Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Clinical Trial

Six CT83-related Genes-based Prognostic Signature for Lung Adenocarcinoma

Author(s): Yongmei Wang, Guimin Zhang* and Ruixian Wang

Volume 25, Issue 9, 2022

Published on: 13 July, 2021

Page: [1565 - 1575] Pages: 11

DOI: 10.2174/1871520621666210713112630

Price: $65

Open Access Journals Promotions 2
Abstract

Background: This study aims to explore the prognostic values of CT83 and CT83- related genes in lung adenocarcinoma (LUAD).

Methods: We downloaded the mRNA profiles of 513 LUAD patients (RNA sequencing data) and 246 NSCLC patients (Affymetrix Human Genome U133 Plus 2.0 Array) from TCGA and GEO databases. According to the median expression of CT83, the TCGA samples were divided into high and low expression groups, and differential expression analysis between them was performed. Functional enrichment analysis of differential expression genes (DEGs) was conducted. Univariate Cox regression analysis and LASSO Cox regression analysis were performed to screen the optimal prognostic DEGs. Then we established the prognostic model. A Nomogram model was constructed to predict the overall survival (OS) probability of LUAD patients.

Results: CT83 expression was significantly correlated to the prognosis of LUAD patients. A total of 59 DEGs were identified, and a predictive model was constructed based on six optimal CT83- related DEGs, including CPS1, RHOV, TNNT1, FAM83A, IGF2BP1, and GRIN2A, which could effectively predict the prognosis of LUAD patients. The nomogram could reliably predict the OS of LUAD patients. Moreover, the six important immune checkpoints (CTLA4, PD1, IDO1, TDO2, LAG3, and TIGIT) were closely correlated with the risk score, which were also differentially expressed between the LUAD samples with high and low risk scores, suggesting that the poor prognosis of LUAD patients with high risk score might be due to the immunosuppressive microenvironments.

Conclusion: A prognostic model based on six optimal CT83 related genes could effectively predict the prognosis of LUAD patients.

Keywords: Lung adenocarcinoma, CT83, risk score, prognostic, biomarker, overall survival.

« Previous
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[2]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[3]
Denisenko, T.V.; Budkevich, I.N.; Zhivotovsky, B. Cell deathbased treatment of lung adenocarcinoma. Cell Death Dis., 2018, 9(2), 117.
[http://dx.doi.org/10.1038/s41419-017-0063-y] [PMID: 29371589]
[4]
Blandin Knight, S.; Crosbie, P.A.; Balata, H.; Chudziak, J.; Hussell, T.; Dive, C. Progress and prospects of early detection in lung cancer. Open Biol., 2017, 7(9), 170070.
[http://dx.doi.org/10.1098/rsob.170070] [PMID: 28878044]
[5]
Song, Q.; Shang, J.; Yang, Z.; Zhang, L.; Zhang, C.; Chen, J.; Wu, X. Identification of an immune signature predicting prognosis risk of patients in lung adenocarcinoma. J. Transl. Med., 2019, 17(1), 70.
[http://dx.doi.org/10.1186/s12967-019-1824-4] [PMID: 30832680]
[6]
Spranger, S.; Gajewski, T.F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer, 2018, 18(3), 139-147.
[http://dx.doi.org/10.1038/nrc.2017.117] [PMID: 29326431]
[7]
Verhaak, R.G.W.; Bafna, V.; Mischel, P.S. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat. Rev. Cancer, 2019, 19(5), 283-288.
[http://dx.doi.org/10.1038/s41568-019-0128-6] [PMID: 30872802]
[8]
Fukuyama, T.; Futawatari, N.; Yamamura, R.; Yamazaki, T.; Ichiki, Y.; Ema, A.; Ushiku, H.; Nishi, Y.; Takahashi, Y.; Otsuka, T.; Yamazaki, H.; Koizumi, W.; Yasumoto, K.; Kobayashi, N. Expression of KK-LC-1, a cancer/testis antigen, at non-tumour sites of the stomach carrying a tumour. Sci. Rep., 2018, 8(1), 6131.
[http://dx.doi.org/10.1038/s41598-018-24514-9] [PMID: 29666402]
[9]
Stevanović, S.; Pasetto, A.; Helman, S.R.; Gartner, J.J.; Prickett, T.D.; Howie, B.; Robins, H.S.; Robbins, P.F.; Klebanoff, C.A.; Rosenberg, S.A.; Hinrichs, C.S. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science, 2017, 356(6334), 200-205.
[http://dx.doi.org/10.1126/science.aak9510] [PMID: 28408606]
[10]
Shigematsu, Y.; Hanagiri, T.; Shiota, H.; Kuroda, K.; Baba, T.; Mizukami, M.; So, T.; Ichiki, Y.; Yasuda, M.; So, T.; Takenoyama, M.; Yasumoto, K. Clinical significance of cancer/testis antigens expression in patients with non-small cell lung cancer. Lung Cancer, 2010, 68(1), 105-110.
[http://dx.doi.org/10.1016/j.lungcan.2009.05.010] [PMID: 19545928]
[11]
Fukuyama, T.; Hanagiri, T.; Takenoyama, M.; Ichiki, Y.; Mizukami, M.; So, T.; Sugaya, M.; So, T.; Sugio, K.; Yasumoto, K. Identification of a new cancer/germline gene, KK-LC-1, encoding an antigen recognized by autologous CTL induced on human lung adenocarcinoma. Cancer Res., 2006, 66(9), 4922-4928.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3840] [PMID: 16651449]
[12]
Baba, T.; Shiota, H.; Kuroda, K.; Shigematsu, Y.; Ichiki, Y.; Uramoto, H.; Hanagiri, T.; Tanaka, F. Cancer/testis antigen expression as a predictor for epidermal growth factor receptor mutation and prognosis in lung adenocarcinoma. Eur. J. Cardiothorac. Surg., 2013, 43(4), 759-764.
[http://dx.doi.org/10.1093/ejcts/ezs426] [PMID: 22826471]
[13]
Chen, Z.; Zuo, X.; Pu, L.; Zhang, Y.; Han, G.; Zhang, L.; Wu, Z.; You, W.; Qin, J.; Dai, X.; Shen, H.; Wang, X.; Wu, J. Hypomethylation-mediated activation of cancer/testis antigen KK-LC-1 facilitates hepatocellular carcinoma progression through activating the Notch1/Hes1 signalling. Cell Prolif., 2019, 52(3), e12581.
[http://dx.doi.org/10.1111/cpr.12581] [PMID: 30895661]
[14]
Shida, A.; Fukuyama, T.; Futawatari, N.; Ohmiya, H.; Ichiki, Y.; Yamashita, T.; Nishi, Y.; Kobayashi, N.; Yamazaki, H.; Watanabe, M.; Takahashi, Y. Cancer/testis antigen, Kita-Kyushu lung cancer antigen-1 and ABCD stratification for diagnosing gastric cancers. World J. Gastroenterol., 2020, 26(4), 424-432.
[http://dx.doi.org/10.3748/wjg.v26.i4.424] [PMID: 32063691]
[15]
Okayama, H.; Kohno, T.; Ishii, Y.; Shimada, Y.; Shiraishi, K.; Iwakawa, R.; Furuta, K.; Tsuta, K.; Shibata, T.; Yamamoto, S.; Watanabe, S.; Sakamoto, H.; Kumamoto, K.; Takenoshita, S.; Gotoh, N.; Mizuno, H.; Sarai, A.; Kawano, S.; Yamaguchi, R.; Miyano, S.; Yokota, J. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res., 2012, 72(1), 100-111.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1403] [PMID: 22080568]
[16]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[17]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[18]
Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw., 2010, 33(1), 1-22.
[http://dx.doi.org/10.18637/jss.v033.i01] [PMID: 20808728]
[19]
Heagerty, P.J.; Lumley, T.; Pepe, M.S. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics, 2000, 56(2), 337-344.
[http://dx.doi.org/10.1111/j.0006-341X.2000.00337.x] [PMID: 10877287]
[20]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[21]
Xu, F.; Jin, T.; Zhu, Y.; Dai, C. Immune checkpoint therapy in liver cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 110.
[http://dx.doi.org/10.1186/s13046-018-0777-4] [PMID: 29843754]
[22]
Wu, G.; Yan, Y.; Zhou, Y.; Wang, X.; Wei, J.; Chen, X.; Lin, W.; Ou, C.; Zhou, J.; Xu, Z. Expression and clinical significance of CPS1 in glioblastoma multiforme. Curr. Res. Transl. Med., 2019, 67(4), 123-128.
[http://dx.doi.org/10.1016/j.retram.2019.08.003] [PMID: 31492588]
[23]
Wu, G.; Zhao, Z.; Yan, Y.; Zhou, Y.; Wei, J.; Chen, X.; Lin, W.; Ou, C.; Li, J.; Wang, X.; Xiong, K.; Zhou, J.; Xu, Z. CPS1 expression and its prognostic significance in lung adenocarcinoma. Ann. Transl. Med., 2020, 8(6), 341.
[http://dx.doi.org/10.21037/atm.2020.02.146] [PMID: 32355785]
[24]
Shukla, S.; Evans, J.R.; Malik, R.; Feng, F.Y.; Dhanasekaran, S.M.; Cao, X.; Chen, G.; Beer, D.G.; Jiang, H.; Chinnaiyan, A.M. Development of a rna-seq based prognostic signature in lung adenocarcinoma. J. Natl. Cancer Inst., 2016, 109(1), djw200.
[http://dx.doi.org/10.1093/jnci/djw200] [PMID: 27707839]
[25]
Zhang, J.; Sun, G.; Mei, X. Elevated FAM83A expression predicts poorer clincal outcome in lung adenocarcinoma. Cancer Biomark., 2019, 26(3), 367-373.
[http://dx.doi.org/10.3233/CBM-190520] [PMID: 31594212]
[26]
Huang, H.; Wang, D.; Guo, W.; Zhuang, X.; He, Y. Correlated low IGF2BP1 and FOXM1 expression predicts a good prognosis in lung adenocarcinoma. Pathol. Res. Pract., 2019, 215(7), 152433.
[http://dx.doi.org/10.1016/j.prp.2019.152433] [PMID: 31085008]
[27]
Shi, Y.; Zhao, Y.; Zhang, Y. AiErken, N.; Shao, N.; Ye, R.; Lin, Y.; Wang, S. TNNT1 facilitates proliferation of breast cancer cells by promoting G1/S phase transition. Life Sci., 2018, 208, 161-166.
[http://dx.doi.org/10.1016/j.lfs.2018.07.034] [PMID: 30031058]
[28]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[29]
Al-Shibli, K.; Al-Saad, S.; Donnem, T.; Persson, M.; Bremnes, R.M.; Busund, L.T. The prognostic value of intraepithelial and stromal innate immune system cells in non-small cell lung carcinoma. Histopathology, 2009, 55(3), 301-312.
[http://dx.doi.org/10.1111/j.1365-2559.2009.03379.x] [PMID: 19723145]
[30]
Smyth, M.J.; Crowe, N.Y.; Godfrey, D.I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol., 2001, 13(4), 459-463.
[http://dx.doi.org/10.1093/intimm/13.4.459] [PMID: 11282985]
[31]
Lesokhin, A.M.; Hohl, T.M.; Kitano, S.; Cortez, C.; Hirschhorn-Cymerman, D.; Avogadri, F.; Rizzuto, G.A.; Lazarus, J.J.; Pamer, E.G.; Houghton, A.N.; Merghoub, T.; Wolchok, J.D. Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Res., 2012, 72(4), 876-886.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1792] [PMID: 22174368]
[32]
Bayne, L.J.; Beatty, G.L.; Jhala, N.; Clark, C.E.; Rhim, A.D.; Stanger, B.Z.; Vonderheide, R.H. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell, 2012, 21(6), 822-835.
[http://dx.doi.org/10.1016/j.ccr.2012.04.025] [PMID: 22698406]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy