Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Ultrasound-Mediated Cancer Therapeutics Delivery using Micelles and Liposomes: A Review

Author(s): Debasmita Mukhopadhyay, Catherine Sano, Nour AlSawaftah, Raafat El-Awady, Ghaleb A. Husseini* and Vinod Paul

Volume 16, Issue 4, 2021

Published on: 06 July, 2021

Page: [498 - 520] Pages: 23

DOI: 10.2174/1574892816666210706155110

Price: $65

conference banner
Abstract

Background: Existing cancer treatment methods have many undesirable side effects that greatly reduce the quality of life of cancer patients.

Objective: This review will focus on the use of ultrasound-responsive liposomes and polymeric micelles in cancer therapy.

Methods: This review presents a survey of the literature regarding ultrasound-triggered micelles and liposomes using articles recently published in various journals, as well as some new patents in this field.

Results: Nanoparticles have proven promising as cancer theranostic tools. Nanoparticles are selective in nature, have reduced toxicity, and controllable drug release patterns making them ideal carriers for anticancer drugs. Numerous nanocarriers have been designed to combat malignancies, including liposomes, micelles, dendrimers, solid nanoparticles, quantum dots, gold nanoparticles, and, more recently, metal-organic frameworks. The temporal and spatial release of therapeutic agents from these nanostructures can be controlled using internal and external triggers, including pH, enzymes, redox, temperature, magnetic and electromagnetic waves, and ultrasound. Ultrasound is an attractive modality because it is non-invasive, can be focused on the diseased site, and has a synergistic effect with anticancer drugs.

Conclusion: The functionalization of micellar and liposomal surfaces with targeting moieties and the use of ultrasound as a triggering mechanism can help improve the selectivity and enable the spatiotemporal control of drug release from nanocarriers.

Keywords: Nanomedicine, liposomes, polymeric micelles, drug delivery, ultrasound, cancer therapy.

[1]
National Cancer Institute. What Is Cancer? 2015. Available from: http://www.cancer.gov/about-cancer/understanding/what-is-cancer#cell-differences/[Accessed 13 December 2020].
[2]
Cooper GM. The development and causes of cancer. (2nd ed). Sunderland, MA: Sinauer Associates 2000.
[3]
Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 2011; 3(3): 3279-330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[4]
Huang C-Y, Ju D-T, Chang C-F, Muralidhar Reddy P, Velmurugan BK. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei) 2017; 7(4): 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[5]
Islam KM, Anggondowati T, Deviany PE, et al. Patient preferences of chemotherapy treatment options and tolerance of chemotherapy side effects in advanced stage lung cancer. BMC Cancer 2019; 19(1): 835.
[http://dx.doi.org/10.1186/s12885-019-6054-x] [PMID: 31455252]
[6]
Buiting HM, Terpstra W, Dalhuisen F, Gunnink-Boonstra N, Sonke GS, den Hartogh G. The facilitating role of chemotherapy in the palliative phase of cancer: qualitative interviews with advanced cancer patients. PLoS One 2013; 8(11): e77959.
[http://dx.doi.org/10.1371/journal.pone.0077959] [PMID: 24223130]
[7]
Rajagopal PS, Nipp RD, Selvaggi KJ. Chemotherapy for advanced cancers. Ann Palliat Med 2014; 3(3): 203-28.
[PMID: 25841696]
[8]
Abbott D, Ashdown ML, Robinson AP, et al. Chemotherapy for late-stage cancer patients: Meta-analysis of complete response rates. F1000 Res 2015; 4: 1.
[9]
Harrington SE, Smith TJ. The role of chemotherapy at the end of life: “when is enough, enough?”. JAMA 2008; 299(22): 2667-78.
[http://dx.doi.org/10.1001/jama.299.22.2667] [PMID: 18544726]
[10]
DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res 2008; 68(21): 8643-53.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6611] [PMID: 18974103]
[11]
American Cancer Society. Evolution of cancer treatments. Chemotherapy 2014. Available from: https://www.cancer.org/cancer/cancer-basics/history-of-cancer/-cancer-treatment-chemo.html
[12]
Devlin EJ, Denson LA, Whitford HS. Cancer treatment side effects: A meta-analysis of the relationship between response expectancies and experience. J Pain Symptom Manage 2017; 54(2): 245-258.e2.
[http://dx.doi.org/10.1016/j.jpainsymman.2017.03.017] [PMID: 28533160]
[13]
Pearce A, Haas M, Viney R, et al. Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. PLoS One 2017; 12(10): e0184360.
[http://dx.doi.org/10.1371/journal.pone.0184360] [PMID: 29016607]
[14]
Ramirez LY, Huestis SE, Yap TY, Zyzanski S, Drotar D, Kodish E. Potential chemotherapy side effects: what do oncologists tell parents? Pediatr Blood Cancer 2009; 52(4): 497-502.
[http://dx.doi.org/10.1002/pbc.21835] [PMID: 19101994]
[15]
Nurgali K, Jagoe RT, Abalo R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front Pharmacol 2018; 9: 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[16]
Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 2005; 1(2): 101-9.
[http://dx.doi.org/10.1016/j.nano.2005.03.002] [PMID: 17292064]
[17]
Hong Y, Rao Y. Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomed Pharmacother 2019; 114: 108764.
[http://dx.doi.org/10.1016/j.biopha.2019.108764] [PMID: 30901717]
[18]
Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016; 6(9): 1306-23.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[19]
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[20]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[21]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3: 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[22]
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2015; 200: 138-57.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[23]
Kim MW, Kwon SH, Choi JH, Lee A. A promising biocompatible platform: Lipid-based and bio-inspired smart drug delivery systems for cancer therapy. Int J Mol Sci 2018; 19(12): 3859.
[http://dx.doi.org/10.3390/ijms19123859] [PMID: 30518027]
[24]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[25]
Gao W, Hu CMJ, Fang RH, Zhang L. Liposome-like nanostructures for drug delivery. J Mater Chem B Mater Biol Med 2013; 1(48): 6569-85.
[http://dx.doi.org/10.1039/c3tb21238f] [PMID: 24392221]
[26]
Al Sawaftah NM, Husseini GA. Ultrasound-mediated drug delivery in cancer therapy: A review. J Nanosci Nanotechnol 2020; 20(12): 7211-30.
[http://dx.doi.org/10.1166/jnn.2020.18877] [PMID: 32711586]
[27]
Ahmed SE, Awad N, Paul V, Moussa HG, Husseini GA. Improving the efficacy of anticancer drugs via encapsulation and acoustic release. Curr Top Med Chem 2018; 18(10): 857-80.
[http://dx.doi.org/10.2174/1568026618666180608125344] [PMID: 29886831]
[28]
Pitt WG. Defining the role of ultrasound in drug delivery. Am J Drug Deliv 2003; 1(1): 27-42.
[http://dx.doi.org/10.2165/00137696-200301010-00003]
[29]
Pitt WG, Husseini GA, Staples BJ. Ultrasonic drug delivery--a general review. Expert Opin Drug Deliv 2004; 1(1): 37-56.
[http://dx.doi.org/10.1517/17425247.1.1.37] [PMID: 16296719]
[30]
Livney YD, Assaraf YG. Rationally designed nanovehicles to overcome cancer chemoresistance. Adv Drug Deliv Rev 2013; 65(13-14): 1716-30.
[http://dx.doi.org/10.1016/j.addr.2013.08.006] [PMID: 23954781]
[31]
Schroeder A, Kost J, Barenholz Y. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 2009; 162(1-2): 1-16.
[http://dx.doi.org/10.1016/j.chemphyslip.2009.08.003] [PMID: 19703435]
[32]
Mason TJ. Therapeutic ultrasound an overview. Ultrason Sonochem 2011; 18(4): 847-52.
[http://dx.doi.org/10.1016/j.ultsonch.2011.01.004] [PMID: 21316286]
[33]
Ye Q, Liu K, Shen Q, et al. Reversal of multidrug resistance in cancer by multi-functional flavonoids. Front Oncol 2019; 9: 487.
[http://dx.doi.org/10.3389/fonc.2019.00487] [PMID: 31245292]
[34]
Wu F, Shao ZY, Zhai BJ, Zhao CL, Shen DM. Ultrasound reverses multidrug resistance in human cancer cells by altering gene expression of ABC transporter proteins and Bax protein. Ultrasound Med Biol 2011; 37(1): 151-9.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2010.10.009] [PMID: 21084157]
[35]
Zhou QL, Chen ZY, Wang YX, Yang F, Lin Y, Liao YY. Ultrasound-mediated local drug and gene delivery using nanocarriers. BioMed Res Int 2014; 2014: 963891.
[http://dx.doi.org/10.1155/2014/963891] [PMID: 25202710]
[36]
Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016; 1: 1-12.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[37]
Wang J, Pelletier M, Zhang H, Xia H, Zhao Y. High-frequency ultrasound-responsive block copolymer micelle. Langmuir 2009; 25(22): 13201-5.
[http://dx.doi.org/10.1021/la9018794] [PMID: 19572509]
[38]
Raj S, Khurana S, Choudhari R, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol 2021; 69: 166-77.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.002] [PMID: 31715247]
[39]
Saltzman WM, Torchilin VP. Drug delivery systems AccessScience. New York, USA: McGraw-Hill Co. 2008.
[40]
Mahmoud M. The effect of ultrasound on the drug delivery of RGD-targeted liposomes. MSc Dissertation 2018.
[41]
Torchilin V, Ed. Smart pharmaceutical nanocarriers. Singapore: World Scientific Pub Co Pte Ltd 2015.
[42]
Le NTT, Nguyen TNQ, Cao VD, Hoang DT, Ngo VC, Hoang Thi TT. Recent progress and advances of multi-stimuli-responsive dendrimers in drug delivery for cancer treatment. Pharmaceutics 2019; 11(11): 591.
[http://dx.doi.org/10.3390/pharmaceutics11110591] [PMID: 31717376]
[43]
Huang B, Dong WJ, Yang GY, Wang W, Ji CH, Zhou FN. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Drug Des Devel Ther 2015; 9: 3867-76.
[PMID: 26229447]
[44]
Manikkath J, Manikkath A, Shavi GV, Bhat K, Mutalik S. Low frequency ultrasound and PAMAM dendrimer facilitated transdermal delivery of ketoprofen. J Drug Deliv Sci Technol 2017; 41: 334-43.
[http://dx.doi.org/10.1016/j.jddst.2017.07.021]
[45]
Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 2010; 7(6): 753-63.
[http://dx.doi.org/10.1517/17425241003777010] [PMID: 20408736]
[46]
Kang ST, Luo YL, Huang YF, Yeh CK. DNA-conjugated gold nanoparticles for ultrasound targeted drug delivery. IEEE International Ultrasonics Symposium. IUS. Dresden, Germany. 2012.
[http://dx.doi.org/10.1109/ULTSYM.2012.0468]
[47]
Brazzale C, Canaparo R, Racca L, et al. Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine (Lond) 2016; 11(23): 3053-70.
[http://dx.doi.org/10.2217/nnm-2016-0293] [PMID: 27627904]
[48]
Ibrahim M, Sabouni R, Husseini GA. Synthesis of metal-organic framework from iron nitrate and 2,6-naphthalenedicarboxylic acid and its application as drug carrier. J Nanosci Nanotechnol 2018; 18(8): 5266-73.
[http://dx.doi.org/10.1166/jnn.2018.15373] [PMID: 29458576]
[49]
Pan X, Bai L, Wang H, et al. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv Mater 2018; 30(23): e1800180.
[http://dx.doi.org/10.1002/adma.201800180] [PMID: 29672956]
[50]
Tzu-Yin W, Wilson KE, Machtaler S, Willmann JK. Ultrasound and microbubble guided drug delivery: mechanistic understanding and clinical implications. Curr Pharm Biotechnol 2013; 14(8): 743-52.
[PMID: 24372231]
[51]
Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med Biol 2012; 38(10): 1716-25.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.04.015] [PMID: 22818878]
[52]
Ting CY, Fan CH, Liu HL, et al. Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials 2012; 33(2): 704-12.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.096] [PMID: 22019122]
[53]
Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 2004; 61(19-20): 2549-59.
[http://dx.doi.org/10.1007/s00018-004-4153-5] [PMID: 15526161]
[54]
Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 2007; 24(1): 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[55]
Amin MCIM, Butt AM, Amjad MW, Kesharwani P. Polymeric micelles for drug targeting and delivery. Nanotechnology-based approaches for targeting and delivery of drugs and genes. Amsterdam, Netherlands: Elsevier Inc. 2017; pp. 167-202.
[http://dx.doi.org/10.1016/B978-0-12-809717-5.00006-3]
[56]
Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res 2018; 11(10): 4985-98.
[http://dx.doi.org/10.1007/s12274-018-2152-3] [PMID: 30370014]
[57]
Hanafy NAN, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers (Basel) 2018; 10(7): 238.
[http://dx.doi.org/10.3390/cancers10070238] [PMID: 30037052]
[58]
Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Micelles based on ab block copolymers of poly(ethylene oxide) and poly(β-benzyl l-aspartate). Langmuir 1993; 9(4): 945-9.
[http://dx.doi.org/10.1021/la00028a012]
[59]
Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 1995; 16(2-3): 295-309.
[http://dx.doi.org/10.1016/0169-409X(95)00031-2]
[60]
Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Block copolymer micelles for drug delivery: Loading and release of doxorubicin. J Control Release 1997; 48(2-3): 195-201.
[http://dx.doi.org/10.1016/S0168-3659(97)00039-4]
[61]
Kazunori K, Glenn SK, Masayuki Y, Teruo O, Yasuhisa S. Block copolymer micelles as vehicles for drug delivery. J Control Release 1993; 24(1-3): 119-32.
[http://dx.doi.org/10.1016/0168-3659(93)90172-2]
[62]
Batrakova E, Lee S, Li S, Venne A, Alakhov V, Kabanov A. Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res 1999; 16(9): 1373-9.
[http://dx.doi.org/10.1023/A:1018942823676] [PMID: 10496652]
[63]
Husseini GA, Pitt WG. The use of ultrasound and micelles in cancer treatment. J Nanosci Nanotechnol 2008; 8(5): 2205-15.
[http://dx.doi.org/10.1166/jnn.2008.225] [PMID: 18572632]
[64]
Dai J, Su Y, Zhong S, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 2020; 5(1): 145.
[http://dx.doi.org/10.1038/s41392-020-00261-0] [PMID: 32759948]
[65]
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 2016; 6(4): 287-96.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[66]
Bunggulawa EJ, Wang W, Yin T, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology 2018; 16(1): 81.
[http://dx.doi.org/10.1186/s12951-018-0403-9] [PMID: 30326899]
[67]
Sun W, Li Z, Zhou X, Yang G, Yuan L. Efficient exosome delivery in refractory tissues assisted by ultrasound-targeted microbubble destruction. Drug Deliv 2019; 26(1): 45-50.
[http://dx.doi.org/10.1080/10717544.2018.1534898] [PMID: 30744440]
[68]
Liu Y, Bai L, Guo K, et al. Focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy. Theranostics 2019; 9(18): 5261-81.
[http://dx.doi.org/10.7150/thno.33183] [PMID: 31410214]
[69]
Xia H, Zhao Y, Tong R. Ultrasound-mediated polymeric micelle drug delivery. Adv Exp Med Biol 2016; 880: 365-84.
[http://dx.doi.org/10.1007/978-3-319-22536-4_20] [PMID: 26486348]
[70]
Rapoport N. Ultrasound-mediated micellar drug delivery. Int J Hyperthermia 2012; 28(4): 374-85.
[http://dx.doi.org/10.3109/02656736.2012.665567] [PMID: 22621738]
[71]
Husseini GA, El-Fayoumi RI, O’Neill KL, Rapoport NY, Pitt WG. DNA damage induced by micellar-delivered doxorubicin and ultrasound: comet assay study. Cancer Lett 2000; 154(2): 211-6.
[http://dx.doi.org/10.1016/S0304-3835(00)00399-2] [PMID: 10806310]
[72]
Husseini GA, Diaz de la Rosa MA, Richardson ES, Christensen DA, Pitt WG. The role of cavitation in acoustically activated drug delivery. J Control Release 2005; 107(2): 253-61.
[http://dx.doi.org/10.1016/j.jconrel.2005.06.015] [PMID: 16046023]
[73]
Husseini GA, Myrup GD, Pitt WG, Christensen DA, Rapoport NY. Factors affecting acoustically triggered release of drugs from polymeric micelles. J Control Release 2000; 69(1): 43-52.
[http://dx.doi.org/10.1016/S0168-3659(00)00278-9] [PMID: 11018545]
[74]
Husseini GA, Pitt WG, Martins AM. Ultrasonically triggered drug delivery: breaking the barrier. Colloids Surf B Biointerfaces 2014; 123: 364-86.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.051] [PMID: 25454759]
[75]
Munshi N, Rapoport N, Pitt WG. Ultrasonic activated drug delivery from Pluronic P-105 micelles. Cancer Lett 1997; 118(1): 13-9.
[http://dx.doi.org/10.1016/S0304-3835(97)00218-8] [PMID: 9310255]
[76]
Husseini GA, Velluto D, Kherbeck L, Pitt WG, Hubbell JA, Christensen DA. Investigating the acoustic release of doxorubicin from targeted micelles. Colloids Surf B Biointerfaces 2013; 101: 153-5.
[http://dx.doi.org/10.1016/j.colsurfb.2012.05.025] [PMID: 22796785]
[77]
Husseini GA, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 2008; 60(10): 1137-52.
[http://dx.doi.org/10.1016/j.addr.2008.03.008] [PMID: 18486269]
[78]
Rapoport NY, Herron JN, Pitt WG, Pitina L. Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. J Control Release 1999; 58(2): 153-62.
[http://dx.doi.org/10.1016/S0168-3659(98)00149-7] [PMID: 10053188]
[79]
Marin A, Muniruzzaman M, Rapoport N. Acoustic activation of drug delivery from polymeric micelles: effect of pulsed ultrasound. J Control Release 2001; 71(3): 239-49.
[http://dx.doi.org/10.1016/S0168-3659(01)00216-4] [PMID: 11295217]
[80]
Marin A, Muniruzzaman M, Rapoport N. Mechanism of the ultrasonic activation of micellar drug delivery. J Control Release 2001; 75(1-2): 69-81.
[http://dx.doi.org/10.1016/S0168-3659(01)00363-7] [PMID: 11451498]
[81]
Marin A, Sun H, Husseini GA, Pitt WG, Christensen DA, Rapoport NY. Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. J Control Release 2002; 84(1-2): 39-47.
[http://dx.doi.org/10.1016/S0168-3659(02)00262-6] [PMID: 12399166]
[82]
Husseini GA, Christensen DA, Rapoport NY, Pitt WG. Ultrasonic release of doxorubicin from Pluronic P105 micelles stabilized with an interpenetrating network of N,N-diethylacrylamide. J Control Release 2002; 83(2): 303-5.
[http://dx.doi.org/10.1016/S0168-3659(02)00203-1] [PMID: 12363455]
[83]
Diaz de la Rosa MA. High-frequency ultrasound drug delivery and cavitation. Brigham Young University 2007. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2049&context=etd
[84]
Kobayashi D, Karasawa M, Takahashi T, Otake K, Shono A. Effluence of internal substances from pluronic micelle using ultrasound. Jpn J Appl Phys 2012; 51(2): 07GD10.1-.
[85]
Husseini GA, Stevenson-Abouelnasr D, Pitt WG, Assaleh KT, Farahat LO, Fahadi J. Kinetics and thermodynamics of acoustic release of doxorubicin from non-stabilized polymeric micelles. Colloids Surf A Physicochem Eng Asp 2010; 359(1-3): 18-24.
[http://dx.doi.org/10.1016/j.colsurfa.2010.01.044] [PMID: 20495608]
[86]
Stevenson-Abouelnasr D, Husseini GA, Pitt WG. Further investigation of the mechanism of Doxorubicin release from P105 micelles using kinetic models. Colloids Surf B Biointerfaces 2007; 55(1): 59-66.
[http://dx.doi.org/10.1016/j.colsurfb.2006.11.006] [PMID: 17207611]
[87]
Staples BJ, Roeder BL, Husseini GA, Badamjav O, Schaalje GB, Pitt WG. Role of frequency and mechanical index in ultrasonic-enhanced chemotherapy in rats. Cancer Chemother Pharmacol 2009; 64(3): 593-600.
[http://dx.doi.org/10.1007/s00280-008-0910-8] [PMID: 19127364]
[88]
Rapoport N. Stabilization and activation of Pluronic micelles for tumor-targeted drug delivery. Colloids Surf B Biointerfaces 1999; 16(1-4): 93-111.
[http://dx.doi.org/10.1016/S0927-7765(99)00063-6]
[89]
Husseini GA, Rapoport NY, Christensen DA, Pruitt JD, Pitt WG. Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles. Colloids Surf B Biointerfaces 2002; 24(3-4): 253-64.
[http://dx.doi.org/10.1016/S0927-7765(01)00273-9]
[90]
Husseini GA, Diaz de la Rosa MA, Gabuji T, Zeng Y, Christensen DA, Pitt WG. Release of doxorubicin from unstabilized and stabilized micelles under the action of ultrasound. J Nanosci Nanotechnol 2007; 7(3): 1028-33.
[http://dx.doi.org/10.1166/jnn.2007.218] [PMID: 17450870]
[91]
Zeng Y, Pitt WG. A polymeric micelle system with a hydrolysable segment for drug delivery. J Biomater Sci Polym Ed 2006; 17(5): 591-604.
[http://dx.doi.org/10.1163/156856206776986297] [PMID: 16800157]
[92]
Husseini GA, Pitt WG, Christensen DA, Dickinson DJ. Degradation kinetics of stabilized Pluronic micelles under the action of ultrasound. J Control Release 2009; 138(1): 45-8.
[http://dx.doi.org/10.1016/j.jconrel.2009.04.018] [PMID: 19389432]
[93]
Chen Y, Sha X, Zhang W, et al. Pluronic mixed micelles overcoming methotrexate multidrug resistance: in vitro and in vivo evaluation. Int J Nanomedicine 2013; 8: 1463-76.
[PMID: 23620663]
[94]
Wu P, Jia Y, Qu F, et al. Ultrasound-responsive polymeric micelles for sonoporation-assisted site-specific therapeutic action. ACS Appl Mater Interfaces 2017; 9(31): 25706-16.
[http://dx.doi.org/10.1021/acsami.7b05469] [PMID: 28741924]
[95]
Maeda M, Muragaki Y, Okamoto J, et al. Sonodynamic therapy based on combined use of low dose administration of epirubicin-incorporating drug delivery system and focused ultrasound. Ultrasound Med Biol 2017; 43(10): 2295-301.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2017.06.003] [PMID: 28705555]
[96]
Takemae K, Okamoto J, Horise Y, Masamune K, Muragaki Y. Function of epirubicin-conjugated polymeric micelles in sonodynamic therapy. Front Pharmacol 2019; 10: 546.
[http://dx.doi.org/10.3389/fphar.2019.00546] [PMID: 31164824]
[97]
Zhang H, Xia H, Wang J, Li Y. High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micelles. J Control Release 2009; 139(1): 31-9.
[http://dx.doi.org/10.1016/j.jconrel.2009.05.037] [PMID: 19523500]
[98]
Li Y, Tong R, Xia H, Zhang H, Xuan J. High intensity focused ultrasound and redox dual responsive polymer micelles. Chem Commun (Camb) 2010; 46(41): 7739-41.
[http://dx.doi.org/10.1039/c0cc02628j] [PMID: 20830436]
[99]
Husseini GA, Abdel-Jabbar NM, Mjalli FS, Pitt WG, Al-Mousa A. Optimizing the use of ultrasound to deliver chemotherapeutic agents to cancer cells from polymeric micelles. J Franklin Inst 2011; 348(7): 1276-84.
[http://dx.doi.org/10.1016/j.jfranklin.2010.02.004]
[100]
Husseini GA, Diaz De La Rosa MA, Alaqqad EO, et al. Kinetics of acoustic release of doxorubicin from stabilized and unstabilized micelles and the effect of temperature. J Franklin Inst 2011; 348(1): 125-33.
[http://dx.doi.org/10.1016/j.jfranklin.2009.02.007]
[101]
Husseini GA, Mjalli FS, Pitt WG, Abdel-Jabbar N. Using artificial neural networks and model predictive control to optimize acoustically assisted Doxorubicin release from polymeric micelles. Technol Cancer Res Treat 2009; 8(6): 479-88.
[http://dx.doi.org/10.1177/153303460900800609] [PMID: 19925031]
[102]
Husseini GA, Abdel-Jabbar NM, Mjalli FS, Pitt WG. Modeling and sensitivity analysis of acoustic release of Doxorubicin from unstabilized pluronic P105 using an artificial neural network model. Technol Cancer Res Treat 2007; 6(1): 49-56.
[http://dx.doi.org/10.1177/153303460700600107] [PMID: 17241100]
[103]
Abusara A, Abdel-Hafez M, Husseini G. Measuring the acoustic release of a chemotherapeutic agent from folate-targeted polymeric micelles. J Nanosci Nanotechnol 2018; 18(8): 5511-9.
[http://dx.doi.org/10.1166/jnn.2018.15374] [PMID: 29458604]
[104]
Wadi A, Abdel-Hafez M, Husseini GA. Identification of the uncertainty structure to estimate the acoustic release of chemotherapeutics from polymeric micelles. IEEE Trans Nanobioscience 2017; 16(7): 609-17.
[http://dx.doi.org/10.1109/TNB.2017.2736021] [PMID: 28792902]
[105]
Martins AM, Tanbour R, Elkhodiry MA, Husseini GA. Ultrasound-induced doxorubicin release from folate-targeted and non--targeted P105 micelles: A modeling study. Eur J Nanomed 2016; 8(1): 17-29.
[http://dx.doi.org/10.1515/ejnm-2015-0045]
[106]
Abdel-Hafez M, Husseini GA. Predicting the release of chemotherapeutics from the core of polymeric micelles using ultrasound. IEEE Trans Nanobioscience 2015; 14(4): 378-84.
[http://dx.doi.org/10.1109/TNB.2015.2399100] [PMID: 25751870]
[107]
Husseinil GA, Kherbeckl L, Pitt WG, Hubbell JA, Christensen DA, Velluto D. Kinetics of ultrasonic drug delivery from targeted micelles. J Nanosci Nanotechnol 2015; 15(3): 2099-104.
[http://dx.doi.org/10.1166/jnn.2015.9498] [PMID: 26413626]
[108]
Diaz de la Rosa MA, Husseini GA, Pitt WG. Comparing microbubble cavitation at 500 kHz and 70 kHz related to micellar drug delivery using ultrasound. Ultrasonics 2013; 53(2): 377-86.
[http://dx.doi.org/10.1016/j.ultras.2012.07.004] [PMID: 22901396]
[109]
Díaz de la Rosa MA, Husseini GA, Pitt WG. Mathematical modeling of microbubble cavitation at 70 kHz and the importance of the subharmonic in drug delivery from micelles. Ultrasonics 2013; 53(1): 97-110.
[http://dx.doi.org/10.1016/j.ultras.2012.04.004] [PMID: 22739406]
[110]
Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Front Bioeng Biotechnol 2019; 7: 324.
[http://dx.doi.org/10.3389/fbioe.2019.00324] [PMID: 31824930]
[111]
Daoud SS, Hume LR, Juliano RL. Liposomes in cancer therapy. Adv Drug Deliv Rev 1989; 3(3): 405-18.
[http://dx.doi.org/10.1016/0169-409X(89)90029-X]
[112]
Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 2013; 8(9): 1509-28.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[113]
Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface 2014; 11(101): 20140459.
[http://dx.doi.org/10.1098/rsif.2014.0459] [PMID: 25401172]
[114]
Salimi A. Liposomes as a novel drug delivery system: Fundamental and pharmaceutical application. Asian J Pharm 2018; 12(01): S31-41.
[115]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[116]
ScienceDirect Topics. Unilamellar Liposome - an overview. Available from: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/unilamellar-liposome
[117]
Lipids AP. Preparing large, unilamellar vesicles by extrusion (LUVET). Available from: https://avantilipids.com/tech-support/liposome-preparation/luvet
[118]
Dwivedi C, Verma S. Review on preparation and characterization of liposomes with application. J Sci Innov Res 2013; 2(2): 486-508.
[119]
Shek PN, Yung BY, Stanacev NZ. Comparison between multilamellar and unilamellar liposomes in enhancing antibody formation. Immunology 1983; 49(1): 37-44.
[PMID: 6341213]
[120]
Gruner SM, Lenk RP, Janoff AS, Ostro MJ. Novel multilayered lipid vesicles: comparison of physical characteristics of multilamellar liposomes and stable plurilamellar vesicles. Biochemistry 1985; 24(12): 2833-42.
[http://dx.doi.org/10.1021/bi00333a004] [PMID: 2990532]
[121]
Creative Biostructure. MemproTM multivesicular vesicles liposomes. Available from: https://www.creative-biostructure.com/mempro
[122]
Mu H, Wang Y, Chu Y, et al. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization. Drug Deliv 2018; 25(1): 1372-83.
[http://dx.doi.org/10.1080/10717544.2018.1474967] [PMID: 29869520]
[123]
Wang T, Gao L, Quan D. Multivesicular liposome (MVL) sustained delivery of a novel synthetic cationic GnRH antagonist for prostate cancer treatment. J Pharm Pharmacol 2011; 63(7): 904-10.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01295.x] [PMID: 21635255]
[124]
Cagdas M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. Application of nanotechnology in drug delivery. London, UK: InTech 2014.
[125]
Ferrara KW. Driving delivery vehicles with ultrasound. Adv Drug Deliv Rev 2008; 60(10): 1097-102.
[http://dx.doi.org/10.1016/j.addr.2008.03.002] [PMID: 18479775]
[126]
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol Frontiers Media SA 2015; 6.
[127]
Litzinger DC, Buiting AMJ, van Rooijen N, Huang L. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta 1994; 1190(1): 99-107.
[http://dx.doi.org/10.1016/0005-2736(94)90038-8] [PMID: 8110825]
[128]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016; 99(Pt A): 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[129]
Hatakeyama H, Akita H, Harashima H. The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull 2013; 36(6): 892-9.
[http://dx.doi.org/10.1248/bpb.b13-00059] [PMID: 23727912]
[130]
Abu Lila AS, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release 2013; 172(1): 38-47.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.026] [PMID: 23933235]
[131]
Xing H, Hwang K, Lu Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 2016; 6(9): 1336-52.
[http://dx.doi.org/10.7150/thno.15464] [PMID: 27375783]
[132]
Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 2018; 9(1): 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[133]
Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci 2018; 19(1): 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[134]
Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS J 2012; 14(2): 303-15.
[http://dx.doi.org/10.1208/s12248-012-9330-0] [PMID: 22415612]
[135]
Pruitt JD, Husseini G, Rapoport N, Pitt WG. Stabilization of pluronic P-105 micelles with an interpenetrating network of N,N-diethylacrylamide. Macromolecules 2000; 33(25): 9306-9.
[http://dx.doi.org/10.1021/ma0008544]
[136]
Aryal S, Hu CMJ, Zhang L. Polymer--cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano 2010; 4(1): 251-8.
[http://dx.doi.org/10.1021/nn9014032] [PMID: 20039697]
[137]
Horise Y, Maeda M, Konishi Y, et al. Sonodynamic therapy with anticancer micelles and high-intensity focused ultrasound in treatment of canine cancer. Front Pharmacol 2019; 10(MAY): 545.
[http://dx.doi.org/10.3389/fphar.2019.00545] [PMID: 31164823]
[138]
Hasanzadeh H, Mokhtari-Dizaji M, Bathaie SZ, Hassan ZM. Effect of local dual frequency sonication on drug distribution from polymeric nanomicelles. Ultrason Sonochem 2011; 18(5): 1165-71.
[http://dx.doi.org/10.1016/j.ultsonch.2011.03.018] [PMID: 21489850]
[139]
Myhr G, Moan J. Synergistic and tumour selective effects of chemotherapy and ultrasound treatment. Cancer Lett 2006; 232(2): 206-13.
[http://dx.doi.org/10.1016/j.canlet.2005.02.020] [PMID: 16458117]
[140]
Nelson JL, Roeder BL, Carmen JC, Roloff F, Pitt WG. Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 2002; 62(24): 7280-3.
[PMID: 12499270]
[141]
Gao Z, Fain HD, Rapoport N. Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Mol Pharm 2004; 1(4): 317-30.
[http://dx.doi.org/10.1021/mp049958h] [PMID: 15981591]
[142]
Gao ZG, Fain HD, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release 2005; 102(1): 203-22.
[http://dx.doi.org/10.1016/j.jconrel.2004.09.021] [PMID: 15653146]
[143]
Rapoport NY, Christensen DA, Fain HD, Barrows L, Gao Z. Ultrasound-triggered drug targeting of tumors in vitro and in vivo. Ultrasonics 2004; 42(1-9): 943-50.
[144]
Li F, Xie C, Cheng Z, Xia H. Ultrasound responsive block copolymer micelle of poly(ethylene glycol)-poly(propylene glycol) obtained through click reaction. Ultrason Sonochem 2016; 30: 9-17.
[http://dx.doi.org/10.1016/j.ultsonch.2015.11.023] [PMID: 26703197]
[145]
Smith MJ, Eccleston ME, Slater NKH, Tegan Roberts S, Webster DA. The effect of High Intensity Focussed Ultrasound (HIFU) on pH responsive PEGylated micelles. J Acoust Soc Am 2008; 123(5): 2293-7.
[http://dx.doi.org/10.1121/1.2933428]
[146]
Liang B, Tong R, Wang Z, Guo S, Xia H. High intensity focused ultrasound responsive metallo-supramolecular block copolymer micelles. Langmuir 2014; 30(31): 9524-32.
[http://dx.doi.org/10.1021/la500841x] [PMID: 25072274]
[147]
Tong R, Lu X, Xia H. A facile mechanophore functionalization of an amphiphilic block copolymer towards remote ultrasound and redox dual stimulus responsiveness. Chem Commun (Camb) 2014; 50(27): 3575-8.
[http://dx.doi.org/10.1039/c4cc00103f] [PMID: 24566678]
[148]
Byun Y, Kim YT, Whiteside S. Characterization of an antioxidant Polylactic Acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. J Food Eng 2010; 100(2): 239-44.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.04.005]
[149]
Yao S, Li L, Su XT, et al. Development and evaluation of novel tumor-targeting paclitaxel-loaded nano-carriers for ovarian cancer treatment: in vitro and in vivo. J Exp Clin Cancer Res 2018; 37(1): 29.
[http://dx.doi.org/10.1186/s13046-018-0700-z] [PMID: 29478415]
[150]
Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 2010; 27(12): 2569-89.
[http://dx.doi.org/10.1007/s11095-010-0233-4] [PMID: 20725771]
[151]
Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 2009; 100(4): 572-9.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01103.x] [PMID: 19462526]
[152]
Parveen S, Arjmand F, Tabassum S. Clinical developments of antitumor polymer therapeutics. RSC Advances 2019; 9(43): 24699-721.
[http://dx.doi.org/10.1039/C9RA04358F]
[153]
Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev 2008; 60(8): 899-914.
[http://dx.doi.org/10.1016/j.addr.2007.11.010] [PMID: 18406004]
[154]
Mukai H, Kato K, Esaki T, et al. Phase I study of NK105, a nanomicellar paclitaxel formulation, administered on a weekly schedule in patients with solid tumors. Invest New Drugs 2016; 34(6): 750-9.
[http://dx.doi.org/10.1007/s10637-016-0381-4] [PMID: 27595901]
[155]
Hamaguchi T, Kato K, Yasui H, et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 2007; 97(2): 170-6.
[http://dx.doi.org/10.1038/sj.bjc.6603855] [PMID: 17595665]
[156]
Supratek pharma Inc. Announces FDA clears its ind application. BioSpace 2007. Available from: https://www.biospace.com/article/releases/supratek-pharma-inc-announces-fda-clears-its-ind-application-/
[157]
Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 2007; 24(6): 1029-46.
[http://dx.doi.org/10.1007/s11095-006-9223-y] [PMID: 17385025]
[158]
Wilson RH, Plummer R, Adam J, et al. Phase I and pharmacokinetic study of NC-6004, a new platinum entity of cisplatin-conjugated polymer forming micelles. J Clin Oncol 2008; 26(15)(Suppl.): 2573-3.
[http://dx.doi.org/10.1200/jco.2008.26.15_suppl.2573]
[159]
Matsumura Y. Polymeric micellar delivery systems in oncology. Jpn J Clin Oncol 2008; 38(12): 793-802.
[http://dx.doi.org/10.1093/jjco/hyn116] [PMID: 18988667]
[160]
Greish K, Sawa T, Fang J, Akaike T, Maeda H. SMA-doxorubicin, a new polymeric micellar drug for effective targeting to solid tumours. J Control Release 2004; 97(2): 219-30.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.027] [PMID: 15196749]
[161]
Sadeghi-Naini A, Falou O, Tadayyon H, et al. Conventional frequency ultrasonic biomarkers of cancer treatment response in vivo. Transl Oncol 2013; 6(3): 234-43.
[http://dx.doi.org/10.1593/tlo.12385] [PMID: 23761215]
[162]
Mittelstein DR, Ye J, Schibber EF, et al. Selective ablation of cancer cells with low intensity pulsed ultrasound. Appl Phys Lett 2020; 116(1): 013701.
[http://dx.doi.org/10.1063/1.5128627]
[163]
Lattin JR, Pitt WG, Belnap DM, Husseini GA. Ultrasound-induced calcein release from eLiposomes. Ultrasound Med Biol 2012; 38(12): 2163-73.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.08.001] [PMID: 23062373]
[164]
Leighton TG. The Acoustic Bubble. (1st ed). Cambridge: Academic Press 1997.
[165]
Catania AE, Ferrari A, Manno M, Spessa E. A comprehensive thermodynamic approach to acoustic cavitation simulation in high-pressure injection systems by a conservative homogeneous two-phase barotropic flow model. J Eng Gas Turbine Power 2006; 128(2): 434-45.
[http://dx.doi.org/10.1115/1.2056007]
[166]
McNamara WB, Didenko YT, Suslick KS. Sonoluminescence temperatures during multi-bubble cavitation. Nature 1999; 401(6755): 772-5.
[http://dx.doi.org/10.1038/44536]
[167]
Keswani M, Raghavan S, Deymier P. Characterization of transient cavitation in gas sparged solutions exposed to megasonic field using cyclic voltammetry. Microelectron Eng 2013; 102: 91-7.
[http://dx.doi.org/10.1016/j.mee.2011.11.013]
[168]
Ahmed SE, Martins AM, Husseini GA. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J Drug Target 2015; 23(1): 16-42.
[http://dx.doi.org/10.3109/1061186X.2014.954119] [PMID: 25203857]
[169]
Chung MF, Chen KJ, Liang HF, et al. A liposomal system capable of generating CO2 bubbles to induce transient cavitation, lysosomal rupturing, and cell necrosis. Angew Chem Int Ed Engl 2012; 51(40): 10089-93.
[http://dx.doi.org/10.1002/anie.201205482] [PMID: 22952023]
[170]
Suzuki R, Namai E, Oda Y, et al. Cancer gene therapy by IL-12 gene delivery using liposomal bubbles and tumoral ultrasound exposure. J Control Release 2010; 142(2): 245-50.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.027] [PMID: 19883708]
[171]
Negishi Y, Endo Y, Fukuyama T, et al. Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound. J Control Release 2008; 132(2): 124-30.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.019] [PMID: 18804499]
[172]
Lin C-Y, Javadi M, Belnap DM, Barrow JR, Pitt WG. Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy. Nanomedicine 2014; 10(1): 67-76.
[http://dx.doi.org/10.1016/j.nano.2013.06.011] [PMID: 23845926]
[173]
Lattin JR, Belnap DM, Pitt WG. Formation of eLiposomes as a drug delivery vehicle. Colloids Surf B Biointerfaces 2012; 89(1): 93-100.
[http://dx.doi.org/10.1016/j.colsurfb.2011.08.030] [PMID: 21962853]
[174]
Javadi M, Pitt WG, Belnap DM, Tsosie NH, Hartley JM. Encapsulating nanoemulsions inside eLiposomes for ultrasonic drug delivery. Langmuir 2012; 28(41): 14720-9.
[http://dx.doi.org/10.1021/la303464v] [PMID: 22989347]
[175]
Klibanov AL, Shevchenko TI, Raju BI, Seip R, Chin CT. Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. J Control Release 2010; 148(1): 13-7.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.115] [PMID: 20691227]
[176]
Cool SK, Geers B, Roels S, et al. Coupling of drug containing liposomes to microbubbles improves ultrasound triggered drug delivery in mice. J Control Release 2013; 172(3): 885-93.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.014] [PMID: 24075924]
[177]
Evjen TJ, Nilssen EA, Barnert S, Schubert R, Brandl M, Fossheim SL. Ultrasound-mediated destabilization and drug release from liposomes comprising dioleoylphosphatidylethanolamine. Eur J Pharm Sci 2011; 42(4): 380-6.
[http://dx.doi.org/10.1016/j.ejps.2011.01.002] [PMID: 21238586]
[178]
Evjen TJ, Nilssen EA, Fowler RA, Røgnvaldsson S, Brandl M, Fossheim SL. Lipid membrane composition influences drug release from dioleoylphosphatidylethanolamine-based liposomes on exposure to ultrasound. Int J Pharm 2011; 406(1-2): 114-6.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.026] [PMID: 21185927]
[179]
Evjen TJ, Hupfeld S, Barnert S, Fossheim S, Schubert R, Brandl M. Physicochemical characterization of liposomes after ultrasound exposure - mechanisms of drug release. J Pharm Biomed Anal 2013; 78-79: 118-22.
[http://dx.doi.org/10.1016/j.jpba.2013.01.043] [PMID: 23474811]
[180]
Graham SM, Carlisle R, Choi JJ, et al. Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes. J Control Release 2014; 178(1): 101-7.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.016] [PMID: 24368302]
[181]
Xin Y, Qi Q, Mao Z, Zhan X. PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: In vitro and in vivo investigations. Int J Pharm 2017; 528(1-2): 47-54.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.059] [PMID: 28559216]
[182]
Geers B, Lentacker I, Sanders NN, Demeester J, Meairs S, De Smedt SC. Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. J Control Release 2011; 152(2): 249-56.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.024] [PMID: 21362448]
[183]
Evjen TJ, Hagtvet E, Moussatov A, et al. In vivo monitoring of liposomal release in tumours following ultrasound stimulation. Eur J Pharm Biopharm 2013; 84(3): 526-31.
[http://dx.doi.org/10.1016/j.ejpb.2012.12.007] [PMID: 23274944]
[184]
Wallace N, Wrenn SP. Ultrasound triggered drug delivery with liposomal nested microbubbles. Ultrasonics 2015; 63: 31-8.
[http://dx.doi.org/10.1016/j.ultras.2015.06.006] [PMID: 26152887]
[185]
Hayashi S, Mizuno M, Yoshida J, Nakao A. Effect of sonoporation on cationic liposome-mediated IFNbeta gene therapy for metastatic hepatic tumors of murine colon cancer. Cancer Gene Ther 2009; 16(8): 638-43.
[http://dx.doi.org/10.1038/cgt.2008.1] [PMID: 19498458]
[186]
Anwer K, Kao G, Proctor B, et al. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther 2000; 7(21): 1833-9.
[http://dx.doi.org/10.1038/sj.gt.3301302] [PMID: 11110415]
[187]
Klegerman ME, Naji AK, Haworth KJ, et al. Ultrasound-enhanced bevacizumab release from echogenic liposomes for inhibition of atheroma progression. J Liposome Res 2016; 26(1): 47-56.
[http://dx.doi.org/10.3109/08982104.2015.1029494] [PMID: 25865025]
[188]
Zolochevska O, Xia X, Williams BJ, Ramsay A, Li S, Figueiredo ML. Sonoporation delivery of interleukin-27 gene therapy efficiently reduces prostate tumor cell growth in vivo. Hum Gene Ther 2011; 22(12): 1537-50.
[http://dx.doi.org/10.1089/hum.2011.076] [PMID: 21801027]
[189]
Oda Y, Suzuki R, Otake S, et al. Prophylactic immunization with Bubble liposomes and ultrasound-treated dendritic cells provided a four-fold decrease in the frequency of melanoma lung metastasis. J Control Release 2012; 160(2): 362-6.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.003] [PMID: 22192573]
[190]
Shi C, Zhang Y, Yang H, et al. Ultrasound-targeted microbubble destruction-mediated Foxp3 knockdown may suppress the tumor growth of HCC mice by relieving immunosuppressive Tregs function. Exp Ther Med 2018; 15(1): 31-8.
[PMID: 29387180]
[191]
Shi C, Zhang Y, Yang H, et al. Combined effect of ultrasound/SonoVue microbubble on CD4(+)CD25(+) regulatory T cells viability and optimized parameters for its transfection. Ultrasonics 2015; 62: 97-102.
[http://dx.doi.org/10.1016/j.ultras.2015.05.006] [PMID: 26048174]
[192]
Alkins R, Burgess A, Kerbel R, Wels WS, Hynynen K. Early treatment of HER2-amplified brain tumors with targeted NK-92 cells and focused ultrasound improves survival. Neuro-oncol 2016; 18(7): 974-81.
[http://dx.doi.org/10.1093/neuonc/nov318] [PMID: 26819443]
[193]
Sta Maria NS, Barnes SR, Weist MR, Colcher D, Raubitschek AA, Jacobs RE. Low dose focused ultrasound induces enhanced tumor accumulation of natural killer cells. PLoS One 2015; 10(11): e0142767.
[http://dx.doi.org/10.1371/journal.pone.0142767] [PMID: 26556731]
[194]
Heath CH, Sorace A, Knowles J, Rosenthal E, Hoyt K. Microbubble therapy enhances anti-tumor properties of cisplatin and cetuximab in vitro and in vivo. Otolaryngol Head Neck Surg 2012; 146(6): 938-45.
[http://dx.doi.org/10.1177/0194599812436648] [PMID: 22323435]
[195]
Park EJ, Zhang YZ, Vykhodtseva N, McDannold N. Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Control Release 2012; 163(3): 277-84.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.007] [PMID: 23000189]
[196]
Moussa HG, Husseini GA, Abel-Jabbar N, Ahmad SE. Use of model predictive control and artificial neural networks to optimize the ultrasonic release of a model drug from liposomes. IEEE Trans Nanobioscience 2017; 16(3): 149-56.
[http://dx.doi.org/10.1109/TNB.2017.2661322] [PMID: 28166502]
[197]
Wadi A, Abdel-Hafez M, Husseini GA, Paul V. Multi-model investigation and adaptive estimation of the acoustic release of a model drug from liposomes. IEEE Trans Nanobioscience 2020; 19(1): 68-77.
[http://dx.doi.org/10.1109/TNB.2019.2950344] [PMID: 31714230]
[198]
Wadi A, Abdel-Hafez M, Husseini GA. Modeling and bias-robust estimation of the acoustic release of chemotherapeutics from liposomes. J Biomed Nanotechnol 2019; 15(1): 162-9.
[http://dx.doi.org/10.1166/jbn.2019.2672] [PMID: 30480523]
[199]
Husseini GA, Pitt WG, Williams JB, Javadi M. Investigating the release mechanism of calcein from eliposomes at higher temperatures. J Colloid Sci Biotechnol 2015; 3(3): 239-44.
[http://dx.doi.org/10.1166/jcsb.2014.1100]
[200]
Husseini GA, Pitt WG, Javadi M. Investigating the stability of eliposomes at elevated temperatures. Technol Cancer Res Treat 2015; 14(4): 379-82.
[http://dx.doi.org/10.1177/1533034614551480] [PMID: 25261070]
[201]
Pitt WG, Singh RN, Perez KX, Husseini GA, Jack DR. Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model. Ultrason Sonochem 2014; 21(2): 879-91.
[http://dx.doi.org/10.1016/j.ultsonch.2013.08.005] [PMID: 24035720]
[202]
Kobus T, Zervantonakis IK, Zhang Y, McDannold NJ. Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption. J Control Release 2016; 238: 281-8.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.001] [PMID: 27496633]
[203]
Bulner S, Prodeus A, Gariepy J, Hynynen K, Goertz DE. Enhancing checkpoint inhibitor therapy with ultrasound stimulated microbubbles. Ultrasound Med Biol 2019; 45(2): 500-12.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2018.10.002] [PMID: 30447880]
[204]
Thomas E, Menon JU, Owen J, et al. Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy. Theranostics 2019; 9(19): 5595-609.
[http://dx.doi.org/10.7150/thno.34669] [PMID: 31534505]
[205]
Aryal M, Papademetriou I, Zhang YZ, Power C, McDannold N, Porter T. MRI monitoring and quantification of ultrasound-mediated delivery of liposomes dually labeled with gadolinium and fluorophore through the blood-brain barrier. Ultrasound Med Biol 2019; 45(7): 1733-42.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2019.02.024] [PMID: 31010598]
[206]
Ahmed AEE. Ultrasound triggered release of trastuzumab-conjugated immunoliposomes targeting breast cancer. MSc Dissertation 2018.
[207]
Laing ST, Kim H, Kopechek JA, et al. Ultrasound-mediated delivery of echogenic immunoliposomes to porcine vascular smooth muscle cells in vivo. J Liposome Res 2010; 20(2): 160-7.
[http://dx.doi.org/10.3109/08982100903218918] [PMID: 19842795]
[208]
Sutton JT, Haworth KJ, Shanmukhappa SK, et al. Delivery of bevacizumab to atheromatous porcine carotid tissue using echogenic liposomes. Drug Deliv 2016; 23(9): 3594-605.
[http://dx.doi.org/10.1080/10717544.2016.1212441] [PMID: 27689451]
[209]
Cintolo JA, Datta J, Mathew SJ, Czerniecki BJ. Dendritic cell-based vaccines: barriers and opportunities. Future Oncol 2012; 8(10): 1273-99.
[http://dx.doi.org/10.2217/fon.12.125] [PMID: 23130928]
[210]
Un K, Kawakami S, Suzuki R, Maruyama K, Yamashita F, Hashida M. Suppression of melanoma growth and metastasis by DNA vaccination using an ultrasound-responsive and mannose-modified gene carrier. Mol Pharm 2011; 8(2): 543-54.
[http://dx.doi.org/10.1021/mp100369n] [PMID: 21250746]
[211]
De Temmerman ML, Dewitte H, Vandenbroucke RE, et al. mRNA-Lipoplex loaded microbubble contrast agents for ultrasound-assisted transfection of dendritic cells. Biomaterials 2011; 32(34): 9128-35.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.024] [PMID: 21868088]
[212]
Dewitte H, Van Lint S, Heirman C, et al. The potential of antigen and TriMix sonoporation using mRNA-loaded microbubbles for ultrasound-triggered cancer immunotherapy. J Control Release 2014; 194(1): 28-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.08.011] [PMID: 25151979]
[213]
Rapoport N, Pitt WG. Stabilization and acoustic activation of polymeric micelles for drug delivery. US6649702, 2003.
[214]
Thomas J, Lin H-Y, Rapoport N. Responsive liposomes for ultrasonic drug delivery. US20060002994, 2006.
[215]
Rapoport N, Gao Z. Echogenic microbubbles and microemulsions for ultrasound-enhanced nanoparticle-mediated delivery of agents. US20090117177, 2009.
[216]
Husseini G, Mohammad A-S, Elsadig A. Systems and methods for targeted breast cancer therapies. US10864161, 2020.
[217]
Husseini G, Mohammad A-S, Martins A, Vitor R, Salkho N. Systems and methods for targeted cancer therapies. US20180243418, 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy