Review Article

氧化锌纳米颗粒的抗原虫和驱虫活性

卷 29, 期 12, 2022

发表于: 25 August, 2021

页: [2127 - 2141] 页: 15

弟呕挨: 10.2174/0929867328666210709105850

价格: $65

摘要

纳米材料代表了治疗影响人类和动物健康的几种疾病的广泛替代方案。这些材料的使用主要包括试图解决致病生物对常规药物的耐药性问题。一个经过充分研究的例子是使用氧化锌(ZnO)纳米颗粒(NPs),代表了生物医学应用的潜在成分。其抗菌功能是相关的,特别是与产生/诱导ROS的能力有关,该ROS影响所讨论的病原体的体内平衡。危害人类健康和动物经济性能的原生动物和蠕虫已经暴露于这种类型的纳米颗粒中。因此,通过这次审查,我们的目标是讨论ZnONPs对这些寄生虫的最新影响。

关键词: 抗原虫,驱虫,氧化锌,纳米颗粒,治疗,传染病。

[1]
Singh, S. Zinc oxide nanoparticles impacts: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol. Mech. Methods, 2019, 29(4), 300-311.
[http://dx.doi.org/10.1080/15376516.2018.1553221] [PMID: 30489211]
[2]
Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today, 2017, 22(12), 1825-1834.
[http://dx.doi.org/10.1016/j.drudis.2017.08.006] [PMID: 28847758]
[3]
Długosz, O.; Szostak, K.; Staroń, A.; Pulit-Prociak, J.; Banach, M. Methods for reducing the toxicity of metal and metal oxide nps as biomedicine. Materials (Basel), 2020, 13(2)E279
[http://dx.doi.org/10.3390/ma13020279] [PMID: 31936311]
[4]
Siddiqi, K.S.; Ur Rahman, A. Tajuddin; Husen, A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett., 2018, 13(1), 141.
[http://dx.doi.org/10.1186/s11671-018-2532-3] [PMID: 29740719]
[5]
Liao, C.; Jin, Y.; Li, Y.; Tjong, S.C. Interactions of zinc oxide nanostructures with mammalian cells: Cytotoxicity and photocatalytic toxicity. Int. J. Mol. Sci., 2020, 21(17)E6305
[http://dx.doi.org/10.3390/ijms21176305] [PMID: 32878253]
[6]
Lallo da Silva, B.; Abuçafy, M.P.; Berbel Manaia, E.; Oshiro, Junior, J.A.; Chiari-Andréo, B.G.; Pietro, R.C.R.; Chiavacci, L.A. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. Int. J. Nanomedicine, 2019, 14, 9395-9410.
[http://dx.doi.org/10.2147/IJN.S216204] [PMID: 31819439]
[7]
Nazir, S.; Rabbani, A.; Mehmood, K.; Maqbool, F.; Shah, G.M.; Khan, M.F.; Sajid, M. Antileishmanial activity and cytotoxicity of ZnO-based nano-formulations. Int. J. Nanomedicine, 2019, 14, 7809-7822.
[http://dx.doi.org/10.2147/IJN.S203351] [PMID: 31576125]
[8]
Fonseca, B.B.; Silva, P.L.A.P.A.; Silva, A.C.A.; Dantas, N.O.; de Paula, A.T.; Olivieri, O.C.L.; Beletti, M.E.; Rossi, D.A.; Goulart, L.R. Nanocomposite of ag-doped zno and ago nanocrystals as a preventive measure to control biofilm formation in eggshell and salmonella spp. entry into eggs. Front. Microbiol., 2019, 10, 217.
[http://dx.doi.org/10.3389/fmicb.2019.00217] [PMID: 30837963]
[9]
McClements, D.J.; Xiao, H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Sci Food, 2017, 1, 6.
[http://dx.doi.org/10.1038/s41538-017-0005-1] [PMID: 31304248]
[10]
Jin, S.E.; Jin, H.E. Synthesis, characterization, and three-dimensional structure generation of zinc oxide-based nanomedicine for biomedical applications. Pharmaceutics, 2019, 11(11)E575
[http://dx.doi.org/10.3390/pharmaceutics11110575] [PMID: 31689932]
[11]
Iqbal, P.; Preece, J.A.; Mendes, P.M. Nanotechnology: The “top-down” and “bottom-up” approaches supramolecular chemistry. Supramol. Chem., 2012, 1-14.
[12]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[13]
Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett., 2016, 38(4), 545-560.
[http://dx.doi.org/10.1007/s10529-015-2026-7] [PMID: 26721237]
[14]
Abbasi, B.A.; Iqbal, J.; Ahmad, R.; Zia, L.; Kanwal, S.; Mahmood, T.; Wang, C.; Chen, J.T. Bioactivities of geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules, 2019, 10(1)E38
[http://dx.doi.org/10.3390/biom10010038] [PMID: 31888037]
[15]
Baghbani, Z.; Esmaeilnejad, B.; Asri-Rezaei, S. Assessment of oxidative/nitrosative stress biomarkers and DNA damage in Teladorsagia circumcincta following exposure to zinc oxide nanoparticles. J. Helminthol., 2020, 94e115
[http://dx.doi.org/10.1017/S0022149X19001068] [PMID: 31931890]
[16]
Miri, A.; Mahdinejad, N.; Ebrahimy, O.; Khatami, M.; Sarani, M. Zinc oxide nanoparticles: Biosynthesis, characterization, antifungal and cytotoxic activity. Mater. Sci. Eng. C, 2019, 104109981
[http://dx.doi.org/10.1016/j.msec.2019.109981] [PMID: 31500056]
[17]
Bisht, G.; Rayamajhi, S. ZnO nanoparticles: A promising anticancer agent. Nanobiomedicine (Rij), 2016, 3, 9.
[http://dx.doi.org/10.5772/63437] [PMID: 29942384]
[18]
Król, A.; Pomastowski, P.; Rafińska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci., 2017, 249, 37-52.
[http://dx.doi.org/10.1016/j.cis.2017.07.033] [PMID: 28923702]
[19]
Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet, 2018, 392(10151), 951-970.
[20]
Anversa, L. Human leishmaniasis in Brazil: A general review. Rev Assoc Med Bras (1992),, 2018, 64(3), 281-289.
[21]
Scorza, B.M.; Carvalho, E.M.; Wilson, M.E. Cutaneous manifestations of human and murine leishmaniasis. Int. J. Mol. Sci., 2017, 18(6)E1296
[http://dx.doi.org/10.3390/ijms18061296] [PMID: 28629171]
[22]
Delavari, M.; Dalimi, A.; Ghaffarifar, F.; Sadraei, J. In vitro study on cytotoxic effects of zno nanoparticles on promastigote and amastigote forms of leishmania major (mrho/ir/75/er). Iran. J. Parasitol., 2014, 9(1), 6-13.
[PMID: 25642254]
[23]
Ali, A.; Ambreen, S.; Javed, R.; Tabassum, S.; Ul Haq, I.; Zia, M. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties. Mater. Sci. Eng. C, 2017, 74, 137-145.
[http://dx.doi.org/10.1016/j.msec.2017.01.004] [PMID: 28254278]
[24]
Hameed, S.; Khalil, A.T.; Ali, M.; Numan, M.; Khamlich, S.; Shinwari, Z.K.; Maaza, M. Greener synthesis of ZnO and Ag-ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine (Lond.), 2019, 14(6), 655-673.
[http://dx.doi.org/10.2217/nnm-2018-0279] [PMID: 30714480]
[25]
Jan, H. Biogenic synthesis and characterization of antimicrobial and anti-parasitic zinc oxide (zno) nanoparticles using aqueous extracts of the himalayan columbine (aquilegia pubiflora). Frontiers in materials, 2020, 7, 249.
[http://dx.doi.org/10.3389/fmats.2020.00249]
[26]
Sumaira; Siddique A.M.; Salman, H.S.; Ali, G.S.; Zia, M.; Haider, A.B. Comparative antileishmanial efficacy of the biosynthesised ZnO NPs from genus Verbena. IET Nanobiotechnol., 2018, 12(8), 1067-1073.
[http://dx.doi.org/10.1049/iet-nbt.2018.5076] [PMID: 30964015]
[27]
Nadhman, A.; Nazir, S.; Khan, M.I.; Arooj, S.; Bakhtiar, M.; Shahnaz, G.; Yasinzai, M. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania. Free Radic. Biol. Med., 2014, 77, 230-238.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.09.005] [PMID: 25266330]
[28]
Nadhman, A.; Nazir, S.; Khan, M.I.; Ayub, A.; Muhammad, B.; Khan, M.; Shams, D.F.; Yasinzai, M. Visible-light-responsive ZnCuO nanoparticles: Benign photodynamic killers of infectious protozoans. Int. J. Nanomedicine, 2015, 10, 6891-6903.
[PMID: 26604755]
[29]
Nadhman, A.; Sirajuddin, M.; Nazir, S.; Yasinzai, M. Photo-induced Leishmania DNA degradation by silver-doped zinc oxide nanoparticle: An in-vitro approach. IET Nanobiotechnol., 2016, 10(3), 129-133.
[http://dx.doi.org/10.1049/iet-nbt.2015.0015] [PMID: 27256892]
[30]
Nadhman, A.; Khan, M.I.; Nazir, S.; Khan, M.; Shahnaz, G.; Raza, A.; Shams, D.F.; Yasinzai, M. Annihilation of Leishmania by daylight responsive ZnO nanoparticles: A temporal relationship of reactive oxygen species-induced lipid and protein oxidation. Int. J. Nanomed, 2016, 11, 2451-2461.
[http://dx.doi.org/10.2147/IJN.S105195] [PMID: 27330288]
[31]
Jebali, A.; Kazemi, B. Nano-based antileishmanial agents: A toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol. In Vitro, 2013, 27(6), 1896-1904.
[http://dx.doi.org/10.1016/j.tiv.2013.06.002] [PMID: 23806227]
[32]
von Gersdorff Jørgensen, L. Infection and immunity against Ichthyophthirius multifiliis in zebrafish (Danio rerio). Fish Shellfish Immunol., 2016, 57, 335-339.
[http://dx.doi.org/10.1016/j.fsi.2016.08.042] [PMID: 27567935]
[33]
Corrêa, L.L.; Ceccarelli, P.S.; Tavares-Dias, M. An outbreak of Ichthyophthirius multifiliis (Ciliophora: Ichthyophthiriidae) in wild endemic fish fauna Steindachneridium parahybae (Siluriformes: Pimelodiae) in Brazil. Ann. Parasitol., 2019, 65(4), 417-421.
[PMID: 32191990]
[34]
Zhao, F.; Li, Y.W.; Pan, H.J.; Wu, S.Q.; Shi, C.B.; Luo, X.C.; Li, A.X. Grass carp (Ctenopharyngodon idella) TRAF6 and TAK1: Molecular cloning and expression analysis after Ichthyophthirius multifiliis infection. Fish Shellfish Immunol., 2013, 34(6), 1514-1523.
[http://dx.doi.org/10.1016/j.fsi.2013.03.003] [PMID: 23542602]
[35]
Jørgensen, T.R.; Larsen, T.B.; Buchmann, K. Parasite infections in recirculated rainbow trout (Oncorhynchus mykiss) farms. Aquaculture, 2009, 289(1), 91-94.
[http://dx.doi.org/10.1016/j.aquaculture.2008.12.030]
[36]
Buchmann, K.; Bresciani, J. Parasitic infections in pond-reared rainbow trout Oncorhynchus mykiss in Denmark. Dis. Aquat. Organ., 1997, 28(2), 125-138.
[http://dx.doi.org/10.3354/dao028125]
[37]
Valtonen, E.T.; Koskivaara, M. Relationships between the parasites of some wild and cultured fishes in two lakes and a fish farm in central Finland. Int. J. Parasitol., 1994, 24(1), 109-118.
[http://dx.doi.org/10.1016/0020-7519(94)90064-7] [PMID: 8021098]
[38]
Jørgensen, L.V.G. The fish parasite Ichthyophthirius multifiliis - Host immunology, vaccines and novel treatments. Fish Shellfish Immunol., 2017, 67, 586-595.
[http://dx.doi.org/10.1016/j.fsi.2017.06.044] [PMID: 28634009]
[39]
Wei, J.Z.; Li, H.; Yu, H. Ichthyophthiriasis: Emphases on the epizootiology. Lett. Appl. Microbiol., 2013, 57(2), 91-101.
[http://dx.doi.org/10.1111/lam.12079] [PMID: 23565747]
[40]
Lin, D-J.; Hua, Y.N.; Zhang, Q.Z.; Xu, D.H.; Fu, Y.W.; Liu, Y.M.; Zhou, S.Y. Evaluation of medicated feeds with antiparasitical and immune-enhanced Chinese herbal medicines against Ichthyophthirius multifiliis in grass carp (Ctenopharyngodon idellus). Parasitol. Res., 2016, 115(6), 2473-2483.
[http://dx.doi.org/10.1007/s00436-016-5000-y] [PMID: 27003405]
[41]
Liu, Y-M.; Zhang, Q.Z.; Xu, D.H.; Fu, Y.W.; Lin, D.J.; Zhou, S.Y.; Li, J.P. Antiparasitic efficacy of curcumin from Curcuma longa against Ichthyophthirius multifiliis in grass carp. Vet. Parasitol., 2017, 236, 128-136.
[http://dx.doi.org/10.1016/j.vetpar.2017.02.011] [PMID: 28288756]
[42]
Saleh, M.; Abdel-Baki, A.A.; Dkhil, M.A.; El-Matbouli, M.; Al-Quraishy, S. Antiprotozoal effects of metal nanoparticles against Ichthyophthirius multifiliis. Parasitology, 2017, 144(13), 1802-1810.
[http://dx.doi.org/10.1017/S0031182017001184] [PMID: 28697814]
[43]
Alcala-Canto, Y.; Figueroa-Castillo, J.A.; Ibarra-Velarde, F.; Vera-Montenegro, Y.; Cervantes-Valencia, M.E.; Alberti-Navarro, A. First database of the spatial distribution of Eimeria species of cattle, sheep and goats in Mexico. Parasitol. Res., 2020, 119(3), 1057-1074.
[http://dx.doi.org/10.1007/s00436-019-06548-8] [PMID: 31901110]
[44]
Godwin, R.M.; Morgan, J.A.T. A molecular survey of Eimeria in chickens across Australia. Vet. Parasitol., 2015, 214(1-2), 16-21.
[http://dx.doi.org/10.1016/j.vetpar.2015.09.030] [PMID: 26467277]
[45]
Williams, R.B.; Marshall, R.N.; Pagés, M.; Dardi, M.; del Cacho, E. Pathogenesis of Eimeria praecox in chickens: Virulence of field strains compared with laboratory strains of E. praecox and Eimeria acervulina. Avian Pathol., 2009, 38(5), 359-366.
[http://dx.doi.org/10.1080/03079450903186028] [PMID: 19937523]
[46]
Thenmozhi, V.; Veerakumari, L.; Raman, M. Preliminary genetic diversity study on different isolates of eimeria tenella from south india. Int. J. Adv. Vet. Sci. Tech.,, 2014, 114-118.
[47]
Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. Worlds Poult. Sci. J., 2019, 73(2), 245-256.
[http://dx.doi.org/10.1017/S0043933917000071]
[48]
Clark, E.L.; Tomley, F.M.; Blake, D.P. Are Eimeria genetically diverse, and does it matter? Trends Parasitol., 2017, 33(3), 231-241.
[http://dx.doi.org/10.1016/j.pt.2016.08.007] [PMID: 27593338]
[49]
Blake, D.P.; Clark, E.L.; Macdonald, S.E.; Thenmozhi, V.; Kundu, K.; Garg, R.; Jatau, I.D.; Ayoade, S.; Kawahara, F.; Moftah, A.; Reid, A.J.; Adebambo, A.O.; Álvarez Zapata, R.; Srinivasa Rao, A.S.; Thangaraj, K.; Banerjee, P.S.; Dhinakar-Raj, G.; Raman, M.; Tomley, F.M. Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development. Proc. Natl. Acad. Sci. USA, 2015, 112(38), E5343-E5350.
[http://dx.doi.org/10.1073/pnas.1506468112] [PMID: 26354122]
[50]
Haug, A.; Gjevre, A.G.; Thebo, P.; Mattsson, J.G.; Kaldhusdal, M. Coccidial infections in commercial broilers: Epidemiological aspects and comparison of Eimeria species identification by morphometric and polymerase chain reaction techniques. Avian Pathol., 2008, 37(2), 161-170.
[http://dx.doi.org/10.1080/03079450801915130] [PMID: 18393094]
[51]
Jenkins, M.; Allen, P.; Wilkins, G.; Klopp, S.; Miska, K. Eimeria praecox infection ameliorates effects of Eimeria maxima infection in chickens. Vet. Parasitol., 2008, 155(1-2), 10-14.
[http://dx.doi.org/10.1016/j.vetpar.2008.04.013] [PMID: 18556129]
[52]
Fatoba, A.J.; Adeleke, M.A. Diagnosis and control of chicken coccidiosis: A recent update. J. Parasit. Dis., 2018, 42(4), 483-493.
[http://dx.doi.org/10.1007/s12639-018-1048-1] [PMID: 30538344]
[53]
Dkhil, M.A.; Al-Quraishy, S.; Wahab, R. Anticoccidial and antioxidant activities of zinc oxide nanoparticles on Eimeria papillata-induced infection in the jejunum. Int. J. Nanomedicine, 2015, 10, 1961-1968.
[http://dx.doi.org/10.2147/IJN.S79944] [PMID: 25792829]
[54]
Ji, F. Changes in the diversity and composition of gut microbiota in pigeon squabs infected with Trichomonas gallinae. Sci. Rep., 2020, 10.
[55]
Martínez-Herrero, M.D.C.; Garijo-Toledo, M.M.; González, F.; Bilic, I.; Liebhart, D.; Ganas, P.; Hess, M.; Gómez-Muñoz, M.T. Membrane associated proteins of two Trichomonas gallinae clones vary with the virulence. PLoS One, 2019, 14(10)e0224032
[http://dx.doi.org/10.1371/journal.pone.0224032] [PMID: 31647841]
[56]
Arfin, S.; Sayeed, M.A.; Sultana, S.; Dash, A.K.; Hossen, M.L. Prevalence of Trichomonas gallinae infection in Pigeon of Jessore District, Bangladesh. J. Adv. Vet. Anim. Res., 2019, 6(4), 549-552.
[http://dx.doi.org/10.5455/javar.2019.f381] [PMID: 31819885]
[57]
Feng, S-Y.; Chang, H.; Li, F.H.; Wang, C.M.; Luo, J.; He, H.X. Prevalence and molecular characterization of Trichomonas gallinae from domestic pigeons in Beijing, China. Infect. Genet. Evol., 2018, 65, 369-372.
[http://dx.doi.org/10.1016/j.meegid.2018.08.021] [PMID: 30145387]
[58]
Rouffaer, L.O.; Adriaensen, C.; De Boeck, C.; Claerebout, E.; Martel, A. Racing pigeons: A reservoir for nitro-imidazole-resistant Trichomonas gallinae. J. Parasitol., 2014, 100(3), 360-363.
[http://dx.doi.org/10.1645/13-359.1] [PMID: 24456034]
[59]
Lashkenari, M.S. in vitro antiprotozoal activity of poly(rhodanine)-coated zinc oxide nanoparticles against Trichomonas gallinae. J. Dispers. Sci. Technol., 2019, 41(4), 495-502.
[http://dx.doi.org/10.1080/01932691.2019.1591972]
[60]
Alebie, G.; Erko, B.; Aemero, M.; Petros, B. Epidemiological study on Schistosoma mansoni infection in Sanja area, Amhara region, Ethiopia. Parasit. Vectors, 2014, 7, 15.
[http://dx.doi.org/10.1186/1756-3305-7-15] [PMID: 24406075]
[61]
CDC. Schistosomiasis - epidemiology & risk factors. 2020. Available from: . https://www.cdc.gov/parasites/schistosomiasis/epi.html[Acesso em: 20 dez. 2020]
[62]
Ferrari, T.C.A.; Moreira, P.R.R.; Cunha, A.S. Clinical characterization of neuroschistosomiasis due to Schistosoma mansoni and its treatment. Acta Trop., 2008, 108(2-3), 89-97.
[http://dx.doi.org/10.1016/j.actatropica.2008.04.007] [PMID: 18499080]
[63]
Lu, C-Y.; Zhao, S.; Wei, Y. Cerebral schistosomiasis: MRI features with pathological correlation. Acta Radiol., 2020.284185120934475
[http://dx.doi.org/10.1177/0284185120934475] [PMID: 32605377]
[64]
Faust, C.L.; Crotti, M.; Moses, A.; Oguttu, D.; Wamboko, A.; Adriko, M.; Adekanle, E.K.; Kabatereine, N.; Tukahebwa, E.M.; Norton, A.J.; Gower, C.M.; Webster, J.P.; Lamberton, P.H.L. Two-year longitudinal survey reveals high genetic diversity of Schistosoma mansoni with adult worms surviving praziquantel treatment at the start of mass drug administration in Uganda. Parasit. Vectors, 2019, 12(1), 607.
[http://dx.doi.org/10.1186/s13071-019-3860-6] [PMID: 31881923]
[65]
Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gärtner, F.; Correia da Costa, J.M. Praziquantel for schistosomiasis: Single-drug metabolism revisited, mode of action, and resistance. Antimicrob. Agents Chemother., 2017, 61(5), e02582-16.
[http://dx.doi.org/10.1128/AAC.02582-16] [PMID: 28264841]
[66]
Darwish, A.S.; Bayaumy, F.E.A.; Ismail, H.M. Photoactivated water-disinfecting, and biological properties of Ag NPs@Sm-doped ZnO nanorods/cuttlefish bone composite: In-vitro bactericidal, cercaricidal and schistosomicidal studies. Mater. Sci. Eng. C, 2018, 93, 996-1011.
[http://dx.doi.org/10.1016/j.msec.2018.09.007] [PMID: 30274138]
[67]
Bauomy, A.A. Zinc oxide nanoparticles and L-carnitine effects on neuro-schistosomiasis mansoni induced in mice. Environ. Sci. Pollut. Res. Int., 2020, 27(15), 18699-18707.
[http://dx.doi.org/10.1007/s11356-020-08356-5] [PMID: 32207001]
[68]
Elseadawy, R.; Abbas, I.; Al-Araby, M.; Hildreth, M.B.; Abu-Elwafa, S. First evidence of teladorsagia circumcincta infection in sheep from egypt. J. Parasitol., 2019, 105(4), 484-490.
[http://dx.doi.org/10.1645/18-202] [PMID: 31268411]
[69]
Roeber, F.; Jex, A.R.; Gasser, R.B. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective. Parasit. Vectors, 2013, 6, 153.
[http://dx.doi.org/10.1186/1756-3305-6-153] [PMID: 23711194]
[70]
Naem, S.; Gorgani, T. Gastrointestinal parasitic infection of slaughtered sheep (Zel breed) in Fereidoonkenar city, Iran. Vet. Res. Forum, 2011, 2(4), 238-241.
[71]
Tariq, K.A.; Chishti, M.Z.; Ahmad, F. Gastro-intestinal nematode infections in goats relative to season, host sex and age from the Kashmir valley, India. J. Helminthol., 2010, 84(1), 93-97.
[http://dx.doi.org/10.1017/S0022149X09990113] [PMID: 19627625]
[72]
Waghorn, T.S.; Leathwick, D.M.; Rhodes, A.P.; Lawrence, K.E.; Jackson, R.; Pomroy, W.E.; West, D.M.; Moffat, J.R. Prevalence of anthelmintic resistance on sheep farms in New Zealand. N. Z. Vet. J., 2006, 54(6), 271-277.
[http://dx.doi.org/10.1080/00480169.2006.36710] [PMID: 17151724]
[73]
Keegan, J.D.; Good, B.; de Waal, T.; Fanning, J.; Keane, O.M. Genetic basis of benzimidazole resistance in Teladorsagia circumcincta in Ireland. Ir. Vet. J., 2017, 70, 8.
[http://dx.doi.org/10.1186/s13620-017-0087-8] [PMID: 28228936]
[74]
Nemati, R.; Bahari, A.; Mahmoodi, P.; Sazmand, A. Molecular study of benzimidazole resistance in teladorsagia circumcincta isolated from sheep in north of iran. Iran. J. Parasitol., 2019, 14(4), 646-651.
[http://dx.doi.org/10.18502/ijpa.v14i4.2108] [PMID: 32099568]
[75]
Nisbet, A.J.; McNeilly, T.N.; Greer, A.W.; Bartley, Y.; Oliver, E.M.; Smith, S.; Palarea-Albaladejo, J.; Matthews, J.B. Protection of ewes against Teladorsagia circumcincta infection in the periparturient period by vaccination with recombinant antigens. Vet. Parasitol., 2016, 228, 130-136.
[http://dx.doi.org/10.1016/j.vetpar.2016.09.002] [PMID: 27692315]
[76]
Khan, Y.A.; Singh, B.R.; Ullah, R.; Shoeb, M.; Naqvi, A.H.; Abidi, S.M. Anthelmintic effect of biocompatible zinc oxide nanoparticles (zno nps) on gigantocotyle explanatum, a neglected parasite of indian water buffalo. PLoS One, 2015, 10(7)e0133086
[http://dx.doi.org/10.1371/journal.pone.0133086] [PMID: 26177503]
[77]
Hanna, R.E.; Williamson, D.S.; Mattison, R.G.; Nizami, W.A. Seasonal reproduction in Paramphistomum epiclitum and Gastrothylax crumenifer, rumen paramphistomes of the Indian water buffalo, and comparison with the biliary paramphistome Gigantocotyle explanatum. Int. J. Parasitol., 1988, 18(4), 513-521.
[http://dx.doi.org/10.1016/0020-7519(88)90016-1] [PMID: 3417379]
[78]
Swarup, D.; Pachauri, S.P.; Mukherjee, S.C. (GOVIND B. P. U. OF A. AND T. Prevalence and clinico-pathology of naturally occurring fascioliasis and biliary amphistomiasis in buffaloes. Indian J. Anim. Sci., 1987.
[79]
Rehman, A. In vitro anthelmintic effect of biologically synthesized silver nanoparticles on liver amphistome, Gigantocotyle explanatum. Exp. Parasitol., 2019, 198, 95-104.
[80]
Fairweather, I.; Brennan, G.P.; Hanna, R.E.B.; Robinson, M.W.; Skuce, P.J. Drug resistance in liver flukes. Int. J. Parasitol. Drugs Drug Resist., 2020, 12, 39-59.
[http://dx.doi.org/10.1016/j.ijpddr.2019.11.003] [PMID: 32179499]
[81]
Hoberg, E.P.; Zarlenga, D.S. Evolution and biogeography of haemonchus contortus: Linking faunal dynamics in space and time. Adv. Parasitol., 2016, 93, 1-30.
[http://dx.doi.org/10.1016/bs.apar.2016.02.021] [PMID: 27238001]
[82]
Emery, D.L.; Hunt, P.W.; Le Jambre, L.F. Haemonchus contortus: The then and now, and where to from here? Int. J. Parasitol., 2016, 46(12), 755-769.
[http://dx.doi.org/10.1016/j.ijpara.2016.07.001] [PMID: 27620133]
[83]
Esmaeilnejad, B.; Samiei, A.; Mirzaei, Y.; Farhang-Pajuh, F. Assessment of oxidative/nitrosative stress biomarkers and DNA damage in Haemonchus contortus, following exposure to zinc oxide nanoparticles. Acta Parasitol., 2018, 63(3), 563-571.
[http://dx.doi.org/10.1515/ap-2018-0065] [PMID: 29975659]
[84]
Besier, R.B.; Kahn, L.P.; Sargison, N.D.; Van Wyk, J.A. Diagnosis, treatment and management of haemonchus contortus in small ruminants. Adv. Parasitol., 2016, 93, 181-238.
[http://dx.doi.org/10.1016/bs.apar.2016.02.024] [PMID: 27238006]
[85]
Audu, Z.; Abalaka, S.E. Toxocara vitulorum intestinal impaction in male White Fulani calves: A case report from Nigeria. J. Parasit. Dis., 2019, 43(4), 597-600.
[http://dx.doi.org/10.1007/s12639-019-01133-3] [PMID: 31749530]
[86]
Delling, C.; Thielebein, J.; Daugschies, A.; Schmäschke, R. Toxocara vitulorum infection in european bison (bison bonasus) calves from central germany. Vet. Parasitol. Reg. Stud. Rep., 2020, 22100499
[http://dx.doi.org/10.1016/j.vprsr.2020.100499] [PMID: 33308742]
[87]
Venjakob, P.L.; Thiele, G.; Clausen, P.H.; Nijhof, A.M. Toxocara vitulorum infection in German beef cattle. Parasitol. Res., 2017, 116(3), 1085-1088.
[http://dx.doi.org/10.1007/s00436-017-5393-2] [PMID: 28155105]
[88]
Li, K.; Lan, Y.; Luo, H.; Zhang, H.; Liu, D.; Zhang, L.; Gui, R.; Wang, L.; Shahzad, M.; Sizhu, S.; Li, J.; Chamba, Y. Prevalence, associated risk factors, and phylogenetic analysis of toxocara vitulorum infection in yaks on the qinghai tibetan plateau, china. Korean J. Parasitol., 2016, 54(5), 645-652.
[http://dx.doi.org/10.3347/kjp.2016.54.5.645] [PMID: 27853122]
[89]
Dorostkar, R. Anthelmintic effects of zinc oxide and iron oxide nanoparticles against Toxocara vitulorum. Int. Nano Lett., 2017, 7(2), 157-164.
[http://dx.doi.org/10.1007/s40089-016-0198-3]
[90]
Burk, S.V.; Dangoudoubiyam, S.; Brewster-Barnes, T.; Howe, D.K.; Carter, C.N.; Bryant, U.K.; Rossano, M.G. Equine antibody response to larval Parascaris equorum excretory-secretory products. Vet. Parasitol., 2016, 226, 83-87.
[http://dx.doi.org/10.1016/j.vetpar.2016.06.036] [PMID: 27514890]
[91]
Peng, Z.; Shen, D.; Zhang, D.; Li, X.; Wang, L.; Zhai, Q.; Hou, Z.; Li, H. Genetic characteristics and phylogenetic relationship of Parascaris spp. from Equus zebra, E. caballus, and E. asinus. Vet. Parasitol., 2019, 271, 76-79.
[http://dx.doi.org/10.1016/j.vetpar.2019.06.013] [PMID: 31303209]
[92]
Morsy, K.; Bashtar, A.R.; Al Quraishy, S.; Adel, S. Description of two equine nematodes, Parascaris equorum Goeze 1782 and Habronema microstoma Schneider 1866 from the domestic horse Equus ferus caballus (Famisly: Equidae) in Egypt. Parasitol. Res., 2016, 115(11), 4299-4306.
[http://dx.doi.org/10.1007/s00436-016-5212-1] [PMID: 27539725]
[93]
Gao, J.F.; Zhang, X.X.; Wang, X.X.; Li, Q.; Li, Y.; Xu, W.W.; Gao, Y.; Wang, C.R. According to mitochondrial DNA evidence, Parascaris equorum and Parascaris univalens may represent the same species. J. Helminthol., 2019, 93(3), 383-388.
[http://dx.doi.org/10.1017/S0022149X18000330] [PMID: 29792237]
[94]
Armstrong, S.K.; Woodgate, R.G.; Gough, S.; Heller, J.; Sangster, N.C.; Hughes, K.J. The efficacy of ivermectin, pyrantel and fenbendazole against Parascaris equorum infection in foals on farms in Australia. Vet. Parasitol., 2014, 205(3-4), 575-580.
[http://dx.doi.org/10.1016/j.vetpar.2014.08.028] [PMID: 25224788]
[95]
Laugier, C.; Sevin, C.; Ménard, S.; Maillard, K. Prevalence of Parascaris equorum infection in foals on French stud farms and first report of ivermectin-resistant P. equorum populations in France. Vet. Parasitol., 2012, 188(1-2), 185-189.
[http://dx.doi.org/10.1016/j.vetpar.2012.02.022] [PMID: 22494940]
[96]
Morsy, K.; Fahmy, S.; Mohamed, A.; Ali, S.; El-Garhy, M.; Shazly, M. Optimizing and evaluating the antihelminthic activity of the biocompatible zinc oxide nanoparticles against the ascaridid nematode, parascaris equorum in vitro. Acta Parasitol., 2019, 64(4), 873-886.
[http://dx.doi.org/10.2478/s11686-019-00111-2] [PMID: 31478140]
[97]
Wen, H.; Vuitton, L.; Tuxun, T.; Li, J.; Vuitton, D.A.; Zhang, W.; McManus, D.P. Echinococcosis: Advances in the 21st century. Clin. Microbiol. Rev., 2019, 32(2), e00075-18.
[http://dx.doi.org/10.1128/CMR.00075-18] [PMID: 30760475]
[98]
Larrieu, E.; Gavidia, C.M.; Lightowlers, M.W. Control of cystic echinococcosis: Background and prospects. Zoonoses Public Health, 2019, 66(8), 889-899.
[http://dx.doi.org/10.1111/zph.12649] [PMID: 31529690]
[99]
Agudelo Higuita, N.I.; Brunetti, E.; McCloskey, C. Cystic echinococcosis. J. Clin. Microbiol., 2016, 54(3), 518-523.
[http://dx.doi.org/10.1128/JCM.02420-15] [PMID: 26677245]
[100]
Baradan Bagheri, A.; Zibaei, M.; Tayebi Arasteh, M. Cystic echinococcosis: A rare case of brain localization. Iran. J. Parasitol., 2017, 12(1), 152-155.
[PMID: 28761474]
[101]
Collado-Aliaga, J.; Romero-Alegría, Á.; Alonso-Sardón, M.; Muro, A.; López-Bernus, A.; Velasco-Tirado, V.; Muñoz Bellido, J.L.; Pardo-Lledias, J.; Belhassen-García, M. Complications associated with initial clinical presentation of cystic echinococcosis: A 20-year cohort analysis. Am. J. Trop. Med. Hyg., 2019, 101(3), 628-635.
[http://dx.doi.org/10.4269/ajtmh.19-0019] [PMID: 31359859]
[102]
Patkowski, W.; Krasnodębski, M.; Grąt, M.; Masior, Ł.; Krawczyk, M. Surgical treatment of hepatic Echinococcus granulosus. Prz. Gastroenterol., 2017, 12(3), 199-202.
[http://dx.doi.org/10.5114/pg.2017.70473] [PMID: 29123581]
[103]
Kohansal, M.H.; Nourian, A.; Rahimi, M.T.; Daryani, A.; Spotin, A.; Ahmadpour, E. Natural products applied against hydatid cyst protoscolices: A review of past to present. Acta Trop., 2017, 176, 385-394.
[http://dx.doi.org/10.1016/j.actatropica.2017.09.013] [PMID: 28935552]
[104]
Norouzi, R.; Ataei, A.; Hejazy, M.; Noreddin, A.; El Zowalaty, M.E. Scolicidal effects of nanoparticles against hydatid cyst protoscolices in vitro. Int. J. Nanomedicine, 2020, 15, 1095-1100.
[http://dx.doi.org/10.2147/IJN.S228538] [PMID: 32110009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy