PMID: 16702346]
[141]
Shorter, K.R.; Felder, M.R.; Vrana, P.B. Consequences of dietary methyl donor supplements: Is more always better? Prog. Biophys. Mol. Biol., 2015, 118(1-2), 14-20.
[http://dx.doi.org/10.1016/j.pbiomolbio.2015.03.007] [PMID: 25841986]
[142]
Tapia-Rojas, C.; Lindsay, C.B.; Montecinos-Oliva, C.; Arrazola, M.S.; Retamales, R.M.; Bunout, D.; Hirsch, S.; Inestrosa, N.C. Is L-methionine a trigger factor for Alzheimer’s-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Mol. Neurodegener., 2015, 10, 62.
[http://dx.doi.org/10.1186/s13024-015-0057-0] [PMID: 26590557]
[143]
Iannitti, T.; Palmieri, B. Clinical and experimental applications of sodium phenylbutyrate. Drugs R D., 2011, 11(3), 227-249.
[http://dx.doi.org/10.2165/11591280-000000000-00000] [PMID: 21902286]
[144]
Paganoni, S.; Hendrix, S.; Dickson, S.P.; Knowlton, N.; Macklin, E.A.; Berry, J.D.; Elliott, M.A.; Maiser, S.; Karam, C.; Caress, J.B.; Owegi, M.A.; Quick, A.; Wymer, J.; Goutman, S.A.; Heitzman, D.; Heiman-Patterson, T.D.; Jackson, C.E.; Quinn, C.; Rothstein, J.D.; Kasarskis, E.J.; Katz, J.; Jenkins, L.; Ladha, S.; Miller, T.M.; Scelsa, S.N.; Vu, T.H.; Fournier, C.N.; Glass, J.D.; Johnson, K.M.; Swenson, A.; Goyal, N.A.; Pattee, G.L.; Andres, P.L.; Babu, S.; Chase, M.; Dagostino, D.; Hall, M.; Kittle, G.; Eydinov, M.; McGovern, M.; Ostrow, J.; Pothier, L.; Randall, R.; Shefner, J.M.; Sherman, A.V.; St Pierre, M.E.; Tustison, E.; Vigneswaran, P.; Walker, J.; Yu, H.; Chan, J.; Wittes, J.; Yu, Z.F.; Cohen, J.; Klee, J.; Leslie, K.; Tanzi, R.E.; Gilbert, W.; Yeramian, P.D.; Schoenfeld, D.; Cudkowicz, M.E. Long-term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis. Muscle Nerve, 2021, 63(1), 31-39.
[http://dx.doi.org/10.1002/mus.27091] [PMID: 33063909]
[145]
Hayashi, G.; Labelle-Dumais, C.; Gould, D.B. Use of sodium 4-phenylbutyrate to define therapeutic parameters for reducing intracerebral hemorrhage and myopathy in Col4a1 mutant mice. Dis. Model. Mech., 2018, 11(7)dmm034157
[http://dx.doi.org/10.1242/dmm.034157] [PMID: 29895609]
[146]
Lee, H.T.; Oh, S.; Ro, D.H.; Yoo, H.; Kwon, Y.W. The Key Role of DNA Methylation and Histone Acetylation in Epigenetics of Atherosclerosis. J. Lipid Atheroscler., 2020, 9(3), 419-434.
[http://dx.doi.org/10.12997/jla.2020.9.3.419] [PMID: 33024734]
[147]
Bouchat, S.; Delacourt, N.; Kula, A.; Darcis, G.; Van Driessche, B.; Corazza, F.; Gatot, J.S.; Melard, A.; Vanhulle, C.; Kabeya, K.; Pardons, M.; Avettand-Fenoel, V.; Clumeck, N.; De Wit, S.; Rohr, O.; Rouzioux, C.; Van Lint, C. Sequential treatment with 5-aza-2¢-deoxycytidine and deacetylase inhibitors reactivates HIV-1. EMBO Mol. Med., 2016, 8(2), 117-138.
[http://dx.doi.org/10.15252/emmm.201505557] [PMID: 26681773]
[148]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[149]
Scaplen, K.M.; Kaun, K.R. Reward from bugs to bipeds: a comparative approach to understanding how reward circuits function. J. Neurogenet., 2016, 30(2), 133-148.
[http://dx.doi.org/10.1080/01677063.2016.1180385] [PMID: 27328845]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy