Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Current Insight into the Therapeutic Potential of Phytocompounds and their Nanoparticle-Based Systems for Effective Management of Lung Cancer

Author(s): Mahak Fatima, Mohammad Kashif Iqubal, Ashif Iqubal, Harsimran Kaur, Sadaf Jamal Gilani, Md. Habibur Rahman, Amirhossein Ahmadi and Md. Rizwanullah*

Volume 22, Issue 4, 2022

Published on: 08 July, 2021

Page: [668 - 686] Pages: 19

DOI: 10.2174/1871520621666210708123750

Price: $65

Abstract

Lung cancer is the second most common cancer and the primary cause of cancer-related death in both men and women worldwide. Due to diagnosis at an advanced stage, it is associated with high mortality in the majority of patients. At present, various treatment approaches are available, such as chemotherapy, surgery, and radiotherapy, but all these approaches usually cause serious side effects like degeneration of normal cells, bone marrow depression, alopecia, extensive vomiting, etc. To overcome the aforementioned problems, researchers have focused on the alternative therapeutic approach in which various natural compounds are reported, which possessed anti-lung cancer activity. Phytocompounds exhibit their anti lung cancer activity via targeting various cell-signaling pathways, apoptosis and cell cycle arrest, and by regulating antioxidant status and detoxification. Apart from the excellent anti-cancer activity, clinical administration of phytocompounds is confined because of their high lipophilicity and low bioavailability. Therefore, researchers show their concern in the development of a stable, safe and effective approach of treatment with minimal side effects by the development of nanoparticle-based delivery of these phytocompounds to the target site. Targeted delivery of phytocompound through nanoparticles overcomes the aforementioned problems. In this article, the molecular mechanism of phytocompounds, their emerging combination therapy, and their nanoparticles-based delivery systems in the treatment of lung cancer have been discussed.

Keywords: Phytocompounds, lung cancer, molecular mechanism, drug delivery, nanoparticles, therapeutic efficacy.

Graphical Abstract
[1]
Hung, J.Y.; Chang, W.A.; Tsai, Y.M.; Hsu, Y.L.; Chiang, H.H.; Chou, S.H.; Huang, M.S.; Kuo, P.L. Tricetin, a dietary flavonoid, suppresses benzo(a)pyrene induced human non small cell lung cancer bone metastasis. Int. J. Oncol., 2015, 46(5), 1985-1993.
[http://dx.doi.org/10.3892/ijo.2015.2915] [PMID: 25738754]
[2]
Iqbal, M.A.; Arora, S.; Prakasam, G.; Calin, G.A.; Syed, M.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol. Aspects Med., 2019, 70, 3-20.
[http://dx.doi.org/10.1016/j.mam.2018.07.003] [PMID: 30102929]
[3]
MacKinnon, A.C.; Kopatz, J.; Sethi, T. The molecular and cellular biology of lung cancer: Identifying novel therapeutic strategies. Br. Med. Bull., 2010, 95, 47-61.
[http://dx.doi.org/10.1093/bmb/ldq023] [PMID: 20643690]
[4]
Doll, R.; Peto, R.; Boreham, J.; Sutherland, I. Mortality in relation to smoking: 50 years’ observations on male British doctors. BMJ, 2004, 328(7455), 1519.
[http://dx.doi.org/10.1136/bmj.38142.554479.AE] [PMID: 15213107]
[5]
Garfinkel, L.; Stellman, S.D. Smoking and lung cancer in women: Findings in a prospective study. Cancer Res., 1988, 48(23), 6951-6955.
[PMID: 3180103]
[6]
Perry, J.L.; Tian, S.; Sengottuvel, N.; Harrison, E.B.; Gorentla, B.K.; Kapadia, C.H.; Cheng, N.; Luft, J.C.; Ting, J.P.; DeSimone, J.M.; Pecot, C.V. Pulmonary delivery of nanoparticle-bound toll-like receptor 9 agonist for the treatment of metastatic lung cancer. ACS Nano, 2020, 14(6), 7200-7215.
[http://dx.doi.org/10.1021/acsnano.0c02207] [PMID: 32463690]
[7]
Brims, F.J.H.; Kong, K.; Harris, E.J.A.; Sodhi-Berry, N.; Reid, A.; Murray, C.P.; Franklin, P.J.; Musk, A.B.; de Klerk, N.H. Pleural plaques and the risk of lung cancer in asbestos-exposed subjects. Am. J. Respir. Crit. Care Med., 2020, 201(1), 57-62.
[http://dx.doi.org/10.1164/rccm.201901-0096OC] [PMID: 31433952]
[8]
Kinoshita, T.; Goto, T. Molecular mechanisms of pulmonary fibrogenesis and its progression to lung cancer: A review. Int. J. Mol. Sci., 2019, 20(6), 1-16.
[http://dx.doi.org/10.3390/ijms20061461] [PMID: 30909462]
[9]
Panov, S.Z. Molecular biology of the lung cancer. Radiol. Oncol., 2005, 39(3), 197-210.
[10]
Inamura, K. Lung cancer: Understanding its molecular pathology and the 2015 WHO classification. Front. Oncol., 2017, 7, 193.
[http://dx.doi.org/10.3389/fonc.2017.00193] [PMID: 28894699]
[11]
Xie, J.; Yang, Z.; Zhou, C.; Zhu, J.; Lee, R.J.; Teng, L. Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol. Adv., 2016, 34(4), 343-353.
[http://dx.doi.org/10.1016/j.biotechadv.2016.04.002] [PMID: 27071534]
[12]
Rizwanullah, M.; Amin, S.; Mir, S.R.; Fakhri, K.U.; Rizvi, M.M.A. Phytochemical based nanomedicines against cancer: Current status and future prospects. J. Drug Target., 2018, 26(9), 731-752.
[http://dx.doi.org/10.1080/1061186X.2017.1408115] [PMID: 29157022]
[13]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[14]
Rizwanullah, M.; Ahmad, M.Z.; Garg, A.; Ahmad, J. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(9), 129936.
[http://dx.doi.org/10.1016/j.bbagen.2021.129936] [PMID: 34058266]
[15]
Ahmad, M.Z.; Rizwanullah, M.; Ahmad, J.; Alasmary, M.Y.; Akhter, M.H.; Abdel-Wahab, B.A.; Warsi, M.H.; Haque, A. Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy. Int. J. Polym. Mater. Polym. Biomater., 2021, 70, 1-22.
[http://dx.doi.org/10.1080/00914037.2020.1869737]
[16]
Alshehri, S.; Imam, S.S.; Rizwanullah, M.; Akhter, S.; Mahdi, W.; Kazi, M.; Ahmad, J. Progress of cancer nanotechnology as diagnostics, therapeutics, and theranostics nanomedicine: Preclinical promise and translational challenges. Pharmaceutics, 2020, 13(1), 24.
[http://dx.doi.org/10.3390/pharmaceutics13010024] [PMID: 33374391]
[17]
Hou, W.; Hu, S.; Li, C.; Ma, H.; Wang, Q.; Meng, G.; Guo, T.; Zhang, J. Cigarette smoke induced lung barrier dysfunction, EMT, and tissue remodeling: A possible link between COPD and lung cancer. BioMed Res. Int., 2019, 2019, 2025636.
[http://dx.doi.org/10.1155/2019/2025636] [PMID: 31341890]
[18]
Duan, W.; Gao, L.; Kalvala, A.; Aguila, B.; Brooks, C.; Mo, X.; Ding, H.; Shilo, K.; Otterson, G.A.; Villalona-Calero, M.A. Type of TP53 mutation influences oncogenic potential and spectrum of associated K-ras mutations in lung-specific transgenic mice. Int. J. Cancer, 2019, 145(9), 2418-2426.
[http://dx.doi.org/10.1002/ijc.32279] [PMID: 30873587]
[19]
Zhang, Y.; Han, C.Y.; Duan, F.G.; Fan, X.X.; Yao, X.J.; Parks, R.J.; Tang, Y.J.; Wang, M.F.; Liu, L.; Tsang, B.K.; Leung, E.L. p53 sensitizes chemoresistant non-small cell lung cancer via elevation of reactive oxygen species and suppression of EGFR/PI3K/AKT signaling. Cancer Cell Int., 2019, 19(1) Article number 188.
[http://dx.doi.org/10.1186/s12935-019-0910-2] [PMID: 31360122]
[20]
Massion, P.P.; Carbone, D.P. The molecular basis of lung cancer: Molecular abnormalities and therapeutic implications. Respir. Res., 2003, 4(1) Article number 12.
[http://dx.doi.org/10.1186/1465-9921-4-12] [PMID: 14641911]
[21]
Devereux, T.R.; Taylor, J.A.; Barrett, J.C. Molecular mechanisms of lung cancer. Interaction of environmental and genetic factors. Giles F. Filley Lecture. Chest, 1996, 109(3)(Suppl.), 14S-19S.
[http://dx.doi.org/10.1378/chest.109.3_Supplement.14S] [PMID: 8598134]
[22]
Siemanowski, J.; Heydt, C.; Merkelbach-Bruse, S. Predictive molecular pathology of lung cancer in Germany with focus on gene fusion testing: Methods and quality assurance. Cancer Cytopathol., 2020, 128(9), 611-621.
[http://dx.doi.org/10.1002/cncy.22293] [PMID: 32885916]
[23]
Hibi, K.; Takahashi, T.; Yamakawa, K.; Ueda, R.; Sekido, Y.; Ariyoshi, Y.; Suyama, M.; Takagi, H.; Nakamura, Y.; Takahashi, T. Three distinct regions involved in 3p deletion in human lung cancer. Oncogene, 1992, 7(3), 445-449.
[PMID: 1347916]
[24]
Memmott, R.M.; Dennis, P.A. The role of the Akt/mTOR pathway in tobacco carcinogen-induced lung tumorigenesis. Clin. Cancer Res., 2010, 16(1), 4-10.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0234] [PMID: 20028747]
[25]
Hodkinson, P.S.; Mackinnon, A.; Sethi, T. Targeting growth factors in lung cancer. Chest, 2008, 133(5), 1209-1216.
[http://dx.doi.org/10.1378/chest.07-2680] [PMID: 18460519]
[26]
Xu, X.; Chen, W.; Leng, S.; Padilla, M.T.; Saxton, B.; Hutt, J.; Tessema, M.; Kato, K.; Kim, K.C.; Belinsky, S.A.; Lin, Y. Muc1 knockout potentiates murine lung carcinogenesis involving an epiregulin-mediated EGFR activation feedback loop. Carcinogenesis, 2017, 38(6), 604-614.
[http://dx.doi.org/10.1093/carcin/bgx039] [PMID: 28472347]
[27]
Li, H.; Zhang, Q.; Wu, Q.; Cui, Y.; Zhu, H.; Fang, M.; Zhou, X.; Sun, Z.; Yu, J. Interleukin-22 secreted by cancer-associated fibroblasts regulates the proliferation and metastasis of lung cancer cells via the PI3K-Akt-mTOR signaling pathway. Am. J. Transl. Res., 2019, 11(7), 4077-4088.
[PMID: 31396319]
[28]
Iqubal, A.; Sharma, S.; Najmi, A.K.; Syed, M.A.; Ali, J.; Alam, M.M.; Haque, S.E. Nerolidol ameliorates cyclophosphamide-induced oxidative stress, neuroinflammation and cognitive dysfunction: Plausible role of Nrf2 and NF- κB. Life Sci., 2019, 236, 116867.
[http://dx.doi.org/10.1016/j.lfs.2019.116867] [PMID: 31520598]
[29]
Iqubal, A.; Iqubal, M.K.; Sharma, S.; Ansari, M.A.; Najmi, A.K.; Ali, S.M.; Ali, J.; Haque, S.E. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci., 2019, 218, 112-131.
[http://dx.doi.org/10.1016/j.lfs.2018.12.018] [PMID: 30552952]
[30]
Brassart-Pasco, S.; Brézillon, S.; Brassart, B.; Ramont, L.; Oudart, J.B.; Monboisse, J.C. Tumor microenvironment: Extracellular matrix alterations influence tumor progression. Front. Oncol., 2020, 10, 397.
[http://dx.doi.org/10.3389/fonc.2020.00397] [PMID: 32351878]
[31]
Zhang, J.; Wang, Q.; Wang, Q.; Guo, P.; Wang, Y.; Xing, Y.; Zhang, M.; Liu, F.; Zeng, Q. Chrysophanol exhibits anti-cancer activities in lung cancer cell through regulating ROS/HIF-1a/VEGF signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(3), 469-480.
[http://dx.doi.org/10.1007/s00210-019-01746-8] [PMID: 31655854]
[32]
Cao, C.; Zhu, L.; Chen, Y.; Wang, C.H. ShenTu, J.Z.; Zheng, Y.L. Physalin B induces G2/M cell cycle arrest and apoptosis in A549 human non-small-cell lung cancer cells by altering mitochondrial function. Anticancer Drugs, 2019, 30(2), 128-137.
[http://dx.doi.org/10.1097/CAD.0000000000000701] [PMID: 30335624]
[33]
Sundarraj, K.; Raghunath, A.; Perumal, E. A review on the chemotherapeutic potential of fisetin: in vitro evidences. Biomed. Pharmacother., 2018, 97, 928-940.
[http://dx.doi.org/10.1016/j.biopha.2017.10.164] [PMID: 29136771]
[34]
Hussain, T.; Al-Attas, O.S.; Alamery, S.; Ahmed, M.; Odeibat, H.A.M.; Alrokayan, S. The plant flavonoid, fisetin alle via tes cigarette smoke-induced oxidative stress, and inflammation in Wistar rat lungs. J. Food Biochem., 2019, 43(8), e12962.
[http://dx.doi.org/10.1111/jfbc.12962] [PMID: 31368542]
[35]
Kang, K.A.; Piao, M.J.; Hyun, J.W. Fisetin induces apoptosis in human nonsmall lung cancer cells via a mitochondria-mediated pathway. in vitro Cell. Dev. Biol. Anim., 2015, 51(3), 300-309.
[http://dx.doi.org/10.1007/s11626-014-9830-6] [PMID: 25381036]
[36]
Zanoaga, O.; Braicu, C.; Jurj, A.; Rusu, A.; Buiga, R.; Berindan-Neagoe, I. Progress in research on the role of flavonoids in lung Cancer. Int. J. Mol. Sci., 2019, 20(17), 4291.
[http://dx.doi.org/10.3390/ijms20174291] [PMID: 31480720]
[37]
Wang, J.; Huang, S. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway. Exp. Ther. Med., 2018, 15(3), 2667-2673.
[PMID: 29467859]
[38]
Tabasum, S.; Singh, R.P. Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition. Chem. Biol. Interact., 2019, 303, 14-21.
[http://dx.doi.org/10.1016/j.cbi.2019.02.020] [PMID: 30802432]
[39]
Yang, Y.; Zang, A.; Jia, Y.; Shang, Y.; Zhang, Z.; Ge, K.; Zhang, J.; Fan, W.; Wang, B. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling. Oncol. Lett., 2016, 12(3), 2189-2193.
[http://dx.doi.org/10.3892/ol.2016.4817] [PMID: 27602162]
[40]
Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol., 2019, 10, 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336] [PMID: 31866857]
[41]
Zou, H.; Zhan, S.; Cao, K. Apoptotic activity of genistein on human lung adenocarcinoma SPC-A-1 cells and preliminary exploration of its mechanisms using microarray. Biomed. Pharmacother., 2008, 62(9), 583-589.
[http://dx.doi.org/10.1016/j.biopha.2007.12.010] [PMID: 18295443]
[42]
Lian, F.; Li, Y.; Bhuiyan, M.; Sarkar, F.H. p53-independent apoptosis induced by genistein in lung cancer cells. Nutr. Cancer, 1999, 33(2), 125-131.
[http://dx.doi.org/10.1207/S15327914NC330202] [PMID: 10368806]
[43]
Min, J.; Huang, K.; Tang, H.; Ding, X.; Qi, C.; Qin, X.; Xu, Z.; Xu, Z. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways. Oncol. Rep., 2015, 34(6), 2871-2879.
[http://dx.doi.org/10.3892/or.2015.4325] [PMID: 26503828]
[44]
Ma, L.; Wang, R.; Nan, Y.; Li, W.; Wang, Q.; Jin, F. Phloretin exhibits an anticancer effect and enhances the anticancer ability of cisplatin on non-small cell lung cancer cell lines by regulating expression of apoptotic pathways and matrix metalloproteinases. Int. J. Oncol., 2016, 48(2), 843-853.
[http://dx.doi.org/10.3892/ijo.2015.3304] [PMID: 26692364]
[45]
Sung, B.; Chung, H.Y.; Kim, N.D. Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J. Cancer Prev., 2016, 21(4), 216-226.
[http://dx.doi.org/10.15430/JCP.2016.21.4.216] [PMID: 28053955]
[46]
Yan, X.; Qi, M.; Li, P.; Zhan, Y.; Shao, H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci., 2017, 7, 50.
[http://dx.doi.org/10.1186/s13578-017-0179-x] [PMID: 29034071]
[47]
Zhou, X.; Gao, T.; Jiang, X.G.; Xie, M.L. Protective effect of apigenin on bleomycin-induced pulmonary fibrosis in mice by increments of lung antioxidant ability and PPARγ expression. J. Funct. Foods, 2016, 24, 382-389.
[http://dx.doi.org/10.1016/j.jff.2016.04.039]
[48]
Ardizzoni, A. Camptothecin analogues in the treatment of non-small cell lung cancer. Lung Cancer, 1995, 12(Suppl. 1), S177-S185.
[http://dx.doi.org/10.1016/0169-5002(95)00434-3] [PMID: 7551927]
[49]
Chiu, Y.H.; Hsu, S.H.; Hsu, H.W.; Huang, K.C.; Liu, W.; Wu, C.Y.; Huang, W.P.; Chen, J.Y.F.; Chen, B.H.; Chiu, C.C. Human non small cell lung cancer cells can be sensitized to camptothecin by modulating autophagy. Int. J. Oncol., 2018, 53(5), 1967-1979.
[http://dx.doi.org/10.3892/ijo.2018.4523] [PMID: 30106130]
[50]
Venditto, V.J.; Simanek, E.E. Cancer therapies utilizing the camptothecins: A review of the in vivo literature. Mol. Pharm., 2010, 7(2), 307-349.
[http://dx.doi.org/10.1021/mp900243b] [PMID: 20108971]
[51]
Sánchez-Alcázar, J.A.; Bradbury, D.A.; Brea-Calvo, G.; Navas, P.; Knox, A.J. Camptothecin-induced apoptosis in non-small cell lung cancer is independent of cyclooxygenase expression. Apoptosis, 2003, 8(6), 639-647.
[http://dx.doi.org/10.1023/A:1026147812000] [PMID: 14739609]
[52]
Tsai, J.R.; Liu, P.L.; Chen, Y.H.; Chou, S.H.; Cheng, Y.J.; Hwang, J.J.; Chong, I.W. Curcumin inhibits non-small cell lung cancer cells metastasis through the adiponectin/NF-κb/MMPs signaling pathway. PLoS One, 2015, 10(12), e0144462.
[http://dx.doi.org/10.1371/journal.pone.0144462] [PMID: 26656720]
[53]
Sen, S.; Sharma, H.; Singh, N. Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem. Biophys. Res. Commun., 2005, 331(4), 1245-1252.
[http://dx.doi.org/10.1016/j.bbrc.2005.04.044] [PMID: 15883009]
[54]
Amararathna, M.; Johnston, M.R.; Rupasinghe, H.P. Plant polyphenols as chemopreventive agents for lung cancer. Int. J. Mol. Sci., 2016, 17(8), 1352.
[http://dx.doi.org/10.3390/ijms17081352] [PMID: 27548149]
[55]
Tang, L.; Liu, J.; Zhu, L.; Chen, Q.; Meng, Z.; Sun, L.; Hu, J.; Ni, Z.; Wang, X. Curcumin inhibits growth of human nci-h292 lung squamous cell carcinoma cells by increasing foxa2 expression. Front. Pharmacol., 2018, 9, 60.
[http://dx.doi.org/10.3389/fphar.2018.00060] [PMID: 29456509]
[56]
Xu, H.; Wang, L.; Shi, B.; Hu, L.; Gan, C.; Wang, Y.; Xiang, Z.; Wang, X.; Sheng, J. Caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylation. Biomed. Pharmacother., 2020, 129, 110441.
[http://dx.doi.org/10.1016/j.biopha.2020.110441] [PMID: 32580047]
[57]
Reno, T.A.; Kim, J.Y.; Raz, D.J. Triptolide inhibits lung cancer cell migration, invasion, and metastasis. Ann. Thorac. Surg., 2015, 100(5), 1817-1824.
[http://dx.doi.org/10.1016/j.athoracsur.2015.05.074] [PMID: 26298168]
[58]
Noel, P.; Von Hoff, D.D.; Saluja, A.K.; Velagapudi, M.; Borazanci, E.; Han, H. Triptolide and its derivatives as cancer therapies. Trends Pharmacol. Sci., 2019, 40(5), 327-341.
[http://dx.doi.org/10.1016/j.tips.2019.03.002] [PMID: 30975442]
[59]
Ziaei, S.; Halaby, R. Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: A mini review. Avicenna J. Phytomed., 2016, 6(2), 149-164.
[PMID: 27222828]
[60]
Liu, T.; Liu, X.; Li, W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget, 2016, 7(26), 40800-40815.
[http://dx.doi.org/10.18632/oncotarget.8315] [PMID: 27027348]
[61]
Bhagya, N.; Chandrashekar, K.R. Tetrandrine and cancer - an overview on the molecular approach. Biomed. Pharmacother., 2018, 97, 624-632.
[http://dx.doi.org/10.1016/j.biopha.2017.10.116] [PMID: 29101806]
[62]
Kalalinia, F.; Karimi-Sani, I. Anticancer properties of solamargine: A systematic review. Phytother. Res., 2017, 31(6), 858-870.
[http://dx.doi.org/10.1002/ptr.5809] [PMID: 28383149]
[63]
Liu, L.F.; Liang, C.H.; Shiu, L.Y.; Lin, W.L.; Lin, C.C.; Kuo, K.W. Action of solamargine on human lung cancer cells--enhancement of the susceptibility of cancer cells to TNFs. FEBS Lett., 2004, 577(1-2), 67-74.
[http://dx.doi.org/10.1016/j.febslet.2004.09.064] [PMID: 15527763]
[64]
Lin, Y.; Xu, J.; Liao, H.; Li, L.; Pan, L. Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway. Tumour Biol., 2014, 35(4), 3305-3310.
[http://dx.doi.org/10.1007/s13277-013-1433-4] [PMID: 24272201]
[65]
Rather, R.A.; Bhagat, M. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities. Front. Cell Dev. Biol., 2018, 6, 10.
[http://dx.doi.org/10.3389/fcell.2018.00010] [PMID: 29497610]
[66]
Pradeep, C.R.; Kuttan, G. Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clin. Exp. Metastasis, 2002, 19(8), 703-708.
[http://dx.doi.org/10.1023/A:1021398601388] [PMID: 12553376]
[67]
Wei, W.T.; Lin, S.Z.; Liu, D.L.; Wang, Z.H. The distinct mechanisms of the antitumor activity of emodin in different types of cancer. (Review) Oncol. Rep., 2013, 30(6), 2555-2562. [Review].
[http://dx.doi.org/10.3892/or.2013.2741] [PMID: 24065213]
[68]
Su, J.; Yan, Y.; Qu, J.; Xue, X.; Liu, Z.; Cai, H. Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway. Oncol. Rep., 2017, 37(3), 1565-1572.
[http://dx.doi.org/10.3892/or.2017.5428] [PMID: 28184934]
[69]
Ahmad, B.; Su, P.; Khan, S.Z.; Wahid, F.; Ullah, H.; Ahmad, M.; Hussain, B.; Khan, J.; Shah, S.R. Natural products (apigenin, curcumin and emodin) cure lung cancer. Am. J. Biomed. Sci. Res., 2020, 9(2), 158-161.
[http://dx.doi.org/10.34297/AJBSR.2020.09.001375]
[70]
Giri, A.; Lakshmi Narasu, M. Production of podophyllotoxin from Podophyllum hexandrum: A potential natural product for clinically useful anticancer drugs. Cytotechnology, 2000, 34(1-2), 17-26.
[http://dx.doi.org/10.1023/A:1008138230896] [PMID: 19003377]
[71]
Choi, J.Y.; Hong, W.G.; Cho, J.H.; Kim, E.M.; Kim, J.; Jung, C.H.; Hwang, S.G.; Um, H.D.; Park, J.K.; Park, J.K. Podophyllotoxin acetate triggers anticancer effects against non-small cell lung cancer cells by promoting cell death via cell cycle arrest, ER stress and autophagy. Int. J. Oncol., 2015, 47(4), 1257-1265.
[http://dx.doi.org/10.3892/ijo.2015.3123] [PMID: 26314270]
[72]
Zhong, Z.; Dong, Z.; Yang, L.; Chen, X.; Gong, Z. Inhibition of proliferation of human lung cancer cells by green tea catechins is mediated by upregulation of let-7. Exp. Ther. Med., 2012, 4(2), 267-272.
[http://dx.doi.org/10.3892/etm.2012.580] [PMID: 22970031]
[73]
Joel, S. The comparative clinical pharmacology of vincristine and vindesine: Does vindesine offer any advantage in clinical use? Cancer Treat. Rev., 1996, 21(6), 513-525.
[http://dx.doi.org/10.1016/0305-7372(95)90015-2] [PMID: 8599802]
[74]
Zhong, Y.; Qi, H.; Li, X.; An, M.; Shi, Q.; Qi, J. Tumor supernatant derived from hepatocellular carcinoma cells treated with vincristine sulfate have therapeutic activity. Eur. J. Pharm. Sci., 2020, 155, 105557.
[http://dx.doi.org/10.1016/j.ejps.2020.105557] [PMID: 32946955]
[75]
Costea, T.; Vlad, O.C.; Miclea, L.C.; Ganea, C.; Szöllősi, J.; Mocanu, M.M. Alle via tion of multidrug resistance by flavonoid and non-flavonoid compounds in breast, lung, colorectal and prostate cancer. Int. J. Mol. Sci., 2020, 21(2) ,Article number 401.
[http://dx.doi.org/10.3390/ijms21020401] [PMID: 31936346]
[76]
Xia, H.; Qu, X.L.; Liu, L.Y.; Qian, D.H.; Jing, H.Y. LncRNA MEG3 promotes the sensitivity of vincristine by inhibiting autophagy in lung cancer chemotherapy. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(4), 1020-1027.
[PMID: 29509250]
[77]
Xu, T.P.; Shen, H.; Liu, L.X.; Shu, Y.Q. Plumbagin from Plumbago Zeylanica L induces apoptosis in human non-small cell lung cancer cell lines through NF- κB inactivation. Asian Pac. J. Cancer Prev., 2013, 14(4), 2325-2331.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2325] [PMID: 23725135]
[78]
Yu, T.; Xu, Y.Y.; Zhang, Y.Y.; Li, K.Y.; Shao, Y.; Liu, G. Plumbagin suppresses the human large cell lung cancer cell lines by inhibiting IL-6/STAT3 signaling in vitro. Int. Immunopharmacol., 2018, 55, 290-296.
[http://dx.doi.org/10.1016/j.intimp.2017.12.021] [PMID: 29294439]
[79]
Gomathinayagam, R.; Sowmyalakshmi, S.; Mardhatillah, F.; Kumar, R.; Akbarsha, M.A.; Damodaran, C. Anticancer mechanism of plumbagin, a natural compound, on non-small cell lung cancer cells. Anticancer Res., 2008, 28(2A), 785-792.
[PMID: 18507021]
[80]
Xue, X.; Sun, D.F.; Sun, C.C.; Liu, H.P.; Yue, B.; Zhao, C.R.; Lou, H.X.; Qu, X.J. Inhibitory effect of riccardin D on growth of human non-small cell lung cancer: in vitro and in vivo studies. Lung Cancer, 2012, 76(3), 300-308.
[http://dx.doi.org/10.1016/j.lungcan.2011.12.013] [PMID: 22261315]
[81]
Sun, C.C.; Zhang, Y.S.; Xue, X.; Cheng, Y.N.; Liu, H.P.; Zhao, C.R.; Lou, H.X.; Qu, X.J. Inhibition of angiogenesis involves in anticancer activity of riccardin D, a macrocyclic bisbibenzyl, in human lung carcinoma. Eur. J. Pharmacol., 2011, 667(1-3), 136-143.
[http://dx.doi.org/10.1016/j.ejphar.2011.06.013] [PMID: 21704029]
[82]
Imran, M.; Rauf, A.; Khan, I.A.; Shahbaz, M.; Qaisrani, T.B.; Fatmawati, S.; Abu-Izneid, T.; Imran, A.; Rahman, K.U.; Gondal, T.A. Thymoquinone: A novel strategy to combat cancer: A review. Biomed. Pharmacother., 2018, 106, 390-402.
[http://dx.doi.org/10.1016/j.biopha.2018.06.159] [PMID: 29966985]
[83]
Nithya, G.; Mani, R.; Sakthisekaran, D. Oral administration of thymoquinone attenuates benzo (a) pyrene induced lung carcinogenesis in male Swiss albino mice. Int. J. Pharm. Pharm. Sci., 2014, 6, 260-263.
[84]
Zhang, Y.; Xu, G.; Zhang, S.; Wang, D.; Saravana Prabha, P.; Zuo, Z. Antitumor research on artemisinin and its bioactive derivatives. Nat. Prod. Bioprospect., 2018, 8(4), 303-319.
[http://dx.doi.org/10.1007/s13659-018-0162-1] [PMID: 29633188]
[85]
Tong, Y.; Liu, Y.; Zheng, H.; Zheng, L.; Liu, W.; Wu, J.; Ou, R.; Zhang, G.; Li, F.; Hu, M.; Liu, Z.; Lu, L. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget, 2016, 7(21), 31413-31428.
[http://dx.doi.org/10.18632/oncotarget.8920] [PMID: 27119499]
[86]
Rassias, D.J.; Weathers, P.J. Dried leaf Artemisia annua efficacy against non-small cell lung cancer. Phytomedicine, 2019, 52, 247-253.
[http://dx.doi.org/10.1016/j.phymed.2018.09.167] [PMID: 30599905]
[87]
Chen, C.; Shenoy, A.K.; Padia, R.; Fang, D.; Jing, Q.; Yang, P.; Su, S.B.; Huang, S. Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2′, 4′-Tetrahydroxychalcone. J. Exp. Clin. Cancer Res., 2018, 37(1), 243.
[http://dx.doi.org/10.1186/s13046-018-0902-4] [PMID: 30285892]
[88]
Gong, W.Y.; Wu, J.F.; Liu, B.J.; Zhang, H.Y.; Cao, Y.X.; Sun, J.; Lv, Y.B.; Wu, X.; Dong, J.C. Flavonoid components in Scutellaria baicalensis inhibit nicotine-induced proliferation, metastasis and lung cancer-associated inflammation in vitro. Int. J. Oncol., 2014, 44(5), 1561-1570.
[http://dx.doi.org/10.3892/ijo.2014.2320] [PMID: 24604573]
[89]
Zhou, W.; Wu, Y.; Pan, M.; Liu, D.; Liu, B. Proliferation and migration of lung cancer could be inhibited by oxymatrine through the regulation for miR-520/VEGF. Am. J. Chin. Med., 2019, 47(4), 865-878.
[http://dx.doi.org/10.1142/S0192415X19500459] [PMID: 31091971]
[90]
Mohan, V.; Agarwal, R.; Singh, R.P. A novel alkaloid, evodiamine causes nuclear localization of cytochrome-C and induces apoptosis independent of p53 in human lung cancer cells. Biochem. Biophys. Res. Commun., 2016, 477(4), 1065-1071.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.037] [PMID: 27402273]
[91]
Chatterjee, P.; Seal, S.; Mukherjee, S.; Kundu, R.; Bhuyan, M.; Barua, N.C.; Baruah, P.K.; Babu, S.P.; Bhattacharya, S. A carbazole alkaloid deactivates mTOR through the suppression of rictor and that induces apoptosis in lung cancer cells. Mol. Cell. Biochem., 2015, 405(1-2), 149-158.
[http://dx.doi.org/10.1007/s11010-015-2406-2] [PMID: 25893736]
[92]
Ong, C.P.; Lee, W.L.; Tang, Y.Q.; Yap, W.H. Honokiol: A review of its anticancer potential and mechanisms. Cancers (Basel), 2019, 12(1), 1-44.
[http://dx.doi.org/10.3390/cancers12010048] [PMID: 31877856]
[93]
Pan, J.; Lee, Y.; Zhang, Q.; Xiong, D.; Wan, T.C.; Wang, Y.; You, M. Honokiol decreases lung cancer metastasis through inhibition of the STAT3 signaling pathway. Cancer Prev. Res. (Phila.), 2017, 10(2), 133-141.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0129] [PMID: 27849557]
[94]
Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.M.; Ouhtit, A. The power of phytochemicals combination in cancer chemoprevention. J. Cancer, 2020, 11(15), 4521-4533.
[http://dx.doi.org/10.7150/jca.34374] [PMID: 32489469]
[95]
Ho, J.W.S.; Cheung, M.W.M. Combination of phytochemicals as adjuvants for cancer therapy. Rec. Pat. Anticancer Drug Discov., 2014, 9(3), 297-302.
[http://dx.doi.org/10.2174/1574892809666140619154838] [PMID: 24942759]
[96]
Zhuo, W.; Zhang, L.; Zhu, Y.; Zhu, B.; Chen, Z. Fisetin, a dietary bioflavonoid, reverses acquired cisplatin-resistance of lung adenocarcinoma cells through MAPK/Survivin/Caspase pathway. Am. J. Transl. Res., 2015, 7(10), 2045-2052.
[PMID: 26692948]
[97]
Banerjee, S.; Li, Y.; Wang, Z.; Sarkar, F.H. Multi-targeted therapy of cancer by genistein. Cancer Lett., 2008, 269(2), 226-242.
[http://dx.doi.org/10.1016/j.canlet.2008.03.052] [PMID: 18492603]
[98]
Choi, B.Y. Biochemical basis of anti-cancer-effects of phloretin-A natural dihydrochalcone. Molecules, 2019, 24(2), 1-14.
[http://dx.doi.org/10.3390/molecules24020278] [PMID: 30642127]
[99]
Yumuk, P.F.; Turhal, N.S.; Gumus, M.; Hatabay, N.F.; Turken, O.; Ozkan, A.; Salepci, T.; Aliustaoglu, M.; Ahiskali, R. Results of paclitaxel (day 1 and 8) and carboplatin given on every three weeks in advanced (stage III-IV) non-small cell lung cancer. BMC Cancer, 2005, 5(1), 10.
[http://dx.doi.org/10.1186/1471-2407-5-10] [PMID: 15667664]
[100]
Chen, Y.M.; Perng, R.P.; Tsai, C.M.; Whang-Peng, J. A Phase II randomized study of paclitaxel plus carboplatin or cisplatin against chemo-naive inoperable non-small cell lung cancer in the elderly. J. Thorac. Oncol., 2006, 1(2), 141-145.
[http://dx.doi.org/10.1016/S1556-0864(15)31529-X] [PMID: 17409843]
[101]
Liu, W.; Zhang, J.; Ying, C.; Wang, Q.; Yan, C.; Jingyue, Y.; Zhaocai, Y.; Yan, X.; Heng-Jun, S.; Lin, J. Tetrandrine combined with gemcitabine and Cisplatin for patients with advanced non-small cell lung cancer improve efficacy. Int. J. Biomed. Sci., 2012, 8(1), 28-35.
[PMID: 23675254]
[102]
Jafri, S.H.; Glass, J.; Shi, R.; Zhang, S.; Prince, M.; Kleiner-Hancock, H. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: in vitro and in vivo. J. Exp. Clin. Cancer Res., 2010, 29(1), 87.
[http://dx.doi.org/10.1186/1756-9966-29-87] [PMID: 20594324]
[103]
Rahat, I.; Imam, S.S.; Rizwanullah, M.; Alshehri, S.; Asif, M.; Kala, C.; Taleuzzaman, M. Thymoquinone-entrapped chitosan-modified nanoparticles: Formulation optimization to preclinical bioavailability assessments. Drug Deliv., 2021, 28(1), 973-984.
[http://dx.doi.org/10.1080/10717544.2021.1927245] [PMID: 34036860]
[104]
Dhupal, M.; Chowdhury, D. Phytochemical-based nanomedicine for advanced cancer theranostics: Perspectives on clinical trials to clinical use. Int. J. Nanomedicine, 2020, 15, 9125-9157.
[http://dx.doi.org/10.2147/IJN.S259628] [PMID: 33244231]
[105]
Rahat, I.; Rizwanullah, M.; Gilani, S.J.; Jummah, M.B.; Imam, S.S.; Kala, C.; Asif, M.; Alshehri, S.; Sharma, S.K. Thymoquinone loaded chitosan-solid lipid nanoparticles: Formulation optimization to oral bioavailability study. J. Drug Deliv. Sci. Technol., 2021, 64, 102565.
[http://dx.doi.org/10.1016/j.jddst.2021.102565]
[106]
Ahmad, J.; Singhal, M.; Amin, S.; Rizwanullah, M.; Akhter, S.; Kamal, M.A.; Haider, N.; Midoux, P.; Pichon, C. Bile salt stabilized vesicles (bilosomes): A novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr. Pharm. Des., 2017, 23(11), 1575-1588.
[http://dx.doi.org/10.2174/1381612823666170124111142] [PMID: 28120725]
[107]
Saifi, Z.; Rizwanullah, M.; Mir, S.R.; Amin, S. Bilosomes nanocarriers for improved oral bioavailability of acyclovir: A complete characterization through in vitro, ex-vivo and in vivo assessment. J. Drug Deliv. Sci. Technol., 2020, 57, e101634.
[http://dx.doi.org/10.1016/j.jddst.2020.101634]
[108]
Rizwanullah, M.; Rizvi, M.M.A.; Amin, S. Recent advances in the development of nanoparticles for oral delivery In Pharmaceutical drug product development and process optimization: Effective use of quality by design;; Beg, S.; Rahman, M.; Imam, S.S.; Alruwaili, N.K.; Al Robaian, M.; Panda, S.K., Eds.; . Apple Academic Press: UK, 2020, 1, pp. 309-332.
[http://dx.doi.org/10.1201/9780367821678-11]
[109]
Rizwanullah, M.; Ahmad, J.; Amin, S.; Mishra, A.; Ain, M.R.; Rahman, M. Polymer-lipid hybrid systems: Scope of intravenous-to-Oral switch in Cancer chemotherapy. Curr. Nanomed., 2020, 10, 164-177.
[http://dx.doi.org/10.2174/2468187309666190514083508]
[110]
Shahab, M.S.; Rizwanullah, M.; Alshehri, S.; Imam, S.S. Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: in vitro, ex vivo and toxicity assessments. Int. J. Biol. Macromol., 2020, 163, 2392-2404.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.185] [PMID: 32979440]
[111]
Harshita; Barkat, M.A.; Rizwanullah, M.; Beg, S.; Pottoo, F.H.; Siddiqui, S.; Ahmad, F.J. Paclitaxel-loaded nanolipidic carriers with improved oral bioavailability and anticancer activity against human liver carcinoma. AAPS PharmSciTech, 2019, 20(2), 87.
[http://dx.doi.org/10.1208/s12249-019-1304-4] [PMID: 30675689]
[112]
Gilani, S.J.; Jahangir, M.A. Chandrakala; Rizwanullah, M.; Taleuzzaman, M.; Shahab, M.S.; Shakeel, K.; Aqil, M.; Imam, S.S. Nano-based therapy for treatment of skin cancer. Rec. Pat. Antiinfect. Drug Discov., 2018, 13(2), 151-163.
[http://dx.doi.org/10.2174/1574891X13666180911095440] [PMID: 30205801]
[113]
Alshehri, S.; Imam, S.S.; Rizwanullah, M.; Fakhri, K.U.; Rizvi, M.M.A.; Mahdi, W.; Kazi, M. Effect of chitosan coating on plga nanoparticles for oral delivery of thymoquinone: in vitro, ex vivo, and cancer cell line assessments. Coatings, 2021, 11, 6.
[114]
Akhter, M.H.; Rizwanullah, M.; Ahmad, J.; Amin, S.; Ahmad, M.Z.; Minhaj, M.A.; Mujtaba, M.A.; Ali, J. Molecular targets and nanoparticulate systems designed for the improved therapeutic intervention in glioblastoma multiforme. Drug Res. (Stuttg.), 2021, 71(3), 122-137.
[http://dx.doi.org/10.1055/a-1296-7870] [PMID: 33167048]
[115]
Rizwanullah, M.; Ahmad, J.; Amin, S. Nanostructured lipid carriers: A novel platform for chemotherapeutics. Curr. Drug Deliv., 2016, 13(1), 4-26.
[http://dx.doi.org/10.2174/1567201812666150817124133] [PMID: 26279117]
[116]
Akhter, M.H.; Rizwanullah, M.; Ahmad, J.; Ahsan, M.J.; Mujtaba, M.A.; Amin, S. Nanocarriers in advanced drug targeting: Setting novel paradigm in cancer therapeutics. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 873-884.
[http://dx.doi.org/10.1080/21691401.2017.1366333] [PMID: 28830262]
[117]
Ahmad, J.; Akhter, S.; Rizwanullah, M.; Amin, S.; Rahman, M.; Ahmad, M.Z.; Rizvi, M.A.; Kamal, M.A.; Ahmad, F.J. Nanotechnology-based inhalation treatments for lung cancer: State of the art. Nanotechnol. Sci. Appl., 2015, 8, 55-66.
[PMID: 26640374]
[118]
Haider, N.; Fatima, S.; Taha, M.; Rizwanullah, M.; Firdous, J.; Ahmad, R.; Mazhar, F.; Khan, M.A. Nanomedicines in diagnosis and treatment of cancer: An update. Curr. Pharm. Des., 2020, 26(11), 1216-1231.
[http://dx.doi.org/10.2174/1381612826666200318170716] [PMID: 32188379]
[119]
Iqubal, M.K.; Chaudhuri, A.; Iqubal, A.; Saleem, S.; Gupta, M.M.; Ahuja, A.; Ali, J.; Baboota, S. Targeted delivery of natural bioactives and lipid-nanocargos against signaling pathways involved in skin cancer. Curr. Med. Chem., 2020, 28, 1-15.
[http://dx.doi.org/10.2174/0929867327666201104151752] [PMID: 33148148]
[120]
Rizwanullah, M.; Amin, S.; Ahmad, J. Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers. J. Drug Target., 2017, 25(1), 58-74.
[http://dx.doi.org/10.1080/1061186X.2016.1191080] [PMID: 27186665]
[121]
Soni, K.; Rizwanullah, M.; Kohli, K. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: In vitro, ex vivo and in vivo assessments. Artif. Cells Nanomed. Biotechnol, 2018, (46)(sup1), 15-31.
[http://dx.doi.org/10.1080/21691401.2017.1408124] [PMID: 29183147]
[122]
Ahmad, J.; Rizwanullah, M.; Amin, S.; Warsi, M.H.; Ahmad, M.Z.; Barkat, M.A. Nanostructured lipid carriers (NLCs): Nose-to-brain delivery and theranostic application. Curr. Drug Metab., 2020, 21(14), 1136-1143.
[http://dx.doi.org/10.2174/1389200221666200719003304] [PMID: 32682366]
[123]
Mahtab, A.; Rizwanullah, M.; Pandey, S.; Leekha, A.; Rabbani, S.A.; Verma, A.K.; Aqil, M.; Talegaonkar, S. Quality by design driven development and optimization of Teriflunomide loaded nanoliposomes for treatment of rheumatoid arthritis: An in vitro and in vivo assessments. J. Drug Deliv. Sci. Technol., 2019, 51, 383-396.
[http://dx.doi.org/10.1016/j.jddst.2019.03.008]
[124]
Barkat, M.A. Harshita, Rizwanullah, M.; Pottoo, F.H.; Beg, S.; Akhter, S.; Ahmad, F.J. Therapeutic nanoemulsion: Concept to delivery. Curr. Pharm. Des., 2020, 26(11), 1145-1166.
[http://dx.doi.org/10.2174/1381612826666200317140600] [PMID: 32183664]
[125]
Yousefian Rad, E.; Homayouni Tabrizi, M.; Ardalan, P.; Seyedi, S.M.R.; Yadamani, S.; Zamani-Esmati, P.; Haghani Sereshkeh, N. Citrus lemon Essential Oil Nanoemulsion (CLEO-NE), a safe cell-depended apoptosis inducer in human A549 lung cancer cells with anti-angiogenic activity. J. Microencapsul., 2020, 37(5), 394-402.
[http://dx.doi.org/10.1080/02652048.2020.1767223] [PMID: 32400238]
[126]
Md, S.; Alhakamy, N.A.; Aldawsari, H.M.; Husain, M.; Kotta, S.; Abdullah, S.T.A.; Fahmy, U.; Alfaleh, M.A.; Asfour, H.Z. Formulation design, statistical optimization, and in vitro evaluation of a naringenin nanoemulsion to enhance apoptotic activity in a549 lung cancer cells. Pharmaceuticals (Basel), 2020, 13(7), 152.
[http://dx.doi.org/10.3390/ph13070152] [PMID: 32679917]
[127]
Xie, X.; Li, Y.; Zhao, D.; Fang, C.; He, D.; Yang, Q.; Yang, L.; Chen, R.; Tan, Q.; Zhang, J. Oral administration of natural polyphenol-loaded natural polysaccharide-cloaked lipidic nanocarriers to improve efficacy against small-cell lung cancer. Nanomedicine (Lond.), 2020, 29, 102261.
[http://dx.doi.org/10.1016/j.nano.2020.102261] [PMID: 32621880]
[128]
Zhou, X.; Liu, H.Y.; Zhao, H.; Wang, T. RGD-modified nanoliposomes containing quercetin for lung cancer targeted treatment. OncoTargets Ther., 2018, 11, 5397-5405.
[http://dx.doi.org/10.2147/OTT.S169555] [PMID: 30214245]
[129]
Zhang, T.; Chen, Y.; Ge, Y.; Hu, Y.; Li, M.; Jin, Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm. Sin. B, 2018, 8(3), 440-448.
[http://dx.doi.org/10.1016/j.apsb.2018.03.004] [PMID: 29881683]
[130]
Jin, X.; Yang, Q.; Zhang, Y. Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: Implications for effective treatment of lung cancer. Int. J. Nanomedicine, 2017, 12, 5109-5118.
[http://dx.doi.org/10.2147/IJN.S140096] [PMID: 28761344]
[131]
Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos Romano, M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int. J. Pharm., 2013, 444(1-2), 146-154.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.050] [PMID: 23380621]
[132]
Wang, P.; Zhang, L.; Peng, H.; Li, Y.; Xiong, J.; Xu, Z. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater. Sci. Eng. C, 2013, 33(8), 4802-4808.
[http://dx.doi.org/10.1016/j.msec.2013.07.047] [PMID: 24094190]
[133]
Aghebati-Maleki, A.; Dolati, S.; Ahmadi, M.; Baghbanzhadeh, A.; Asadi, M.; Fotouhi, A.; Yousefi, M.; Aghebati-Maleki, L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J. Cell. Physiol., 2020, 235(3), 1962-1972.
[http://dx.doi.org/10.1002/jcp.29126] [PMID: 31441032]
[134]
Rizwanullah, M.; Alam, M. Harshita, Mir, S.R.; Rizvi, M.M.A.; Amin, S. Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors. Curr. Pharm. Des., 2020, 26(11), 1206-1215.
[http://dx.doi.org/10.2174/1381612826666200116150426] [PMID: 31951163]
[135]
Ahmad, J.; Akhter, S.; Rizwanullah, M.; Khan, M.A.; Pigeon, L.; Addo, R.T.; Greig, N.H.; Midoux, P.; Pichon, C.; Kamal, M.A. Nanotechnology based theranostic approaches in alzheimer’s disease management: Current status and future perspective. Curr. Alzheimer Res., 2017, 14(11), 1164-1181.
[http://dx.doi.org/10.2174/1567205014666170508121031] [PMID: 28482786]
[136]
Zhang, L.; Chen, W.; Tu, G.; Chen, X.; Lu, Y.; Wu, L.; Zheng, D. Enhanced chemotherapeutic efficacy of plga-encapsulated epigallocatechin gallate (egcg) against human lung cancer. Int. J. Nanomedicine, 2020, 15, 4417-4429.
[PMID: 32606686]
[137]
Xu, H.; Hou, Z.; Zhang, H.; Kong, H.; Li, X.; Wang, H.; Xie, W. An efficient Trojan delivery of tetrandrine by poly(N-vinylpyrrolidone)-block-poly(ε-caprolactone) (PVP-b-PCL) nanoparticles shows enhanced apoptotic induction of lung cancer cells and inhibition of its migration and invasion. Int. J. Nanomedicine, 2014, 9, 231-242.
[PMID: 24403829]
[138]
Aldawsari, H.M.; Alhakamy, N.A.; Padder, R.; Husain, M.; Md, S. Preparation and characterization of chitosan coated plga nanoparticles of resveratrol: Improved stability, antioxidant and apoptotic activities in h1299 lung cancer cells. Coatings, 2020, 10(5), 439.
[http://dx.doi.org/10.3390/coatings10050439]
[139]
Ahmad, N.; Ahmad, R.; Alrasheed, R.A.; Almatar, H.M.A.; Al-Ramadan, A.S.; Buheazah, T.M.; AlHomoud, H.S.; Al-Nasif, H.A.; Alam, M.A. A Chitosan-PLGA based catechin hydrate nanoparticles used in targeting of lungs and cancer treatment. Saudi J. Biol. Sci., 2020, 27(9), 2344-2357.
[http://dx.doi.org/10.1016/j.sjbs.2020.05.023] [PMID: 32884416]
[140]
Al-Kinani, M.A.; Haider, A.J.; Al-Musawi, S. Design, construction and characterization of intelligence polymer coated core-shell nanocarrier for curcumin drug encapsulation and delivery in lung cancer therapy purposes. J. Inorg. Organomet. Polym. Mater., 2021, 31, 1-10.
[http://dx.doi.org/10.1007/s10904-020-01672-w]
[141]
Lee, W.H.; Loo, C.Y.; Ong, H.X.; Traini, D.; Young, P.M.; Rohanizadeh, R. Synthesis and characterization of inhalable flavonoid nanoparticle for lung cancer cell targeting. J. Biomed. Nanotechnol., 2016, 12(2), 371-386.
[http://dx.doi.org/10.1166/jbn.2016.2162] [PMID: 27305771]
[142]
Kumar, N.; Salar, R.K.; Prasad, M.; Ranjan, K. Synthesis, characterization and anti-cancer activity of vincristine loaded folic acid-chitosan conjugated nanoparticles on NCI-H460 non-small cell lung cancer cell line. Egyptian J. Basic Appl. Sci., 2018, 5(1), 87-99.
[http://dx.doi.org/10.1016/j.ejbas.2017.11.002]
[143]
Das, J.; Samadder, A.; Mondal, J.; Abraham, S.K.; Khuda-Bukhsh, A.R. Nano-encapsulated chlorophyllin significantly delays progression of lung cancer both in in vitro and in vivo models through activation of mitochondrial signaling cascades and drug-DNA interaction. Environ. Toxicol. Pharmacol., 2016, 46, 147-157.
[http://dx.doi.org/10.1016/j.etap.2016.07.006] [PMID: 27458703]
[144]
Rudnik, L.A.C.; Farago, P.V.; Manfron Budel, J.; Lyra, A.; Barboza, F.M.; Klein, T.; Kanunfre, C.C.; Nadal, J.M.; Bandéca, M.C.; Raman, V.; Novatski, A.; Loguércio, A.D.; Zanin, S.M.W. Co-loaded curcumin and methotrexate nanocapsules enhance cytotoxicity against non-small-cell lung cancer cells. Molecules, 2020, 25(8), 1913.
[http://dx.doi.org/10.3390/molecules25081913] [PMID: 32326159]
[145]
Shi, C.; Zeng, F.; Fu, D. Surfactant-free poly(lactide-co-glycolide) nanoparticles for improving in vitro anticancer efficacy of tetrandrine. J. Microencapsul., 2016, 33(3), 249-256.
[http://dx.doi.org/10.3109/02652048.2016.1156175] [PMID: 26961245]
[146]
Ding, Y.; Wang, C.; Wang, Y.; Xu, Y.; Zhao, J.; Gao, M.; Ding, Y.; Peng, J.; Li, L. Development and evaluation of a novel drug delivery: Soluplus®/TPGS mixed micelles loaded with piperine in vitro and in vivo. Drug Dev. Ind. Pharm., 2018, 44(9), 1409-1416.
[http://dx.doi.org/10.1080/03639045.2018.1472277] [PMID: 29718714]
[147]
Wang, F.; Li, C.; Cheng, J.; Yuan, Z. Recent advances on inorganic nanoparticle-based cancer therapeutic agents. Int. J. Environ. Res. Public Health, 2016, 13(12), 1182.
[http://dx.doi.org/10.3390/ijerph13121182] [PMID: 27898016]
[148]
Suresh, S.; Muthukrishnan, L.; Vennila, S.; Paiman, S.; Faruq, M.; Al-Lohedan, H.A.; Akbarzadeh, O.; Oh, W.C. Mechanistic anticarcinogenic efficacy of phytofabricated gold nanoparticles on human lung adenocarcinoma cells. J. Exp. Nanosci., 2020, 15(1), 160-173.
[http://dx.doi.org/10.1080/17458080.2020.1761014]
[149]
Dadashpour, M.; Firouzi-Amandi, A.; Pourhassan-Moghaddam, M.; Maleki, M.J.; Soozangar, N.; Jeddi, F.; Nouri, M.; Zarghami, N.; Pilehvar-Soltanahmadi, Y. Biomimetic synthesis of silver nanoparticles using matricaria chamomilla extract and their potential anticancer activity against human lung cancer cells. Mater. Sci. Eng. C, 2018, 92, 902-912.
[http://dx.doi.org/10.1016/j.msec.2018.07.053] [PMID: 30184820]
[150]
Saravanakumar, K.; Jeevithan, E.; Hu, X.; Chelliah, R.; Oh, D.H.; Wang, M.H. Enhanced anti-lung carcinoma and anti-biofilm activity of fungal molecules mediated biogenic zinc oxide nanoparticles conjugated with β-D-glucan from barley. J. Photochem. Photobiol. B, 2020, 203, 111728.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111728] [PMID: 31864088]
[151]
Bharathi, D.; Preethi, S.; Abarna, K.; Nithyasri, M.; Kishore, P.; Deepika, K. Bio-inspired synthesis of Flower Shaped Iron Oxide Nanoparticles (FeONPs) using phytochemicals of Solanum lycopersicum leaf extract for biomedical applications. Biocatal. Agric. Biotechnol., 2020, 27, 101698.
[http://dx.doi.org/10.1016/j.bcab.2020.101698]
[152]
Song, Y.; Zhou, B.; Du, X.; Wang, Y.; Zhang, J.; Ai, Y.; Xia, Z.; Zhao, G. Folic acid (FA)-conjugated mesoporous silica nanoparticles combined with MRP-1 siRNA improves the suppressive effects of myricetin on Non-Small Cell Lung Cancer (NSCLC). Biomed. Pharmacother., 2020, 125, 109561.
[http://dx.doi.org/10.1016/j.biopha.2019.109561] [PMID: 32106385]
[153]
Stolarczyk, E.U.; Stolarczyk, K.; Łaszcz, M.; Kubiszewski, M.; Maruszak, W.; Olejarz, W.; Bryk, D. Synthesis and characterization of genistein conjugated with gold nanoparticles and the study of their cytotoxic properties. Eur. J. Pharm. Sci., 2017, 96, 176-185.
[http://dx.doi.org/10.1016/j.ejps.2016.09.019] [PMID: 27644892]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy