Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Doxorubicin Loaded Dextran-coated Superparamagnetic Iron Oxide Na-noparticles with Sustained Release Property: Intracellular Uptake, Phar-macokinetics and Biodistribution Study

Author(s): Houli Li, Zhiyi Luo, Mingli Peng*, Lili Guo, Fuqiang Li, Weiyi Feng and Yali Cui*

Volume 23, Issue 7, 2022

Published on: 04 June, 2021

Page: [978 - 987] Pages: 10

DOI: 10.2174/1389201022666210604153738

Price: $65

conference banner
Abstract

Background: Due to the short biological half-life and serious side effects (especially for heart and kidney), the application of Doxorubicin (Dox) in clinical therapy is strictly limited. To overcome these shortcomings, a novel sustained release formulation of doxorubicin-loaded dextran-coated superparamagnetic iron oxide nanoparticles (Dox-DSPIONs) was prepared.

Objective: The purpose of this study was to evaluate the intracellular uptake behavior of Dox-DSPIONs and to investigate their pharmacokinetics and biodistribution properties.

Method: Confocal laser scanning microscopy was employed to study the intracellular uptake and release properties of Dox from Dox-DSPIONs in SMMC-7721 cells. Simple high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method was established to study the pharmacokinetics and biodistribution properties of Dox-DSPIONs in vivo after intravenous administration and compared with free Dox.

Results: Intracellular uptake experiment indicated that Dox could be released sustainedly from Dox-DSPIONs over time. The pharmacokinetics parameters displayed that the T1/2and AUC0-24h of Dox-DSPIONs were higher than those of free Dox, while the Cmax of Dox-DSPIONs was significantly lower than that of free drug. The biodistribution behaviors of the drug were altered by Dox-DSPIONs in mice, which showed obvious liver targeting, and significantly reduced the distribution of the drug in the heart and kidney.

Conclusion: Dox-DSPIONs have the sustained-release property in vitro and in vivo, which could significantly prolong blood circulation time, improve bioavailability, and reduce the side effects of Dox. Therefore, the novel formulation of the Dox-DSPIONs has the potential as a promising drug delivery system in cancer therapy.

Keywords: Doxorubicin, dextran-coated superparamagnetic iron oxide nanoparticles, sustained release, intracellular uptake, pharmacokinetics, biodistribution, HPLC-FLD

Graphical Abstract
[1]
Carvalho, C.; Santos, R.X.; Cardoso, S.; Correia, S.; Oliveira, P.J.; Santos, M.S.; Moreira, P.I. Doxorubicin: the good, the bad and the ugly effect. Curr. Med. Chem., 2009, 16(25), 3267-3285.
[http://dx.doi.org/10.2174/092986709788803312] [PMID: 19548866]
[2]
Bickers, J.; Benjamin, R.; Wilson, H.; Eyre, H.; Hewlett, J.; McCredie, K. Rubidazone in adults with previously treated acute leukemia and blast cell phase of chronic myelocytic leukemia: a Southwest Oncology Group Study. Cancer Treat. Rep., 1981, 65(5-6), 427-430.
[PMID: 6940659]
[3]
Taylor, H.G.; Butler, W.M.; Rhoads, J.; Karcher, D.S.; Detrick-Hooks, B. Prolymphocytic leukemia: treatment with combination chemotherapy to include doxorubicin. Cancer, 1982, 49(8), 1524-1529.
[http://dx.doi.org/10.1002/1097-0142(19820415)49:8<1524:AID-CNCR2820490803>3.0.CO;2-U] [PMID: 6950800]
[4]
Gonçalves, M.; Mignani, S.; Rodrigues, J.; Tomás, H. A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. J. Control. Release, 2020, 317, 347-374.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.016] [PMID: 31751636]
[5]
Elis, A.; Lishner, M.; Walker, S.; Atias, D.; Korenberg, A.; Koren, G. Doxorubicin in lymphoma: association between pharmacokinetic variability and clinical response. Ther. Drug Monit., 2010, 32(1), 50-52.
[http://dx.doi.org/10.1097/FTD.0b013e3181c3a16d] [PMID: 19927044]
[6]
Johnson, P.; Federico, M.; Kirkwood, A.; Fosså, A.; Berkahn, L.; Carella, A.; d’Amore, F.; Enblad, G.; Franceschetto, A.; Fulham, M.; Luminari, S.; O’Doherty, M.; Patrick, P.; Roberts, T.; Sidra, G.; Stevens, L.; Smith, P.; Trotman, J.; Viney, Z.; Radford, J.; Barrington, S. Adapted treatment guided by interim pet-CT scan in advanced hodgkin’s lymphoma. N. Engl. J. Med., 2016, 374(25), 2419-2429.
[http://dx.doi.org/10.1056/NEJMoa1510093] [PMID: 27332902]
[7]
Patel, K.J.; Lee, C.; Tan, Q.; Tannock, I.F. Use of the proton pump inhibitor pantoprazole to modify the distribution and activity of doxorubicin: a potential strategy to improve the therapy of solid tumors. Clin. Cancer Res., 2013, 19(24), 6766-6776.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0128] [PMID: 24141627]
[8]
Jin, R.; Guo, X.; Dong, L.; Xie, E.; Cao, A. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy. Colloids Surf. B Biointerfaces, 2017, 158, 47-56.
[http://dx.doi.org/10.1016/j.colsurfb.2017.06.023] [PMID: 28667893]
[9]
Farina, K.; Kalac, M.; Kim, S. Acute cardiomyopathy following a single dose of doxorubicin in a patient with adult T-Cell leukemia/lymphoma. J. Oncol. Pharm. Pract., 2021, 27(4), 1011-1015.
[PMID: 32869692] [http://dx.doi.org/10.1177/1078155220953886]]
[10]
Shi, Y.; Moon, M.; Dawood, S.; McManus, B.; Liu, P.P. Mechanisms and management of doxorubicin cardiotoxicity. Herz, 2011, 36(4), 296-305.
[http://dx.doi.org/10.1007/s00059-011-3470-3] [PMID: 21656050]
[11]
Hosseini, A.; Sahebkar, A. Reversal of Doxorubicin-induced Cardiotoxicity by Using Phytotherapy: A Review. J. Pharmacopuncture, 2017, 20(4), 243-256.
[PMID: 30151294]
[12]
Nagai, K.; Fukuno, S.; Otani, K.; Nagamine, Y.; Omotani, S.; Hatsuda, Y.; Myotoku, M.; Konishi, H. Prevention of Doxorubicin-Induced Renal Toxicity by Theanine in Rats. Pharmacology, 2018, 101(3-4), 219-224.
[http://dx.doi.org/10.1159/000486625] [PMID: 29393264]
[13]
Boratto, F.A.; Franco, M.S.; Barros, A.L.B.; Cassali, G.D.; Malachias, A.; Ferreira, L.A.M.; Leite, E.A. Alpha-tocopheryl succinate improves encapsulation, pH-sensitivity, antitumor activity and reduces toxicity of doxorubicin-loaded liposomes. Eur. J. Pharm. Sci., 2020, 144105205
[http://dx.doi.org/10.1016/j.ejps.2019.105205] [PMID: 31874285]
[14]
Li, X.; Diao, W.; Xue, H.; Wu, F.; Wang, W.; Jiang, B.; Bai, J.; Lian, B.; Feng, W.; Sun, T.; Yu, W.; Wu, J.; Qu, M.; Wang, Y.; Gao, Z. Improved efficacy of doxorubicin delivery by a novel dual-ligand-modified liposome in hepatocellular carcinoma. Cancer Lett., 2020, 489, 163-173.
[http://dx.doi.org/10.1016/j.canlet.2020.06.017] [PMID: 32592729]
[15]
Ruiz, A.; Ma, G.; Seitsonen, J.; Pereira, S.G.T.; Ruokolainen, J.; Al-Jamal, W.T. Encapsulated doxorubicin crystals influence lysolipid temperature-sensitive liposomes release and therapeutic efficacy in vitro and in vivo. J. Control. Release, 2020, 328, 665-678.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.032] [PMID: 32961247]
[16]
Li, C.; Guan, H.; Li, Z.; Wang, F.; Wu, J.; Zhang, B. Study on different particle sizes of DOX-loaded mixed micelles for cancer therapy. Colloids Surf. B Biointerfaces, 2020, 196, 111303-111303.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111303] [PMID: 32798988]
[17]
Zhang, G.; Huang, L.; Wu, J.; Liu, Y.; Zhang, Z.; Guan, Q. Doxorubicin-loaded folate-mediated pH-responsive micelle based on Bletilla striata polysaccharide: Release mechanism, cellular uptake mechanism, distribution, pharmacokinetics, and antitumor effects. Int. J. Biol. Macromol., 2020, 164, 566-577.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.123] [PMID: 32693124]
[18]
Bao, Y.; Yin, M.; Hu, X.; Zhuang, X.; Sun, Y.; Guo, Y.; Tan, S.; Zhang, Z. A safe, simple and efficient doxorubicin prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. J. Control. Release, 2016, 235, 182-194.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.003] [PMID: 27264552]
[19]
Li, W.; Chen, S.; Zhang, L.; Zhang, Y.; Yang, X.; Xie, B.; Guo, J.; He, Y.; Wang, C. Inhalable functional mixed-polymer microspheres to enhance doxorubicin release behavior for lung cancer treatment. Colloids Surf. B Biointerfaces, 2020, 196, 111350-111350.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111350] [PMID: 32911292]
[20]
Brown, K.T.; Do, R.K.; Gonen, M.; Covey, A.M.; Getrajdman, G.I.; Sofocleous, C.T.; Jarnagin, W.R.; D’Angelica, M.I.; Allen, P.J.; Erinjeri, J.P.; Brody, L.A.; O’Neill, G.P.; Johnson, K.N.; Garcia, A.R.; Beattie, C.; Zhao, B.; Solomon, S.B.; Schwartz, L.H.; DeMatteo, R.; Abou-Alfa, G.K. Randomized trial of hepatic artery embolization for hepatocellular carcinoma using doxorubicin-eluting microspheres compared with embolization with microspheres alone. J. Clin. Oncol., 2016, 34(17), 2046-2053.
[http://dx.doi.org/10.1200/JCO.2015.64.0821] [PMID: 26834067]
[21]
Xiao, Y.; Liu, J.; Guo, M.; Zhou, H.; Jin, J.; Liu, J.; Liu, Y.; Zhang, Z.; Chen, C. Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance. Nanoscale, 2018, 10(26), 12639-12649.
[http://dx.doi.org/10.1039/C8NR02700E] [PMID: 29943786]
[22]
Wang, X.; Ma, Y.; Chen, H.; Wu, X.; Qian, H.; Yang, X.; Zha, Z. Novel doxorubicin loaded PEGylated cuprous telluride nanocrystals for combined photothermal-chemo cancer treatment. Colloids Surf. B Biointerfaces, 2017, 152, 449-458.
[http://dx.doi.org/10.1016/j.colsurfb.2017.02.002] [PMID: 28187379]
[23]
Huang, C-H.; Chuang, T-J.; Ke, C-J.; Yao, C-H. Doxorubicin-Gelatin/Fe3O4-Alginate Dual-Layer Magnetic Nanoparticles as Targeted Anticancer Drug Delivery Vehicles. Polymers (Basel), 2020, 12(8)E1747
[http://dx.doi.org/10.3390/polym12081747] [PMID: 32764339]
[24]
Li, G.; Yang, B.; Gu, C. Drug self-gating fluorescent nanoparticles for pH-responsive doxorubicin delivery. J. Mater. Sci., 2020, 55(2), 738-747.
[http://dx.doi.org/10.1007/s10853-019-04020-7]
[25]
Corti, A.; Pastorino, F.; Curnis, F.; Arap, W.; Ponzoni, M.; Pasqualini, R. Targeted drug delivery and penetration into solid tumors. Med. Res. Rev., 2012, 32(5), 1078-1091.
[http://dx.doi.org/10.1002/med.20238] [PMID: 21287572]
[26]
Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol., 2018, 109, 273-286.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.078] [PMID: 29248555]
[27]
Zhao, X.; Shen, R.; Bao, L.; Wang, C.; Yuan, H. Chitosan derived glycolipid nanoparticles for magnetic resonance imaging guided photodynamic therapy of cancer. Carbohydr. Polym., 2020, 245116509
[http://dx.doi.org/10.1016/j.carbpol.2020.116509] [PMID: 32718620]
[28]
Patsula, V.; Horák, D.; Kučka, J.; Macková, H.; Lobaz, V.; Francová, P.; Herynek, V.; Heizer, T.; Páral, P.; Šefc, L. Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model. Sci. Rep., 2019, 9(1), 10765.
[http://dx.doi.org/10.1038/s41598-019-47262-w] [PMID: 31341232]
[29]
Mousavi, S-D.; Maghsoodi, F.; Panahandeh, F.; Yazdian-Robati, R.; Reisi-Vanani, A.; Tafaghodi, M. Doxorubicin delivery via magnetic nanomicelles comprising from reduction-responsive poly(ethylene glycol) b poly(ε caprolactone) (PEG-SS-PCL) and loaded with superparamagnetic iron oxide (SPIO) nanoparticles: Preparation, characterization and simulation. Mater. Sci. Eng. C, 2018, 92, 631-643.
[http://dx.doi.org/10.1016/j.msec.2018.06.066] [PMID: 30184790]
[30]
Chen, H-A.; Ma, Y-H.; Hsu, T-Y.; Chen, J-P. Preparation of peptide and recombinant tissue plasminogen activator conjugated poly(lactic-co-glycolic acid) (plga) magnetic nanoparticles for dual targeted thrombolytic therapy. Int. J. Mol. Sci., 2020, 21(8)E2690
[http://dx.doi.org/10.3390/ijms21082690] [PMID: 32294917]
[31]
Mosafer, J.; Abnous, K.; Tafaghodi, M.; Mokhtarzadeh, A.; Ramezani, M. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur. J. Pharm. Biopharm., 2017, 113, 60-74.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.009] [PMID: 28012991]
[32]
Zhang, Q.; Liu, Q.; Du, M.; Vermorken, A.; Cui, Y.; Zhang, L.; Guo, L.; Ma, L.; Chen, M. Cetuximab and Doxorubicin loaded dextran-coated Fe3O4 magnetic nanoparticles as novel targeted nanocarriers for non-small cell lung cancer. J. Magn. Magn. Mater., 2019, 481, 122-128.
[http://dx.doi.org/10.1016/j.jmmm.2019.01.021]
[33]
Unterweger, H.; Dézsi, L.; Matuszak, J.; Janko, C.; Poettler, M.; Jordan, J.; Bäuerle, T.; Szebeni, J.; Fey, T.; Boccaccini, A.R.; Alexiou, C.; Cicha, I. Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety. Int. J. Nanomedicine, 2018, 13, 1899-1915.
[http://dx.doi.org/10.2147/IJN.S156528] [PMID: 29636608]
[34]
Peng, M.; Li, H.; Luo, Z.; Kong, J.; Wan, Y.; Zheng, L.; Zhang, Q.; Niu, H.; Vermorken, A.; Van de Ven, W.; Chen, C.; Zhang, X.; Li, F.; Guo, L.; Cui, Y. Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Nanoscale, 2015, 7(25), 11155-11162.
[http://dx.doi.org/10.1039/C5NR01382H] [PMID: 26062012]
[35]
Aisida, S.O.; Akpa, P.A.; Ahmad, I.; Zhao, T-k.; Maaza, M.; Ezema, F.I. Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur. Polym. J., 2020, 122109371
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109371]
[36]
Liu, Y-L.; Chen, D.; Shang, P.; Yin, D-C. A review of magnet systems for targeted drug delivery. J. Control. Release, 2019, 302, 90-104.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.031] [PMID: 30946854]
[37]
Tassa, C.; Shaw, S.Y.; Weissleder, R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res., 2011, 44(10), 842-852.
[http://dx.doi.org/10.1021/ar200084x] [PMID: 21661727]
[38]
Huang, S.; Huang, G. Preparation and drug delivery of dextran-drug complex. Drug Deliv., 2019, 26(1), 252-261.
[http://dx.doi.org/10.1080/10717544.2019.1580322] [PMID: 30857442]
[39]
Li, X.; Li, N.; Sidlauskas, K.; Li, H.; Zhang, C.; Peng, M.; Zhang, Q.; Hua, K.; Guo, L.; Li, F.; Zhang, Y.; Chen, M.; Zhang, G.; Pan, Y.; Gao, L.; Cui, Y. Doxorubicin-loaded dextran-modified goldmag nanoparticles for targeting hepatocellular carcinoma. J. Biomed. Nanotechnol., 2018, 14(6), 1135-1146.
[http://dx.doi.org/10.1166/jbn.2018.2547] [PMID: 29843878]
[40]
Chao, X.; Guo, L.; Zhao, Y.; Hua, K.; Peng, M.; Chen, C.; Cui, Y. PEG-modified GoldMag nanoparticles (PGMNs) combined with the magnetic field for local drug delivery. J. Drug Target., 2011, 19(3), 161-170.
[http://dx.doi.org/10.3109/10611861003801842] [PMID: 20465360]
[41]
Lian, T.; Peng, M.; Vermorken, A.J.M.; Jin, Y.; Luo, Z.; Van de Ven, W.J.M.; Wan, Y.; Hou, P.; Cui, Y. Synthesis and characterization of curcumin-functionalized hp-β-cd-modified goldmag nanoparticles as drug delivery agents. J. Nanosci. Nanotechnol., 2016, 16(6), 6258-6264.
[http://dx.doi.org/10.1166/jnn.2016.11370] [PMID: 27427699]
[42]
Chen, J.; Ouyang, J.; Kong, J.; Zhong, W.; Xing, M.M. Photo-cross-linked and pH-sensitive biodegradable micelles for doxorubicin delivery. ACS Appl. Mater. Interfaces, 2013, 5(8), 3108-3117.
[http://dx.doi.org/10.1021/am400017q] [PMID: 23530535]
[43]
Hortobágyi, G.N. Anthracyclines in the treatment of cancer. An overview. Drugs, 1997, 54(Suppl. 4), 1-7.
[PMID: 9361955]
[44]
Xu, H.; Cheng, L.; Wang, C.; Ma, X.; Li, Y.; Liu, Z. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials, 2011, 32(35), 9364-9373.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.053] [PMID: 21880364]
[45]
Chao, Y.; Karmali, P.P.; Mukthavaram, R.; Kesari, S.; Kouznetsova, V.L.; Tsigelny, I.F.; Simberg, D. Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI. ACS Nano, 2013, 7(5), 4289-4298.
[http://dx.doi.org/10.1021/nn400769e] [PMID: 23614696]
[46]
Bogart, L.K.; Taylor, A.; Cesbron, Y.; Murray, P.; Lévy, R. Photothermal microscopy of the core of dextran-coated iron oxide nanoparticles during cell uptake. ACS Nano, 2012, 6(7), 5961-5971.
[http://dx.doi.org/10.1021/nn300868z] [PMID: 22659064]
[47]
Badman, R.P.; Moore, S.L.; Killian, J.L.; Feng, T.; Cleland, T.A.; Hu, F.; Wang, M.D. Dextran-coated iron oxide nanoparticle-induced nanotoxicity in neuron cultures. Sci. Rep., 2020, 10(1), 11239.
[http://dx.doi.org/10.1038/s41598-020-67724-w] [PMID: 32641693]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy