Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Formulation, Optimization and In Vitro Evaluation of Fast Disintegrating Tablets of Salbutamol Sulphate using a Combination of Superdisintegrant and Subliming Agent

Author(s): Fikadu Ejeta, Tesfaye Gabriel, Nisha Mary Joseph and Anteneh Belete*

Volume 19, Issue 1, 2022

Published on: 14 June, 2021

Page: [129 - 141] Pages: 13

DOI: 10.2174/1567201818666210614094646

Price: $65

conference banner
Abstract

Aim: The present research work was aimed to formulate fast disintegrating tablets (FDTs) of salbutamol sulphate (SBS) using a combination of a superdisintegrant and a subliming agent, optimize the formulation and evaluate the in vitro performance of the developed FDTs.

Materials and Methods: A formulation of SBS FDT was developed using a combination of superdisintegrant - crospovidone and subliming agent - Ammonium Bicarbonate (AB) in which formulation variables, namely levels of crospovidone and Microcrystalline Cellulose (MCC):Mannitol (MNTL) ratio, were evaluated for their effects on the response variables, disintegration time, hardness, friability and wetting time, of the resulting FDTs. By employing Central Composite Design (CCD) methodology, the FDTs were optimized to achieve optimum levels of the formulation factors.

Results: The desired optimum condition was obtained at 7.82% crospovidone and 70% of 1.56:1 MCC: MNTL ratio, while maintaining AB at 5% level for aesthetic reasons. Under the optimized conditions, the disintegration time, hardness, friability, and wetting time were 14.57 ± 0.53 sec, 7.17 ± 0.82 kg/cm2, 0.311% and 13.14 ± 0.69 sec, respectively. The experimentally observed responses were found to be in close agreement with the predicted values for the optimized formulation. Moreover, the validity of the obtained optimal point was confirmed by the low magnitude of percent prediction error (< 5%).

Conclusion: FDTs of SBS were successfully formulated and optimized using CCD employing a combination of a superdisintegrant and a subliming agent.

Keywords: Salbutamol sulphate, sublimation technique, superdisintegrant, fast disintegrating tablets, central composite design, SBS.

Graphical Abstract
[1]
Hauser, K.; Longo, B.; Jameson, F. Harrison’s principles of internal medicineThe McGraw-Hill Companies, Inc, 2005, 16, pp. 1508-1515.
[2]
DiPiro, J.T.; Talbert, R.L.; Yee, G.C.; Matzke, G.R.; Wells, B.G.; Posey, L.M. Pharmacotherapy: A pathophysiologic approach, 8th ed; The McGraw-Hill Companies, Inc., 2011, pp. 495-603.
[3]
Nakpheng, T.; Songkarak, S.; Suwandecha, T.; Sritharadol, R.; Chunhachaichana, C.; Srichana, T. Evidences for salbutamol metabolism by respiratory and liver cell lines. Drug Metab. Pharmacokinet., 2017, 32(2), 127-134.
[http://dx.doi.org/10.1016/j.dmpk.2016.11.006] [PMID: 28318879]
[4]
Lindenberg, M.; Kopp, S.; Dressman, J.B. Classification of orally administered drugs on the world health organization model list of essential medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm., 2004, 58(2), 265-278.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.001] [PMID: 15296954]
[5]
ElMeshad, A.N.; El Hagrasy, A.S. Characterization and optimization of orodispersible mosapride film formulations. AAPS PharmSciTech, 2011, 12(4), 1384-1392.
[http://dx.doi.org/10.1208/s12249-011-9713-z] [PMID: 22009305]
[6]
Bowles, A.; Keane, J.; Ernest, T.; Clapham, D.; Tuleu, C. Specific aspects of gastro-intestinal transit in children for drug delivery design. Int. J. Pharm., 2010, 395(1-2), 37-43.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.048] [PMID: 20478372]
[7]
Cazzola, M.; Rogliani, P.; Ruggeri, P.; Segreti, A.; Proietto, A.; Picciolo, S.; Matera, M.G. Chronic treatment with indacaterol and airway response to salbutamol in stable COPD. Respir. Med., 2013, 107(6), 848-853.
[http://dx.doi.org/10.1016/j.rmed.2013.02.008] [PMID: 23490225]
[8]
Fu, Y.; Yang, S.; Jeong, S.H.; Kimura, S.; Park, K. Orally fast disintegrating tablets: Developments, technologies, taste-masking and clinical studies. Crit. Rev. Ther. Drug Carrier Syst., 2004, 21(6), 433-476.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i6.10] [PMID: 15658933]
[9]
Koner, J.S.; Rajabi-Siahboomi, A.R.; Missaghi, S.; Kirby, D.; Perrie, Y.; Ahmed, J.; Mohammed, A.R. Conceptualisation, development, fabrication and in vivo validation of a novel disintegration tester for orally disintegrating tablets. Sci. Rep., 2019, 9(1), 12467.
[http://dx.doi.org/10.1038/s41598-019-48859-x] [PMID: 31462654]
[10]
Walch, A.C.; Henin, E.; Berthiller, J.; Dode, X.; Abel, B.; Kassai, B.; Lajoinie, A. Oral dosage form administration practice in children under 6 years of age: A survey study of paediatric nurses. Int. J. Pharm., 2016, 511(2), 855-863.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.076] [PMID: 27492017]
[11]
Alyami, H.; Koner, J.; Huynh, C.; Terry, D.; Mohammed, A.R. Current opinions and recommendations of paediatric healthcare professionals the importance of tablets: Emerging orally disintegrating versus traditional tablets. PLoS One, 2018, 13(2), e0193292.
[http://dx.doi.org/10.1371/journal.pone.0193292] [PMID: 29489871]
[12]
Stoltenberg, I.; Breitkreutz, J. Orally disintegrating mini-tablets (ODMTs)-a novel solid oral dosage form for paediatric use. Eur. J. Pharm. Biopharm., 2011, 78(3), 462-469.
[http://dx.doi.org/10.1016/j.ejpb.2011.02.005] [PMID: 21324357]
[13]
Boda, S.K.; Li, X.; Xie, J. Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review. J. Aerosol Sci., 2018, 125, 164-181.
[http://dx.doi.org/10.1016/j.jaerosci.2018.04.002] [PMID: 30662086]
[14]
Cam, M.E.; Zhang, Y.; Edirisinghe, M. Electrosprayed microparticles: A novel drug delivery method. Expert Opin. Drug Deliv., 2019, 16(9), 895-901.
[http://dx.doi.org/10.1080/17425247.2019.1648427] [PMID: 31340673]
[15]
Kang, S.; Hou, S.; Chen, X.; Yu, D.G.; Wang, L.; Li, X.; R Williams, G. Energy-saving electrospinning with a concentric teflon- core rod spinneret to create medicated nanofibers. Polymers (Basel), 2020, 12(10), 1-16.
[http://dx.doi.org/10.3390/polym12102421] [PMID: 33092310]
[16]
Aidana, Y.; Wang, Y.; Li, J.; Chang, S.; Wang, K.; Yu, D. G. Fast dissolution electrospun medicated nanofibers for effective delivery of poorly water-soluble drugs. Curr. Drug Deliv., 2021.
[http://dx.doi.org/10.2174/1567201818666210215110359] [PMID: 33588728]
[17]
El-Bary, A.A.; Al Sharabi, I.; Haza’a, B.S. Effect of casting solvent, film-forming agent and solubilizer on orodispersible films of a polymorphic poorly soluble drug: An in vitro/in silico study. Drug Dev. Ind. Pharm., 2019, 45(11), 1751-1769.
[http://dx.doi.org/10.1080/03639045.2019.1656733] [PMID: 31416366]
[18]
Soroushnai, A.; Ganji, F.; Vasheghani-Farahani, E.; Mobedi, H. Development and evaluation of an anti-epileptic oral fast-dissolving film with enhanced dissolution and in vivo permeation. Curr. Drug Deliv., 2018, 15(9), 1294-1304.
[http://dx.doi.org/10.2174/1567201815666180723115600] [PMID: 30033870]
[19]
Hussain, A.; Mahmood, F.; Arshad, M.S.; Abbas, N.; Qamar, N.; Mudassir, J.; Farhaj, S.; Nirwan, J.S.; Ghori, M.U. Personalised 3D printed fast-dissolving tablets for managing hypertensive crisis: In-vitro/in-vivo studies. Polymers (Basel), 2020, 12(12), 1-15.
[http://dx.doi.org/10.3390/polym12123057] [PMID: 33419348]
[20]
H Aodah, A.; H Fayed, M.; Alalaiwe, A.; B Alsulays, B.; F Aldawsari, M.; Khafagy, E.S. Design, optimization, and correlation of in vitro/in vivo disintegration of novel fast orally disintegrating tablet of high dose metformin hydrochloride using moisture activated dry granulation process and quality by design approach. pharmaceutics, 2020, 12(7), 1-20.
[http://dx.doi.org/10.3390/pharmaceutics12070598] [PMID: 32605039]
[21]
Morgan, D.J.; Paull, J.D.; Richmond, B.H.; Wilson-Evered, E.; Ziccone, S.P. Pharmacokinetics of intravenous and oral salbutamol and its sulphate conjugate. Br. J. Clin. Pharmacol., 1986, 22(5), 587-593.
[http://dx.doi.org/10.1111/j.1365-2125.1986.tb02939.x] [PMID: 3790406]
[22]
Malakar, J.; Datta, P.K.; Purakayastha, S.D.; Dey, S.; Nayak, A.K. Floating capsules containing alginate-based beads of salbutamol sulfate: In vitro-in vivo evaluations. Int. J. Biol. Macromol., 2014, 64, 181-189.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.11.014] [PMID: 24296401]
[23]
Koizumi, K.I.; Watanabe, Y.; Morita, K.; Utoguchi, N.; Matsumoto, M. New method of preparing high-porosity rapidly saliva soluble compressed tablets using mannitol with camphor, a subliming material. Int. J. Pharm., 1997, 152(1), 127-131.
[http://dx.doi.org/10.1016/S0378-5173(97)04924-7]
[24]
Pabari, R.M.; Ramtoola, Z. Application of face centred central composite design to optimise compression force and tablet diameter for the formulation of mechanically strong and fast disintegrating orodispersible tablets. Int. J. Pharm., 2012, 430(1-2), 18-25.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.021] [PMID: 22465631]
[25]
USP41-NF36. In vitro drug evaluation. In: The United States pharmacopeial convention - U.S. pharmacopeia national formulary; , 2019.
[26]
In vitro drug evaluation. In: British pharmacopoeia commission - British pharmacopoeia-the stationery office; Crown copyright, 2016.
[27]
Shah, U.V.; Karde, V.; Ghoroi, C.; Heng, J.Y.Y. Influence of particle properties on powder bulk behaviour and processability. Int. J. Pharm., 2017, 518(1-2), 138-154.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.045] [PMID: 28025075]
[28]
Kuno, Y.; Kojima, M.; Ando, S.; Nakagami, H. Evaluation of rapidly disintegrating tablets manufactured by phase transition of sugar alcohols. J. Control. Release, 2005, 105(1-2), 16-22.
[http://dx.doi.org/10.1016/j.jconrel.2005.01.018] [PMID: 15955365]
[29]
Hussain, A.; Misbah, M.; Abbas, N.; Irfan, M.; Arshad, M.S.; Shamim, R.; Bukhari, N.I.; Mahmood, F. Design and in vitro characterization of orally disintegrating modified release tablets of naproxen sodium. Turk J Pharm Sci, 2020, 17(5), 486-491.
[http://dx.doi.org/10.4274/tjps.galenos.2019.24445] [PMID: 33177928]
[30]
Mizumoto, T.; Masuda, Y.; Yamamoto, T.; Yonemochi, E.; Terada, K. Formulation design of a novel fast-disintegrating tablet. Int. J. Pharm., 2005, 306(1-2), 83-90.
[http://dx.doi.org/10.1016/j.ijpharm.2005.09.009] [PMID: 16257154]
[31]
Kumar, A.; Saharan, V.A. A comparative study of different proportions of superdisintegrants: Formulation and evaluation of orally disintegrating tablets of salbutamol sulphate. Turk J Pharm Sci, 2017, 14(1), 40-48.
[http://dx.doi.org/10.4274/tjps.74946] [PMID: 32454593]
[32]
Genedy, S.; Khames, A.; Hussein, A.; Sarhan, H. Hydralazine HCl rapidly disintegrating sublingual tablets: Simple dosage form of higher bioavailability and enhanced clinical efficacy for potential rapid control on hypertensive preeclampsia. Drug Des. Devel. Ther., 2018, 12, 3753-3766.
[http://dx.doi.org/10.2147/DDDT.S173326] [PMID: 30464406]
[33]
Dennison, T.J.; Smith, J.C.; Badhan, R.K.; Mohammed, A.R. Fixed-dose combination orally disintegrating tablets to treat cardiovascular disease: Formulation, in vitro characterization and physiologically based pharmacokinetic modeling to assess bioavailability. Drug Des. Devel. Ther., 2017, 11, 811-826.
[http://dx.doi.org/10.2147/DDDT.S126035] [PMID: 28352156]
[34]
Musuc, A.M.; Anuta, V.; Atkinson, I.; Popa, V.T.; Sarbu, I.; Mircioiu, C.; Abdalrb, G.A.; Mitu, M.A.; Ozon, E.A. Development and characterization of orally disintegrating tablets containing a captopril-cyclodextrin complex. Pharmaceutics, 2020, 12(8), 1-18.
[http://dx.doi.org/10.3390/pharmaceutics12080744] [PMID: 32784691]
[35]
Singh, H.; Singla, Y.P.; Narang, R.S.; Pandita, D.; Singh, S.; Narang, J.K. Frovatriptan loaded hydroxy propyl methyl cellulose/treated chitosan based composite fast dissolving sublingual films for management of migraine. J. Drug Deliv. Sci. Technol., 2018, 47, 230-239.
[http://dx.doi.org/10.1016/j.jddst.2018.06.018]
[36]
Shoukri, R.A.; Ahmed, I.S.; Shamma, R.N. In vitro and in vivo evaluation of nimesulide lyophilized orally disintegrating tablets. Eur. J. Pharm. Biopharm., 2009, 73(1), 162-171.
[http://dx.doi.org/10.1016/j.ejpb.2009.04.005] [PMID: 19406232]
[37]
Westerhuis, J.A.; De Haan, P.; Zwinkels, J.; Jansen, W.T.; Coenegracht, P.J.M.; Lerk, C.F. Optimisation of the composition and production of mannitol/microcrystalline cellulose tablets. Int. J. Pharm., 1996, 143(2), 151-162.
[http://dx.doi.org/10.1016/S0378-5173(96)04699-6]
[38]
Mostafa, H.F.; Ibrahim, M.A.; Sakr, A. Development and optimization of dextromethorphan hydrobromide oral disintegrating tablets: Effect of formulation and process variables. Pharm. Dev. Technol., 2013, 18(2), 454-463.
[http://dx.doi.org/10.3109/10837450.2012.710237] [PMID: 22881389]
[39]
Moqbel, H.A.; ElMeshad, A.N.; El-Nabarawi, M.A. A pharmaceutical study on chlorzoxazone orodispersible tablets: formulation, in-vitro and in-vivo evaluation. Drug Deliv., 2016, 23(8), 2998-3007.
[http://dx.doi.org/10.3109/10717544.2016.1138340] [PMID: 26828616]
[40]
Aziz, H.A.; Kamaruddin, A.H.; Bakar, M.Z.A. Process optimization studies on solvent extraction with naphthalene-2-boronic acid ion-pairing with trioctylmethylammonium chloride in sugar purification using design of experiments. Separ. Purif. Tech., 2008, 60(2), 190-197.
[http://dx.doi.org/10.1016/j.seppur.2007.08.011]
[41]
Kusic, H.; Jovic, M.; Kos, N.; Koprivanac, N.; Marin, V. The comparison of photooxidation processes for the minimization of organic load of colored wastewater applying the response surface methodology. J. Hazard. Mater., 2010, 183(1-3), 189-202.
[http://dx.doi.org/10.1016/j.jhazmat.2010.07.011] [PMID: 20674163]
[42]
Mohajeri, L.; Aziz, H.A.; Isa, M.H.; Zahed, M.A. A statistical experiment design approach for optimizing biodegradation of weathered crude oil in coastal sediments. Bioresour. Technol., 2010, 101(3), 893-900.
[http://dx.doi.org/10.1016/j.biortech.2009.09.013] [PMID: 19773160]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy