Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Novel Drug Delivery System for Curcumin: Implementation to Improve Therapeutic Efficacy against Neurological Disorders

Author(s): Roohi Mohi-ud-din, Reyaz Hassan Mir, Taha Umair Wani, Abdul Jalil Shah, Ishtiyaq Mohi-Ud-Din, Mudasir Ahmad Dar and Faheem Hyder Pottoo*

Volume 25, Issue 4, 2022

Published on: 05 July, 2021

Page: [607 - 615] Pages: 9

DOI: 10.2174/1386207324666210705114058

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Curcumin, a hydrophobic polyphenolic compound present in Curcuma longa Linn. (Turmeric), has been used to improve various neurodegenerative conditions, including Amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Prion disease, stroke, anxiety, depression, and ageing. However, the Blood-Brain Barrier (BBB) impedes the delivery of curcumin to the brain, limiting its therapeutic potential.

Objective/Aim: This review summarises the recent advances towards the therapeutic efficacy of curcumin along with various novel strategies to overcome its poor bioavailability across the bloodbrain barrier.

Methods: The data for the compilation of this review work were searched in PubMed Scopus, Google Scholar, and Science Direct.

Results: Various approaches have been opted to expedite the delivery of curcumin across the blood-brain barrier, including liposomes, micelles, polymeric nanoparticles, exosomes, dualtargeting nanoparticles, etc.

Conclusion: The review also summarises the numerous toxicological studies and the role of curcumin in CNS disorders.

Keywords: Curcumin, neurodegenerative disease, therapeutic effect, drug delivery, nanomedicine, bioavailability.

Graphical Abstract
[1]
Maiti, P.; Dunbar, G.L. Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int. J. Mol. Sci., 2018, 19(6), 1637.
[http://dx.doi.org/10.3390/ijms19061637] [PMID: 29857538]
[2]
Vogel, H.; Pelletier, J. Curcumin-biological and medicinal properties. J. Pharm. (Cairo), 1815, 2, 24.
[3]
Farooqui, T.; Farooqui, A.A. Curcumin: Historical background, chemistry, pharmacological action, and potential therapeutic value.Curcumin for neurological and psychiatric disorders; Elsevier, 2019, pp. 23-44.
[http://dx.doi.org/10.1016/B978-0-12-815461-8.00002-5]
[4]
Lampe, V.; Milobedzka, J. Studien über curcumin. Ber. Dtsch. Chem. Ges., 1913, 46, 2235-2240.
[http://dx.doi.org/10.1002/cber.191304602149]
[5]
Roughley, P.J.; Whiting, D.A. Experiments in the biosynthesis of curcumin. J. Chem. Soc., Perkin Trans. 1, 1973, 2379-2388.
[http://dx.doi.org/10.1039/p19730002379]
[6]
Cornago, P.; Claramunt, R.M.; Bouissane, L.; Alkorta, I.; Elguero, J. A study of the tautomerism of β-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron, 2008, 64, 8089-8094.
[http://dx.doi.org/10.1016/j.tet.2008.06.065]
[7]
Bertolasi, V.; Ferretti, V.; Gilli, P.; Yao, X.; Li, C-J. Substituent effects on keto–enol tautomerization of β-diketones from X-ray structural data and DFT calculations. New J. Chem., 2008, 32, 694-704.
[http://dx.doi.org/10.1039/b714708b]
[8]
Shrishail, D.; Harish, K.; Ravichandra, H.; Tulsianand, G.; Shruthi, S. Turmeric: Nature’s precious medicine. Asian J. Pharm. Clinical Res., 2013, 6, 10-16.
[9]
Prasad, S.; Aggarwal, B.B. Turmeric, the Golden Spice: From Traditional Medicine to Modern Medicine. In: Herbal Medicine: Biomolecular and Clinical Aspects; 2nd ed.; Benzie, I.F.F.; Wachtel-Galor, S., editors. CRC Press/Taylor & Francis: Boca Raton (FL), USA, 2011. Chapter 13
[10]
Liu, H-T.; Ho, Y-S. Anticancer effect of curcumin on breast cancer and stem cells. Food Sci. Hum. Wellness, 2018, 7, 134-137.
[http://dx.doi.org/10.1016/j.fshw.2018.06.001]
[11]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398.
[PMID: 12680238]
[12]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. The molecular targets and therapeutic uses of curcumin in health and disease; Springer, 2007, pp. 105-125.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3]
[13]
Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med., 2003, 9(1), 161-168.
[http://dx.doi.org/10.1089/107555303321223035] [PMID: 12676044]
[14]
Mir, R.H.; Masoodi, M.H. Anti-inflammatory plant polyphenolics and cellular action mechanisms. Curr. Bioact. Compd., 2020, 16, 809-817.
[http://dx.doi.org/10.2174/1573407215666190419205317]
[15]
Tyagi, P.; Singh, M.; Kumari, H.; Kumari, A.; Mukhopadhyay, K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One, 2015, 10(3), e0121313.
[http://dx.doi.org/10.1371/journal.pone.0121313] [PMID: 25811596]
[16]
Trujillo, J.; Chirino, Y.I.; Molina-Jijón, E.; Andérica-Romero, A.C.; Tapia, E.; Pedraza-Chaverrí, J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol., 2013, 1, 448-456.
[http://dx.doi.org/10.1016/j.redox.2013.09.003] [PMID: 24191240]
[17]
Trivedi, M.K.; Mondal, S.C.; Gangwar, M.; Jana, S. Immunomodulatory potential of nanocurcumin-based formulation. Inflammopharmacology, 2017, 25(6), 609-619.
[http://dx.doi.org/10.1007/s10787-017-0395-3] [PMID: 28921388]
[18]
Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: A short review. Life Sci., 2006, 78(18), 2081-2087.
[http://dx.doi.org/10.1016/j.lfs.2005.12.007] [PMID: 16413584]
[19]
Mir, R.H.; Shah, A.J.; Mohi-Ud-Din, R.; Pottoo, F.H.; Dar, M.A.; Jachak, S.M.; Masoodi, M.H. Natural anti-inflammatory compounds as drug candidates in Alzheimer’s disease. Curr. Med. Chem., 2020.
[http://dx.doi.org/10.2174/0929867327666200730213215] [PMID: 32744957]
[20]
Mohi-Ud-Din, R.; Mir, R.H.; Sawhney, G.; Dar, M.A.; Bhat, Z.A. Possible pathways of hepatotoxicity caused by chemical agents. Curr. Drug Metab., 2019, 20(11), 867-879.
[http://dx.doi.org/10.2174/1389200220666191105121653] [PMID: 31702487]
[21]
Zhang, X.; Yin, W.K.; Shi, X.D.; Li, Y. Curcumin activates Wnt/β-catenin signaling pathway through inhibiting the activity of GSK-3β in APPswe transfected SY5Y cells. Eur. J. Pharm. Sci., 2011, 42(5), 540-546.
[http://dx.doi.org/10.1016/j.ejps.2011.02.009] [PMID: 21352912]
[22]
Qin, X-Y.; Cheng, Y.; Yu, L-C. Potential protection of curcumin against intracellular amyloid β-induced toxicity in cultured rat prefrontal cortical neurons. Neurosci. Lett., 2010, 480(1), 21-24.
[http://dx.doi.org/10.1016/j.neulet.2010.05.062] [PMID: 20638958]
[23]
Ma, Q-L.; Yang, F.; Rosario, E.R.; Ubeda, O.J.; Beech, W.; Gant, D.J.; Chen, P.P.; Hudspeth, B.; Chen, C.; Zhao, Y.; Vinters, H.V.; Frautschy, S.A.; Cole, G.M. β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: Suppression by omega-3 fatty acids and curcumin. J. Neurosci., 2009, 29(28), 9078-9089.
[http://dx.doi.org/10.1523/JNEUROSCI.1071-09.2009] [PMID: 19605645]
[24]
Mohi-Ud-Din, R.; Mir, R.H.; Shah, A.J.; Sabreen, S.; Wani, T.U.; Masoodi, M.H.; Akkol, E.K.; Bhat, Z.A.; Khan, H. Plant-derived natural compounds for the treatment of amyotrophic lateral sclerosis: An update. Curr. Neuropharmacol., 2021.
[http://dx.doi.org/10.2174/1570159X19666210428120514] [PMID: 33913406]
[25]
Shah, A.J.; Mir, R.H.; Mohi-Ud-Din, R.; Pottoo, F.H.; Masoodi, M.H.; Bhat, Z.A. Depression: An insight into heterocyclic and cyclic hydrocarbon compounds inspired from natural sources. Curr. Neuropharmacol., 2021.
[http://dx.doi.org/10.2174/1570159X19666210426115234] [PMID: 33902421]
[26]
Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611.
[http://dx.doi.org/10.1016/j.bcp.2008.08.008] [PMID: 18775680]
[27]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[28]
McClure, R.; Yanagisawa, D.; Stec, D.; Abdollahian, D.; Koktysh, D.; Xhillari, D.; Jaeger, R.; Stanwood, G.; Chekmenev, E.; Tooyama, I.; Gore, J.C.; Pham, W. Inhalable curcumin: Offering the potential for translation to imaging and treatment of Alzheimer’s disease. J. Alzheimers Dis., 2015, 44(1), 283-295.
[http://dx.doi.org/10.3233/JAD-140798] [PMID: 25227316]
[29]
Hoehle, S.I.; Pfeiffer, E.; Metzler, M. Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases. Mol. Nutr. Food Res., 2007, 51(8), 932-938.
[http://dx.doi.org/10.1002/mnfr.200600283] [PMID: 17628876]
[30]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[31]
Lao, C.D.; Ruffin, M.T., IV; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6, 10.
[http://dx.doi.org/10.1186/1472-6882-6-10] [PMID: 16545122]
[32]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[33]
Bhat, A.; Mahalakshmi, A.M.; Ray, B.; Tuladhar, S.; Hediyal, T.A.; Manthiannem, E.; Padamati, J.; Chandra, R.; Chidambaram, S.B.; Sakharkar, M.K. Benefits of curcumin in brain disorders. Biofactors, 2019, 45(5), 666-689.
[http://dx.doi.org/10.1002/biof.1533] [PMID: 31185140]
[34]
Fong, C.W. Permeability of the blood–brain barrier: Molecular mechanism of transport of drugs and physiologically important compounds. J. Membr. Biol., 2015, 248(4), 651-669.
[http://dx.doi.org/10.1007/s00232-015-9778-9] [PMID: 25675910]
[35]
Mohi-ud-din, R.; Mir, R.H.; Pottoo, F.H.; Sawhney, G.; Masoodi, M.H.; Bhat, Z.A. Nanophytomedicine ethical issues, regulatory aspects, and challenges. Nanophytomedicine; Springer, 2020, pp. 173-192.
[36]
Chan, P.H.; Fishman, R.A.; Caronna, J.; Schmidley, J.W.; Prioleau, G.; Lee, J. Induction of brain edema following intracerebral injection of arachidonic acid. Ann. Neurol., 1983, 13(6), 625-632.
[http://dx.doi.org/10.1002/ana.410130608] [PMID: 6309072]
[37]
Huang, M.; Gu, X.; Gao, X. Nanotherapeutic strategies for the treatment of neurodegenerative diseases. Brain targeted drug delivery system; Elsevier, 2019, pp. 321-356.
[http://dx.doi.org/10.1016/B978-0-12-814001-7.00013-5]
[38]
Demetzos, C. Pharmaceutical nanotechnology; Springer, 2016.
[http://dx.doi.org/10.1007/978-981-10-0791-0]
[39]
Mukherjee, A.; Bhattacharyya, S. Nanotechnology in medicine.Biotechnology business-concept to delivery; Springer, 2020, pp. 57-64.
[http://dx.doi.org/10.1007/978-3-030-36130-3_3]
[40]
Nobile, L.; Nobile, S. Recent advances of nanotechnology in medicine and engineering. AIP Conference Proceedings; , 2016, p. 020058.
[http://dx.doi.org/10.1063/1.4949633]
[41]
Wani, T.U.; Rashid, M.; Kumar, M.; Chaudhary, S.; Kumar, P.; Mishra, N. Targeting aspects of nanogels: An overview. Int. J. Pharmaceutical Sci. Nanotechnol, 2014, 7, 2612-2630.
[42]
Saeedi, M.; Eslamifar, M.; Khezri, K.; Dizaj, S.M. Applications of nanotechnology in drug delivery to the central nervous system. Biomed. Pharmacother., 2019, 111, 666-675.
[http://dx.doi.org/10.1016/j.biopha.2018.12.133] [PMID: 30611991]
[43]
Wani, T. U.; Sofi, H. S.; Khan, N. A.; Sheikh, F. A. Experimental protocol for induction of transgene expression in neural stem cells through polymeric nanoparticles. 2019.
[http://dx.doi.org/10.1007/7651_2019_256]
[44]
Kreuter, J.; Petrov, V.; Kharkevich, D.; Alyautdin, R. Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood–brain barrier using surfactant-coated nanoparticles. J. Control. Release, 1997, 49, 81-87.
[http://dx.doi.org/10.1016/S0168-3659(97)00061-8]
[45]
Kreuter, J. Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). J. Microencapsul., 2013, 30(1), 49-54.
[http://dx.doi.org/10.3109/02652048.2012.692491] [PMID: 22676632]
[46]
Yen, F-L.; Wu, T-H.; Tzeng, C-W.; Lin, L-T.; Lin, C-C. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J. Agric. Food Chem., 2010, 58(12), 7376-7382.
[http://dx.doi.org/10.1021/jf100135h] [PMID: 20486686]
[47]
Agrawal, M. Ajazuddin; Tripathi, D.K.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Mourtas, S.; Hammarlund-Udenaes, M.; Alexander, A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release, 2017, 260, 61-77.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.019] [PMID: 28549949]
[48]
Ramos-Cabrer, P.; Campos, F. Liposomes and nanotechnology in drug development: Focus on neurological targets. Int. J. Nanomedicine, 2013, 8, 951-960.
[http://dx.doi.org/10.2147/IJN.S30721] [PMID: 23486739]
[49]
Salade, L.; Wauthoz, N.; Deleu, M.; Vermeersch, M.; De Vriese, C.; Amighi, K.; Goole, J. Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia. Int. J. Nanomedicine, 2017, 12, 8531-8543.
[http://dx.doi.org/10.2147/IJN.S147650] [PMID: 29238190]
[50]
Vahedi, A.; Kouhi, M. Correction to: Liquid crystal-based surface plasmon resonance biosensor. Plasmonics, 2020, 15, 73-73.
[http://dx.doi.org/10.1007/s11468-019-01027-3]
[51]
Vieira, D.B.; Gamarra, L.F. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood-brain barrier. Int. J. Nanomedicine, 2016, 11, 5381-5414.
[http://dx.doi.org/10.2147/IJN.S117210] [PMID: 27799765]
[52]
Hofheinz, R-D.; Gnad-Vogt, S.U.; Beyer, U.; Hochhaus, A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs, 2005, 16(7), 691-707.
[http://dx.doi.org/10.1097/01.cad.0000167902.53039.5a] [PMID: 16027517]
[53]
Meng, Q.; Wang, A.; Hua, H.; Jiang, Y.; Wang, Y.; Mu, H.; Wu, Z.; Sun, K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2018, 13, 705-718.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[54]
Ross, C.; Taylor, M.; Fullwood, N.; Allsop, D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2018, 13, 8507-8522.
[http://dx.doi.org/10.2147/IJN.S183117] [PMID: 30587974]
[55]
Zheng, X.; Shao, X.; Zhang, C.; Tan, Y.; Liu, Q.; Wan, X.; Zhang, Q.; Xu, S.; Jiang, X. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm. Res., 2015, 32(12), 3837-3849.
[http://dx.doi.org/10.1007/s11095-015-1744-9] [PMID: 26113236]
[56]
Al Asmari, A.K.; Ullah, Z.; Tariq, M.; Fatani, A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des. Devel. Ther., 2016, 10, 205-215.
[PMID: 26834457]
[57]
Xiao, W.; Fu, Q.; Zhao, Y.; Zhang, L.; Yue, Q.; Hai, L.; Guo, L.; Wu, Y. Ascorbic acid-modified brain-specific liposomes drug delivery system with “lock-in” function. Chem. Phys. Lipids, 2019, 224, 104727.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.01.005] [PMID: 30660746]
[58]
Li, X.; Xiao, H.; Lin, C.; Sun, W.; Wu, T.; Wang, J.; Chen, B.; Chen, X.; Cheng, D. Synergistic effects of liposomes encapsulating atorvastatin calcium and curcumin and targeting dysfunctional endothelial cells in reducing atherosclerosis. Int. J. Nanomedicine, 2019, 14, 649-665.
[http://dx.doi.org/10.2147/IJN.S189819] [PMID: 30697048]
[59]
Kuo, Y-C.; Chen, C-L.; Rajesh, R. Optimized liposomes with transactivator of transcription peptide and anti-apoptotic drugs to target hippocampal neurons and prevent tau-hyperphosphorylated neurodegeneration. Acta Biomater., 2019, 87, 207-222.
[http://dx.doi.org/10.1016/j.actbio.2019.01.065] [PMID: 30716553]
[60]
Re, F.; Cambianica, I.; Zona, C.; Sesana, S.; Gregori, M.; Rigolio, R.; La Ferla, B.; Nicotra, F.; Forloni, G.; Cagnotto, A.; Salmona, M.; Masserini, M.; Sancini, G. Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine (Lond.), 2011, 7(5), 551-559.
[http://dx.doi.org/10.1016/j.nano.2011.05.004] [PMID: 21658472]
[61]
Tian, W.; Ying, X.; Du, J.; Guo, J.; Men, Y.; Zhang, Y.; Li, R.J.; Yao, H.J.; Lou, J.N.; Zhang, L.R.; Lu, W.L. Enhanced efficacy of functionalized epirubicin liposomes in treating brain glioma-bearing rats. Eur. J. Pharm. Sci., 2010, 41(2), 232-243.
[http://dx.doi.org/10.1016/j.ejps.2010.06.008] [PMID: 20600880]
[62]
Wen, M.M.; El-Salamouni, N.S.; El-Refaie, W.M.; Hazzah, H.A.; Ali, M.M.; Tosi, G.; Farid, R.M.; Blanco-Prieto, M.J.; Billa, N.; Hanafy, A.S. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J. Control. Release, 2017, 245, 95-107.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.025] [PMID: 27889394]
[63]
Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release, 2013, 166(2), 182-194.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.013] [PMID: 23262199]
[64]
Andrieux, K.; Couvreur, P. Polyalkylcyanoacrylate nanoparticles for delivery of drugs across the blood-brain barrier. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(5), 463-474.
[http://dx.doi.org/10.1002/wnan.5] [PMID: 20049811]
[65]
Calvo, P.; Gouritin, B.; Villarroya, H.; Eclancher, F.; Giannavola, C.; Klein, C.; Andreux, J.P.; Couvreur, P. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. Eur. J. Neurosci., 2002, 15(8), 1317-1326.
[http://dx.doi.org/10.1046/j.1460-9568.2002.01967.x] [PMID: 11994126]
[66]
Tsai, Y-M.; Chien, C-F.; Lin, L-C.; Tsai, T-H. Curcumin and its nano-formulation: The kinetics of tissue distribution and blood-brain barrier penetration. Int. J. Pharm., 2011, 416(1), 331-338.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.030] [PMID: 21729743]
[67]
Tiwari, S.K.; Agarwal, S.; Seth, B.; Yadav, A.; Nair, S.; Bhatnagar, P.; Karmakar, M.; Kumari, M.; Chauhan, L.K.; Patel, D.K.; Srivastava, V.; Singh, D.; Gupta, S.K.; Tripathi, A.; Chaturvedi, R.K.; Gupta, K.C. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano, 2014, 8(1), 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[68]
Garcia-Garcia, E.; Andrieux, K.; Gil, S.; Couvreur, P. Colloidal carriers and blood-brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int. J. Pharm., 2005, 298(2), 274-292.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.031] [PMID: 15896933]
[69]
Huynh, N.T.; Morille, M.; Bejaud, J.; Legras, P.; Vessieres, A.; Jaouen, G.; Benoit, J.P.; Passirani, C. Treatment of 9L gliosarcoma in rats by ferrociphenol-loaded lipid nanocapsules based on a passive targeting strategy via the EPR effect. Pharm. Res., 2011, 28(12), 3189-3198.
[http://dx.doi.org/10.1007/s11095-011-0501-y] [PMID: 21691892]
[70]
Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem., 2010, 21(5), 797-802.
[http://dx.doi.org/10.1021/bc100070g] [PMID: 20397686]
[71]
Orunoğlu, M.; Kaffashi, A.; Pehlivan, S.B.; Şahin, S.; Söylemezoğlu, F.; Oğuz, K.K.; Mut, M. Effects of curcumin-loaded PLGA nanoparticles on the RG2 rat glioma model. Mater. Sci. Eng. C, 2017, 78, 32-38.
[http://dx.doi.org/10.1016/j.msec.2017.03.292] [PMID: 28575990]
[72]
Chang, C-Z.; Wu, S-C.; Lin, C-L.; Kwan, A-L. Curcumin, encapsulated in nano-sized PLGA, down-regulates nuclear factor κB (p65) and subarachnoid hemorrhage induced early brain injury in a rat model. Brain Res., 2015, 1608, 215-224.
[http://dx.doi.org/10.1016/j.brainres.2015.02.039] [PMID: 25747863]
[73]
Zhang, Z.Y.; Jiang, M.; Fang, J.; Yang, M.F.; Zhang, S.; Yin, Y.X.; Li, D.W.; Mao, L.L.; Fu, X.Y.; Hou, Y.J.; Fu, X.T.; Fan, C.D.; Sun, B.L. Enhanced therapeutic potential of nano-curcumin against subarachnoid hemorrhage-induced blood–brain barrier disruption through inhibition of inflammatory response and oxidative stress. Mol. Neurobiol., 2017, 54(1), 1-14.
[http://dx.doi.org/10.1007/s12035-015-9635-y] [PMID: 26708209]
[74]
Shah, B.; Khunt, D.; Bhatt, H.; Misra, M.; Padh, H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur. J. Pharm. Sci., 2015, 78, 54-66.
[http://dx.doi.org/10.1016/j.ejps.2015.07.002] [PMID: 26143262]
[75]
Wang, Y.; Luo, J.; Li, S-Y. Nano-curcumin simultaneously protects the blood-brain barrier and reduces m1 microglial activation during cerebral ischemia-reperfusion injury. ACS Appl. Mater. Interfaces, 2019, 11(4), 3763-3770.
[http://dx.doi.org/10.1021/acsami.8b20594] [PMID: 30618231]
[76]
Cheng, K.K.; Yeung, C.F.; Ho, S.W.; Chow, S.F.; Chow, A.H.; Baum, L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J., 2013, 15(2), 324-336.
[http://dx.doi.org/10.1208/s12248-012-9444-4] [PMID: 23229335]
[77]
Kaur, I.; Bhandari, R. Solid lipid nanoparticles entrapping hydrophilic/amphiphilic drug and a process for preparing the same. PCT application number: PCT/IN2012/000154, 2012, 5, 2012.
[78]
Patel, S.; Chavhan, S.; Soni, H.; Babbar, A.K.; Mathur, R.; Mishra, A.K.; Sawant, K. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J. Drug Target., 2011, 19(6), 468-474.
[http://dx.doi.org/10.3109/1061186X.2010.523787] [PMID: 20958095]
[79]
Chen, Y.; Pan, L.; Jiang, M.; Li, D.; Jin, L. Nanostructured lipid carriers enhance the bioavailability and brain cancer inhibitory efficacy of curcumin both in vitro and in vivo. Drug Deliv., 2016, 23(4), 1383-1392.
[http://dx.doi.org/10.3109/10717544.2015.1049719] [PMID: 26066035]
[80]
Huntosova, V.; Buzova, D.; Petrovajova, D.; Kasak, P.; Nadova, Z.; Jancura, D.; Sureau, F.; Miskovsky, P. Development of a new LDL-based transport system for hydrophobic/amphiphilic drug delivery to cancer cells. Int. J. Pharm., 2012, 436(1-2), 463-471.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.005] [PMID: 22814227]
[81]
Su, B.; Ji, Y-S.; Sun, X.L.; Liu, X-H.; Chen, Z-Y. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission. J. Biol. Chem., 2014, 289(3), 1213-1226.
[http://dx.doi.org/10.1074/jbc.M113.526129] [PMID: 24302729]
[82]
Zhu, Q.L.; Zhou, Y.; Guan, M.; Zhou, X.F.; Yang, S.D.; Liu, Y.; Chen, W.L.; Zhang, C.G.; Yuan, Z.Q.; Liu, C.; Zhu, A.J.; Zhang, X.N. Low-density lipoprotein-coupled N-succinyl chitosan nanoparticles co-delivering siRNA and doxorubicin for hepatocyte-targeted therapy. Biomaterials, 2014, 35(22), 5965-5976.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.088] [PMID: 24768047]
[83]
Kundu, P.; Das, M.; Tripathy, K.; Sahoo, S.K. Delivery of dual drug loaded lipid based nanoparticles across the blood–brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease. ACS Chem. Neurosci., 2016, 7(12), 1658-1670.
[http://dx.doi.org/10.1021/acschemneuro.6b00207] [PMID: 27642670]
[84]
Sandhir, R.; Yadav, A.; Mehrotra, A.; Sunkaria, A.; Singh, A.; Sharma, S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med., 2014, 16(1), 106-118.
[http://dx.doi.org/10.1007/s12017-013-8261-y] [PMID: 24008671]
[85]
Meng, F.; Asghar, S.; Gao, S.; Su, Z.; Song, J.; Huo, M.; Meng, W.; Ping, Q.; Xiao, Y. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. Colloids Surf. B Biointerfaces, 2015, 134, 88-97.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.025] [PMID: 26162977]
[86]
Yang, H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm. Res., 2010, 27(9), 1759-1771.
[http://dx.doi.org/10.1007/s11095-010-0141-7] [PMID: 20593303]
[87]
Ku, S.; Yan, F.; Wang, Y.; Sun, Y.; Yang, N.; Ye, L. The blood-brain barrier penetration and distribution of PEGylated fluorescein-doped magnetic silica nanoparticles in rat brain. Biochem. Biophys. Res. Commun., 2010, 394(4), 871-876.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.006] [PMID: 20206605]
[88]
Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Volceanov, A.; Teleanu, R.I. Blood-brain delivery methods using nanotechnology. Pharmaceutics, 2018, 10(4), 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269] [PMID: 30544966]
[89]
Qiao, R.; Jia, Q.; Hüwel, S.; Xia, R.; Liu, T.; Gao, F.; Galla, H.J.; Gao, M. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano, 2012, 6(4), 3304-3310.
[http://dx.doi.org/10.1021/nn300240p] [PMID: 22443607]
[90]
Frigell, J.; García, I.; Gómez-Vallejo, V.; Llop, J.; Penadés, S. 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: Preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. J. Am. Chem. Soc., 2014, 136(1), 449-457.
[http://dx.doi.org/10.1021/ja411096m] [PMID: 24320878]
[91]
Zhao, L.; Li, Y.; Zhu, J.; Sun, N.; Song, N.; Xing, Y.; Huang, H.; Zhao, J. Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy. J. Nanobiotechnology, 2019, 17(1), 30.
[http://dx.doi.org/10.1186/s12951-019-0462-6] [PMID: 30782154]
[92]
Fahmy, H.M.; Fathy, M.M.; Abd-Elbadia, R.A.; Elshemey, W.M. Targeting of Thymoquinone-loaded mesoporous silica nanoparticles to different brain areas: In vivo study. Life Sci., 2019, 222, 94-102.
[http://dx.doi.org/10.1016/j.lfs.2019.02.058] [PMID: 30826496]
[93]
Cheng, K.K.; Chan, P.S.; Fan, S.; Kwan, S.M.; Yeung, K.L.; Wáng, Y-X.J.; Chow, A.H.; Wu, E.X.; Baum, L. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials, 2015, 44, 155-172.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.005] [PMID: 25617135]
[94]
Cui, Y.; Zhang, M.; Zeng, F.; Jin, H.; Xu, Q.; Huang, Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl. Mater. Interfaces, 2016, 8(47), 32159-32169.
[http://dx.doi.org/10.1021/acsami.6b10175] [PMID: 27808492]
[95]
Tian, C.; Asghar, S.; Hu, Z.; Qiu, Y.; Zhang, J.; Shao, F.; Xiao, Y. Understanding the cellular uptake and biodistribution of a dual-targeting carrier based on redox-sensitive hyaluronic acid-ss-curcumin micelles for treating brain glioma. Int. J. Biol. Macromol., 2019, 136, 143-153.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.060] [PMID: 31199976]
[96]
Wani, T. U.; Mohi-ud-din, R.; Mir, R. H.; Itoo, A. M.; Mir, K. B.; Fazli, A. A. Exosomes harnessed as nanocarriers for cancer therapy-current status and potential for future clinical applications. Current molecular medicine,
[97]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B, 2016, 6(4), 287-296.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[98]
Wani, T.U.; Mohi-Ud-Din, R.; Mir, R.H.; Itoo, A.M.; Mir, K.B.; Fazli, A.A. Exosomes harnessed as nanocarriers for cancer therapy-current status and potential for future clinical applications. Curr. Mol. Med., 2021.
[PMID: 32933459]
[99]
Wani, T.U.; Mohi-Ud-Din, R.; Wani, T.A.; Hassan, R.; Itoo, A.M.; Sheikh, F.A.; Khan, N.A.; Pottoo, F.H. Green synthesis, spectroscopic characterization and biomedical applications of carbon nanotubes. Curr. Pharm. Biotechnol., 2020.
[PMID: 33176640]
[100]
Yang, T.; Martin, P.; Fogarty, B.; Brown, A.; Schurman, K.; Phipps, R.; Yin, V.P.; Lockman, P.; Bai, S. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm. Res., 2015, 32(6), 2003-2014.
[http://dx.doi.org/10.1007/s11095-014-1593-y] [PMID: 25609010]
[101]
Wang, H.; Sui, H.; Zheng, Y.; Jiang, Y.; Shi, Y.; Liang, J.; Zhao, L. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway. Nanoscale, 2019, 11(15), 7481-7496.
[http://dx.doi.org/10.1039/C9NR01255A] [PMID: 30942233]
[102]
Kalani, A.; Chaturvedi, P.; Kamat, P.K.; Maldonado, C.; Bauer, P.; Joshua, I.G.; Tyagi, S.C.; Tyagi, N. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int. J. Biochem. Cell Biol., 2016, 79, 360-369.
[http://dx.doi.org/10.1016/j.biocel.2016.09.002] [PMID: 27594413]
[103]
Tian, T.; Zhang, H-X.; He, C-P.; Fan, S.; Zhu, Y-L.; Qi, C.; Huang, N.P.; Xiao, Z.D.; Lu, Z.H.; Tannous, B.A.; Gao, J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 2018, 150, 137-149.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.012] [PMID: 29040874]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy