Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

髓鞘碱性蛋白的缺失减少了淀粉样前体蛋白的非淀粉样加工

卷 18, 期 4, 2021

发表于: 08 September, 2021

页: [326 - 334] 页: 9

弟呕挨: 10.2174/1567205018666210701162851

价格: $65

conference banner
摘要

背景:淀粉样 β 蛋白 (Aβ) 在大脑中的积累是阿尔茨海默病 (AD) 的病理特征。 Aβ 肽来源于淀粉样前体蛋白 (APP)。 APP 可以通过淀粉样蛋白生成或非淀粉样蛋白生成途径进行蛋白水解切割。 APP 代谢/加工的分子效应可能受 AD 患者和 AD 病理小鼠模型中髓鞘和髓鞘碱性蛋白 (MBP) 分解的影响。

方法:我们直接测试了 MBP 是否可以改变 MBP-/- 小鼠(称为 Shiverer (shi/shi) 小鼠)中的 APP 加工,其中由于 MBP 外显子 ll 中间的基因断裂,没有产生功能性 MBP。

结果:发现 Shiverer (shi/shi) 小鼠的大脑 sAPPα 水平显着降低,尽管总 APP 和 sAPPβ 的水平保持不变。 sAPPα 的减少被认为是由于去整合素和金属蛋白酶 9 (ADAM9) 催化和 APP 的非淀粉样蛋白基因加工的表达水平发生变化,因为它与 ADAM9 结合。 MBP -/- 小鼠表现出增加的 Aβ 寡聚体产生。

结论:这些发现表明,在不存在 MBP 的情况下,非淀粉样蛋白生成的 APP 向 sAPPα 的加工显着减少,靶向少突胶质细胞髓鞘可能是预防和治疗 AD 的一种新疗法。

关键词: 阿尔茨海默病 (AD)、髓鞘碱性蛋白 (MBP)、

[1]
Sisodia SS. β-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 1992; 89(13): 6075-9.
[http://dx.doi.org/10.1073/pnas.89.13.6075] [PMID: 1631093]
[2]
Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ. Targeting of cell-surface beta-amyloid precursor protein to lysosomes: Alternative processing into amyloid-bearing fragments. Nature 1992; 357(6378): 500-3.
[http://dx.doi.org/10.1038/357500a0] [PMID: 1608449]
[3]
De Strooper B, Umans L, Van Leuven F, Van Den Berghe H. Study of the synthesis and secretion of normal and artificial mutants of murine amyloid precursor protein (APP): Cleavage of APP occurs in a late compartment of the default secretion pathway. J Cell Biol 1993; 121(2): 295-304.
[http://dx.doi.org/10.1083/jcb.121.2.295] [PMID: 8468348]
[4]
Mills J, Reiner PB. Regulation of amyloid precursor protein cleavage. J Neurochem 1999; 72(2): 443-60.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0720443.x] [PMID: 9930716]
[5]
Llufriu-Dabén G, Carrete A, Chierto E, et al. Targeting demyelination via α-secretases promoting sAPPα release to enhance remyelination in central nervous system. Neurobiol Dis 2018; 109(Pt A): 11-24
[http://dx.doi.org/10.1016/j.nbd.2017.09.008] [PMID: 28923597]
[6]
Cai Z, Xiao M. Oligodendrocytes and Alzheimer’s disease. Int J Neurosci 2016; 126(2): 97-104.
[http://dx.doi.org/10.3109/00207454.2015.1025778] [PMID: 26000818]
[7]
Sánchez SM, Duarte-Abritta B, Abulafia C, et al. White matter fiber density abnormalities in cognitively normal adults at risk for late-onset Alzheimer’s disease. J Psychiatr Res 2020; 122: 79-87.
[http://dx.doi.org/10.1016/j.jpsychires.2019.12.019] [PMID: 31931231]
[8]
Hoos MD, Ahmed M, Smith SO, Van Nostrand WE. Inhibition of familial cerebral amyloid angiopathy mutant amyloid beta-protein fibril assembly by myelin basic protein. J Biol Chem 2007; 282(13): 9952-61.
[http://dx.doi.org/10.1074/jbc.M603494200] [PMID: 17259179]
[9]
Liao MC, Hoos MD, Aucoin D, et al. N-terminal domain of myelin basic protein inhibits amyloid β-protein fibril assembly. J Biol Chem 2010; 285(46): 35590-8.
[http://dx.doi.org/10.1074/jbc.M110.169599] [PMID: 20807757]
[10]
Molineaux SM, Engh H, De Ferra F, Hudson L, Lazzarini RA. Recombination within the myelin basic protein gene created the dysmyelinating Shiverer (shi/shi) mutant mice mouse mutation. Proc Natl Acad Sci USA 1986; 83: 7542-6.
[http://dx.doi.org/10.1073/pnas.83.19.7542] [PMID: 2429310]
[11]
Seiwa C, Kojima-Aikawa K, Matsumoto I, Asou H. CNS myelinogenesis in vitro: Myelin basic protein deficient shiverer oligodendrocytes. J Neurosci Res 2002; 69(3): 305-17.
[http://dx.doi.org/10.1002/jnr.10291] [PMID: 12125072]
[12]
Chernoff GF. Shiverer: An autosomal recessive mutant mouse with myelin deficiency. J Heredity 1981; 72(2): 128.
[http://dx.doi.org/10.1093/oxfordjournals.jhered.a109442]
[13]
Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996; 274(5284): 99-102.
[http://dx.doi.org/10.1126/science.274.5284.99] [PMID: 8810256]
[14]
Kummer MP, Heneka MT. Truncated and modified amyloid-β species. Alzheimers Res Ther 2014; 6(3): 28.
[http://dx.doi.org/10.1186/alzrt258] [PMID: 25031638]
[15]
Akiyama K, Ichinose S, Omori A, Sakurai Y, Asou H. Study of expression of myelin basic proteins (MBPs) in developing rat brain using a novel antibody reacting with four major isoforms of MBP. J Neurosci Res 2002; 68(1): 19-28.
[http://dx.doi.org/10.1002/jnr.10188] [PMID: 11933045]
[16]
Seiwa C, Yamamoto M, Tanaka K, et al. Restoration of FcRgamma/Fyn signaling repairs central nervous system demyelination. J Neurosci Res 2007; 85(5): 954-66.
[http://dx.doi.org/10.1002/jnr.21196] [PMID: 17290413]
[17]
Uruse M, Yamamoto M, Sugawa M, et al. Phase separation of myelin sheath in Triton X-114 solution: Predominant localization of the 21.5-kDa isoform of myelin basic protein in the lipid raft-associated domain. J Biochem 2014; 155(4): 265-71.
[http://dx.doi.org/10.1093/jb/mvu005] [PMID: 24459152]
[18]
Ueki T, Tsuruo Y, Yamamoto Y, et al. A new monoclonal antibody, 4F2, specific for the oligodendroglial cell lineage, recognizes ATP-dependent RNA helicase Ddx54: Possible association with myelin basic protein. J Neurosci Res 2012; 90(1): 48-59.
[http://dx.doi.org/10.1002/jnr.22736] [PMID: 21932369]
[19]
Sugiyama I, Tanaka K, Akita M, Yoshida K, Kawase T, Asou H. Ultrastructural analysis of the paranodal junction of myelinated fibers in 31-month-old-rats. J Neurosci Res 2002; 70(3): 309-17.
[http://dx.doi.org/10.1002/jnr.10386] [PMID: 12391590]
[20]
Weber S, Saftig P. Ectodomain shedding and ADAMs in development. Development 2012; 139(20): 3693-709.
[http://dx.doi.org/10.1242/dev.076398] [PMID: 22991436]
[21]
Mishra HK, Ma J, Walcheck B. Ectodomain Shedding by ADAM 17: Its role in neutrophil recruitment and the impairment of this process during Sepsis. Front Cell Infect Microbiol 2017; 7: 138.
[http://dx.doi.org/10.3389/fcimb.2017.00138] [PMID: 28487846]
[22]
Nunan J, Small DH. Regulation of APP cleavage by α-, β- and γ-secretases. FEBS Lett 2000; 483(1): 6-10.
[http://dx.doi.org/10.1016/S0014-5793(00)02076-7] [PMID: 11033346]
[23]
Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med 2010; 12(1): 1-12.
[http://dx.doi.org/10.1007/s12017-009-8104-z] [PMID: 20232515]
[24]
Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: An emperor in need of clothes. Nat Neurosci 2012; 15(3): 349-57.
[http://dx.doi.org/10.1038/nn.3028] [PMID: 22286176]
[25]
Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991; 12(10): 383-8.
[http://dx.doi.org/10.1016/0165-6147(91)90609-V] [PMID: 1763432]
[26]
Hardy JA, Higgins GA. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[27]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[28]
Bartzokis G, Cummings JL, Sultzer D, Henderson VW, Nuechterlein KH, Mintz J. White matter structural integrity in healthy aging adults and patients with Alzheimer disease: A magnetic resonance imaging study. Arch Neurol 2003; 60(3): 393-8.
[http://dx.doi.org/10.1001/archneur.60.3.393] [PMID: 12633151]
[29]
Tse KH, Cheng A, Ma F, Herrup K. DNA damage-associated oligodendrocyte degeneration. Alzheimers Dement 2018; 14(5): 664-79.
[30]
Tobin WO, Popescu BF, Lowe V, et al. Multiple sclerosis masquerading as Alzheimer-type dementia: Clinical, radiological and pathological findings. Mult Scler 2016; 22(5): 698-704.
[http://dx.doi.org/10.1177/1352458515604382] [PMID: 26447065]
[31]
Tse KH, Herrup K. Re-imagining Alzheimer’s disease - the diminishing importance of amyloid and a glimpse of what lies ahead. J Neurochem 2017; 143(4): 432-44.
[http://dx.doi.org/10.1111/jnc.14079] [PMID: 28547865]
[32]
(a)Boggs JM. Myelin basic protein: A multifunctional protein. Cell Mol Life Sci 2006; 63: 1945-61.; (b)Anders A, Gilbert S, Garten W, Postaina R, Fahrenholiz F. (2001) Regulation of the α-secretase ADAM10 by its prodomain and proprotein convertases. FASEB J 2006; (15): 1837-9.
[33]
Zhan X, Jickling GC, Ander BP, et al. Myelin injury and degraded myelin vesicles in Alzheimer’s disease. Curr Alzheimer Res 2014; 11(3): 232-8.
[http://dx.doi.org/10.2174/1567205011666140131120922] [PMID: 24484278]
[34]
Zheng Y, Schlondorff J, Blobel CP. Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. J Biol Chem 2002; 277(45): 42463-70.
[http://dx.doi.org/10.1074/jbc.M207459200] [PMID: 12207026]
[35]
Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med 2008; 29(5): 258-89.
[http://dx.doi.org/10.1016/j.mam.2008.08.001] [PMID: 18762209]
[36]
Weskamp G, Krätzschmar J, Reid MS, Blobel CP. MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains. J Cell Biol 1996; 132(4): 717-26.
[http://dx.doi.org/10.1083/jcb.132.4.717] [PMID: 8647900]
[37]
Papuć E, Rejdak K. The role of myelin damage in Alzheimer’s disease pathology. Arch Med Sci 2018; 16(2): 345-51.
[http://dx.doi.org/10.5114/aoms.2018.76863] [PMID: 32190145]
[38]
Mito R, Raffelt D, Dhollander T, et al. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain 2018 Mar 1; 141(3): 888-902.
[http://dx.doi.org/10.1093/brain/awx355.]]
[39]
Nasrabady SE, Rizvi B, Goldman JE, Brickman AM. White matter changes in Alzheimer’s disease: A focus on myelin and oligodendrocytes. Acta Neuropathol Commun 2018; 6(1): 22.
[http://dx.doi.org/10.1186/s40478-018-0515-3] [PMID: 29499767]
[40]
Asai M, Hattori C, Szabó B, et al. Putative function of ADAM9, ADAM10, and ADAM17 as APP α-secretase. Biochem Biophys Res Commun 2003; 301(1): 231-5.
[http://dx.doi.org/10.1016/S0006-291X(02)02999-6] [PMID: 12535668]
[41]
Arribas J, Coodly L, Vollmer P, Kishimoto TK, Rose-John S, Massagué J. Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J Biol Chem 1996; 271(19): 11376-82.
[http://dx.doi.org/10.1074/jbc.271.19.11376] [PMID: 8626692]
[42]
Roghani M, Becherer JD, Moss ML, et al. Metalloprotease-disintegrin MDC9: Intracellular maturation and catalytic activity. J Biol Chem 1999; 274(6): 3531-40.
[http://dx.doi.org/10.1074/jbc.274.6.3531] [PMID: 9920899]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy