Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Functionalized Homologues and Positional Isomers of Rabbit 15- Lipoxygenase RS75091 Inhibitor

Author(s): Alexander Zhuravlev, Alexey Golovanov, Valery Toporkov, Hartmut Kuhn and Igor Ivanov*

Volume 18, Issue 3, 2022

Published on: 04 June, 2021

Page: [406 - 416] Pages: 11

DOI: 10.2174/1573406417666210604112009

Open Access Journals Promotions 2
Abstract

Background: RS75091 is a cinnamic acid derivative that has been used for the crystallization of the rabbit ALOX15-inhibitor complex. The atomic coordinates of the resolved ALOX15- inhibitor complex were later on used to define the binding sites of other mammalian lipoxygenase orthologs, for which no direct structural data with ligand has been reported so far.

Introduction: The putative binding pocket of the human ALOX5 was reconstructed on the basis of its structural alignment with rabbit ALOX15-RS75091 inhibitor. However, considering the possible conformational changes the enzyme may undergo in solution, it remains unclear whether the existing models adequately mirror the architecture of ALOX5 active site.

Methods: In this study, we prepared a series of RS75091 derivatives using a Sonogashira coupling reaction of regioisomeric bromocinnamates with protected acetylenic alcohols and tested their inhibitory properties on rabbit ALOX15.

Results: A bulky pentafluorophenyl moiety linked to either ortho- or metha-ethynylcinnamates via aliphatic spacer does not significantly impair the inhibitory properties of RS75091.

Conclusion: Hydroxylated 2- and 3-alkynylcinnamates may be suitable candidates for incorporation of an aromatic linker group like tetrafluorophenylazides for photoaffinity labeling assays.

Keywords: RS7091 inhibitor, cinnamic acid derivatives, Sonogashira-coupling, lipoxygenases, photoaffinity probes, ALOXs.

« Previous
Graphical Abstract
[1]
Egmond, M.R.; Brunori, M.; Fasella, P.M. The steady-state kinetics of the oxygenation of linoleic acid catalysed by soybean lipoxygenase. Eur. J. Biochem., 1976, 61(1), 93-100.
[http://dx.doi.org/10.1111/j.1432-1033.1976.tb10001.x] [PMID: 812703]
[2]
Matsuda, Y.; Beppu, T.; Arima, K. Crystallization and positional specificity of hydroperoxidation of Fusarium lipoxygenase. Biochim. Biophys. Acta, 1978, 530(3), 439-450.
[http://dx.doi.org/10.1016/0005-2760(78)90164-9] [PMID: 100142]
[3]
Van Os, C.P.; Rijke-Schilder, G.P.; Van Halbeek, H.; Verhagen, J.; Vliegenthart, J.F. Double dioxygenation of arachidonic acid by soybean lipoxygenase-1. Kinetics and regio-stereo specificities of the reaction steps. Biochim. Biophys. Acta, 1981, 663(1), 177-193.
[http://dx.doi.org/10.1016/0005-2760(81)90204-6] [PMID: 6783108]
[4]
Yokoyama, C.; Shinjo, F.; Yoshimoto, T.; Yamamoto, S.; Oates, J.A.; Brash, A.R. Arachidonate 12-lipoxygenase purified from porcine leukocytes by immunoaffinity chromatography and its reactivity with hydroperoxyeicosatetraenoic acids. J. Biol. Chem., 1986, 261(35), 16714-16721.
[http://dx.doi.org/10.1016/S0021-9258(18)66623-2] [PMID: 3782139]
[5]
Ueda, N.; Yamamoto, S.; Fitzsimmons, B.J.; Rokach, J. Lipoxin synthesis by arachidonate 5-lipoxygenase purified from porcine leukocytes. Biochem. Biophys. Res. Commun., 1987, 144(2), 996-1002.
[http://dx.doi.org/10.1016/S0006-291X(87)80062-1] [PMID: 3579953]
[6]
Kühn, H.; Sprecher, H.; Brash, A.R. On singular or dual positional specificity of lipoxygenases. The number of chiral products varies with alignment of methylene groups at the active site of the enzyme. J. Biol. Chem., 1990, 265(27), 16300-16305.
[http://dx.doi.org/10.1016/S0021-9258(17)46222-3] [PMID: 2118902]
[7]
Funk, C.D.; Keeney, D.S.; Oliw, E.H.; Boeglin, W.E.; Brash, A.R. Functional expression and cellular localization of a mouse epidermal lipoxygenase. J. Biol. Chem., 1996, 271(38), 23338-23344.
[http://dx.doi.org/10.1074/jbc.271.38.23338] [PMID: 8798535]
[8]
Brash, A.R. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J. Biol. Chem., 1999, 274(34), 23679-23682.
[http://dx.doi.org/10.1074/jbc.274.34.23679] [PMID: 10446122]
[9]
Kühn, H.; Brash, A.R. Occurrence of lipoxygenase products in membranes of rabbit reticulocytes. Evidence for a role of the reticulocyte lipoxygenase in the maturation of red cells. J. Biol. Chem., 1990, 265(3), 1454-1458.
[http://dx.doi.org/10.1016/S0021-9258(19)40037-9] [PMID: 2104842]
[10]
Reddy, R.G.; Yoshimoto, T.; Yamamoto, S.; Marnett, L.J. Expression, purification, and characterization of porcine leukocyte 12-lipoxygenase produced in the methylotrophic yeast, Pichia pastoris. Biochem. Biophys. Res. Commun., 1994, 205(1), 381-388.
[http://dx.doi.org/10.1006/bbrc.1994.2676] [PMID: 7999053]
[11]
Coffa, G.; Imber, A.N.; Maguire, B.C.; Laxmikanthan, G.; Schneider, C.; Gaffney, B.J.; Brash, A.R. On the relationships of substrate orientation, hydrogen abstraction, and product stereochemistry in single and double dioxygenations by soybean lipoxygenase-1 and its Ala542Gly mutant. J. Biol. Chem., 2005, 280(46), 38756-38766.
[http://dx.doi.org/10.1074/jbc.M504870200] [PMID: 16157595]
[12]
Gilbert, N.C.; Bartlett, S.G.; Waight, M.T.; Neau, D.B.; Boeglin, W.E.; Brash, A.R.; Newcomer, M.E. The structure of human 5-lipoxygenase. Science, 2011, 331(6014), 217-219.
[http://dx.doi.org/10.1126/science.1197203] [PMID: 21233389]
[13]
Haeggström, J.Z.; Funk, C.D. Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. Chem. Rev., 2011, 111(10), 5866-5898.
[http://dx.doi.org/10.1021/cr200246d] [PMID: 21936577]
[14]
Wennman, A.; Karkehabadi, S.; Oliw, E.H. Kinetic investigation of the rate-limiting step of manganese- and iron-lipoxygenases. Arch. Biochem. Biophys., 2014, 555-556, 9-15.
[http://dx.doi.org/10.1016/j.abb.2014.05.014] [PMID: 24857825]
[15]
Newcomer, M.E.; Brash, A.R. The structural basis for specificity in lipoxygenase catalysis. Protein Sci., 2015, 24(3), 298-309.
[http://dx.doi.org/10.1002/pro.2626] [PMID: 25524168]
[16]
Ivanov, I.; Kuhn, H.; Heydeck, D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene, 2015, 573(1), 1-32.
[http://dx.doi.org/10.1016/j.gene.2015.07.073] [PMID: 26216303]
[17]
Kuhn, H.; Banthiya, S.; van Leyen, K. Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta, 2015, 1851(4), 308-330.
[http://dx.doi.org/10.1016/j.bbalip.2014.10.002] [PMID: 25316652]
[18]
van Zadelhoff, G.; van der Stelt, M. Oxygenation of anandamide by lipoxygenases. Methods Mol. Biol., 2016, 1412, 217-225.
[http://dx.doi.org/10.1007/978-1-4939-3539-0_22] [PMID: 27245907]
[19]
Banthiya, S.; Kalms, J.; Galemou Yoga, E.; Ivanov, I.; Carpena, X.; Hamberg, M.; Kuhn, H.; Scheerer, P. Structural and functional basis of phospholipid oxygenase activity of bacterial lipoxygenase from Pseudomonas aeruginosa. Biochim. Biophys. Acta, 2016, 1861(11), 1681-1692.
[http://dx.doi.org/10.1016/j.bbalip.2016.08.002] [PMID: 27500637]
[20]
Ivanov, I.; Golovanov, A.B.; Ferretti, C.; Canyelles-Niño, M.; Heydeck, D.; Stehling, S.; Lluch, J.M.; González-Lafont, À.; Kühn, H. Mutations of triad determinants changes the substrate alignment at the catalytic center of human ALOX5. ACS Chem. Biol., 2019, 14(12), 2768-2782.
[http://dx.doi.org/10.1021/acschembio.9b00674] [PMID: 31664810]
[21]
Funk, C.D.; Chen, X.S.; Johnson, E.N.; Zhao, L. Lipoxygenase genes and their targeted disruption. Prostaglandins Other Lipid Mediat., 2002, 68-69, 303-312.
[http://dx.doi.org/10.1016/S0090-6980(02)00036-9] [PMID: 12432925]
[22]
Kuhn, H.; Humeniuk, L.; Kozlov, N.; Roigas, S.; Adel, S.; Heydeck, D. The evolutionary hypothesis of reaction specificity of mammalian ALOX15 orthologs. Prog. Lipid Res., 2018, 72, 55-74.
[http://dx.doi.org/10.1016/j.plipres.2018.09.002] [PMID: 30237084]
[23]
Rådmark, O.; Werz, O.; Steinhilber, D.; Samuelsson, B. 5-Lipoxygenase: Regulation of expression and enzyme activity. Trends Biochem. Sci., 2007, 32(7), 332-341.
[http://dx.doi.org/10.1016/j.tibs.2007.06.002] [PMID: 17576065]
[24]
Rådmark, O.; Werz, O.; Steinhilber, D.; Samuelsson, B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim. Biophys. Acta, 2015, 1851(4), 331-339.
[http://dx.doi.org/10.1016/j.bbalip.2014.08.012] [PMID: 25152163]
[25]
Gilbert, N.C.; Gerstmeier, J.; Schexnaydre, E.E.; Börner, F.; Garscha, U.; Neau, D.B.; Werz, O.; Newcomer, M.E. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat. Chem. Biol., 2020, 16(7), 783-790.
[http://dx.doi.org/10.1038/s41589-020-0544-7] [PMID: 32393899]
[26]
Gillmor, S.A.; Villaseñor, A.; Fletterick, R.; Sigal, E.; Browner, M.F. The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nat. Struct. Biol., 1997, 4(12), 1003-1009.
[http://dx.doi.org/10.1038/nsb1297-1003] [PMID: 9406550]
[27]
Borngräber, S.; Browner, M.; Gillmor, S.; Gerth, C.; Anton, M.; Fletterick, R.; Kühn, H. Shape and specificity in mammalian 15-lipoxygenase active site. The functional interplay of sequence determinants for the reaction specificity. J. Biol. Chem., 1999, 274(52), 37345-37350.
[http://dx.doi.org/10.1074/jbc.274.52.37345] [PMID: 10601303]
[28]
Ivanov, I.; Heydeck, D.; Hofheinz, K.; Roffeis, J.; O’Donnell, V.B.; Kuhn, H.; Walther, M. Molecular enzymology of lipoxygenases. Arch. Biochem. Biophys., 2010, 503(2), 161-174.
[http://dx.doi.org/10.1016/j.abb.2010.08.016] [PMID: 20801095]
[29]
Shang, W.; Ivanov, I.; Svergun, D.I.; Borbulevych, O.Y.; Aleem, A.M.; Stehling, S.; Jankun, J.; Kühn, H.; Skrzypczak-Jankun, E. Probing dimerization and structural flexibility of mammalian lipoxygenases by small-angle X-ray scattering. J. Mol. Biol., 2011, 409(4), 654-668.
[http://dx.doi.org/10.1016/j.jmb.2011.04.035] [PMID: 21530540]
[30]
Cruz, A.; Di Venere, A.; Mei, G.; Zhuravlev, A.; Golovanov, A.; Stehling, S.; Heydeck, D.; Lluch, J.M.; González-Lafont, À.; Kuhn, H.; Ivanov, I. A role of Gln596 in fine-tuning mammalian ALOX15 specificity, protein stability and allosteric properties. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2020, 1865(7)158680
[http://dx.doi.org/10.1016/j.bbalip.2020.158680] [PMID: 32151768]
[31]
Kanaoka, Y.; Boyce, J.A. Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol. Res., 2014, 6(4), 288-295.
[http://dx.doi.org/10.4168/aair.2014.6.4.288] [PMID: 24991451]
[32]
Adel, S.; Karst, F.; González-Lafont, À.; Pekárová, M.; Saura, P.; Masgrau, L.; Lluch, J.M.; Stehling, S.; Horn, T.; Kuhn, H.; Heydeck, D. Evolutionary alteration of ALOX15 specificity optimizes the biosynthesis of antiinflammatory and proresolving lipoxins. Proc. Natl. Acad. Sci. USA, 2016, 113(30), E4266-E4275.
[http://dx.doi.org/10.1073/pnas.1604029113] [PMID: 27412860]
[33]
Pace, S.; Pergola, C.; Dehm, F.; Rossi, A.; Gerstmeier, J.; Troisi, F.; Pein, H.; Schaible, A.M.; Weinigel, C.; Rummler, S.; Northoff, H.; Laufer, S.; Maier, T.J.; Rådmark, O.; Samuelsson, B.; Koeberle, A.; Sautebin, L.; Werz, O. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J. Clin. Invest., 2017, 127(8), 3167-3176.
[http://dx.doi.org/10.1172/JCI92885] [PMID: 28737505]
[34]
Gilroy, D.W.; Bishop-Bailey, D. Lipid mediators in immune regulation and resolution. Br. J. Pharmacol., 2019, 176(8), 1009-1023.
[http://dx.doi.org/10.1111/bph.14587] [PMID: 30674066]
[35]
Sirois, P. Leukotrienes: One step in our understanding of asthma. Respir. Investig., 2019, 57(2), 97-110.
[http://dx.doi.org/10.1016/j.resinv.2018.12.003] [PMID: 30600174]
[36]
McGill, K.A.; Busse, W.W. Zileuton. Lancet, 1996, 348(9026), 519-524.
[http://dx.doi.org/10.1016/S0140-6736(95)12297-4] [PMID: 8757156]
[37]
Berger, W.; De Chandt, M.T.; Cairns, C.B. Zileuton: Clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int. J. Clin. Pract., 2007, 61(4), 663-676.
[http://dx.doi.org/10.1111/j.1742-1241.2007.01320.x] [PMID: 17394438]
[38]
Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ., 2016, 23(3), 369-379.
[http://dx.doi.org/10.1038/cdd.2015.158] [PMID: 26794443]
[39]
Wu, Q.Q.; Deng, W.; Xiao, Y.; Chen, J.J.; Liu, C.; Wang, J.; Guo, Y.; Duan, M.; Cai, Z.; Xie, S.; Yuan, Y.; Tang, Q. The 5-lipoxygenase inhibitor zileuton protects pressure overload-induced cardiac remodeling via activating PPARα. Oxid. Med. Cell. Longev., 2019, 20197536803
[http://dx.doi.org/10.1155/2019/7536803] [PMID: 31781348]
[40]
Lim, H.J.; Park, J.; Um, J.Y.; Lee, S.S.; Kwak, H.J. Zileuton, a 5-lipoxygenase inhibitor, exerts anti-angiogenic effect by inducing apoptosis of HUVEC via BK channel activation. Cells, 2019, 8(10), 1182.
[http://dx.doi.org/10.3390/cells8101182] [PMID: 31575085]
[41]
Chiasson, A.I.; Robichaud, S.; Ndongou Moutombi, F.J.; Hébert, M.P.A.; Mbarik, M.; Surette, M.E.; Touaibia, M. New zileuton-hydroxycinnamic acid hybrids: Synthesis and structure-activity relationship towards 5-lipoxygenase inhibition. Molecules, 2020, 25(20), 4686.
[http://dx.doi.org/10.3390/molecules25204686] [PMID: 33066378]
[42]
Liu, C.H.; Tan, Y.Z.; Li, D.D.; Tang, S.S.; Wen, X.A.; Long, Y.; Sun, H.B.; Hong, H.; Hu, M. Zileuton ameliorates depressive-like behaviors, hippocampal neuroinflammation, apoptosis and synapse dysfunction in mice exposed to chronic mild stress. Int. Immunopharmacol., 2020, 78105947
[http://dx.doi.org/10.1016/j.intimp.2019.105947] [PMID: 31796384]
[43]
Thalanayar Muthukrishnan, P.; Nouraie, M.; Parikh, A.; Holguin, F. Zileuton use and phenotypic features in asthma. Pulm. Pharmacol. Ther., 2020, 60101872
[http://dx.doi.org/10.1016/j.pupt.2019.101872] [PMID: 31841698]
[44]
Bouchette, D.; Preuss, C.V. Zeleuton; StatPearls Publishing LLC: Treasure Island, FL, 2021.
[45]
McMillan, R.M.; Walker, E.R.H. Designing therapeutically effective 5-lipoxygenase inhibitors. Trends Pharmacol. Sci., 1992, 13(8), 323-330.
[http://dx.doi.org/10.1016/0165-6147(92)90100-K] [PMID: 1413091]
[46]
Kennedy, T.J.; Chan, C.Y.; Ding, X.Z.; Adrian, T.E. Lipoxygenase inhibitors for the treatment of pancreatic cancer. Expert Rev. Anticancer Ther., 2003, 3(4), 525-536.
[http://dx.doi.org/10.1586/14737140.3.4.525] [PMID: 12934664]
[47]
Pergola, C.; Werz, O. 5-Lipoxygenase inhibitors: A review of recent developments and patents. Expert Opin. Ther. Pat., 2010, 20(3), 355-375.
[http://dx.doi.org/10.1517/13543771003602012] [PMID: 20180620]
[48]
Hofmann, B.; Steinhilber, D. 5-Lipoxygenase inhibitors: A review of recent patents (2010-2012). Expert Opin. Ther. Pat., 2013, 23(7), 895-909.
[http://dx.doi.org/10.1517/13543776.2013.791678] [PMID: 23600432]
[49]
Orafaie, A.; Matin, M.M.; Sadeghian, H. The importance of 15-lipoxygenase inhibitors in cancer treatment. Cancer Metastasis Rev., 2018, 37(2-3), 397-408.
[http://dx.doi.org/10.1007/s10555-018-9738-9] [PMID: 29882120]
[50]
Bruno, F.; Spaziano, G.; Liparulo, A.; Roviezzo, F.; Nabavi, S.M.; Sureda, A.; Filosa, R.; D’Agostino, B. Recent advances in the search for novel 5-lipoxygenase inhibitors for the treatment of asthma. Eur. J. Med. Chem., 2018, 153, 65-72.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.020] [PMID: 29133059]
[51]
Sinha, S.; Doble, M.; Manju, S.L. 5-Lipoxygenase as a drug target: A review on trends in inhibitors structural design, SAR and mechanism based approach. Bioorg. Med. Chem., 2019, 27(17), 3745-3759.
[http://dx.doi.org/10.1016/j.bmc.2019.06.040] [PMID: 31331653]
[52]
Sester, A.; Winand, L.; Pace, S.; Hiller, W.; Werz, O.; Nett, M. Myxochelin- and pseudochelin-derived lipoxygenase inhibitors from a genetically engineered Myxococcus xanthus Strain. J. Nat. Prod., 2019, 82(9), 2544-2549.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00403] [PMID: 31465225]
[53]
van der Vlag, R.; Guo, H.; Hapko, U.; Eleftheriadis, N.; Monjas, L.; Dekker, F.J.; Hirsch, A.K.H. A combinatorial approach for the discovery of drug-like inhibitors of 15-lipoxygenase-1. Eur. J. Med. Chem., 2019, 174, 45-55.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.021] [PMID: 31026746]
[54]
Reddy, M.R. Rational drug design. Curr. Pharm. Des., 2007, 13(34), 3453.
[http://dx.doi.org/10.2174/138161207782794266] [PMID: 18220782]
[55]
Mandal, S.; Moudgil, M.; Mandal, S.K. Rational drug design. Eur. J. Pharmacol., 2009, 625(1-3), 90-100.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.065] [PMID: 19835861]
[56]
Ul-Haq, Z.; Ashraf, S.; Al-Majid, A.M.; Barakat, A. 3D-QSAR studies on barbituric acid derivatives as urease inhibitors and the effect of charges on the quality of a model. Int. J. Mol. Sci., 2016, 17(5), 657.
[http://dx.doi.org/10.3390/ijms17050657] [PMID: 27144563]
[57]
Zhou, J.; Li, Q.; Wu, M.; Chen, C.; Cen, S. Progress in the rational design for polypharmacology drug. Curr. Pharm. Des., 2016, 22(21), 3182-3189.
[http://dx.doi.org/10.2174/1381612822666160224125121] [PMID: 26907948]
[58]
Iafolla, M.A.J.; Selby, H.; Warner, K.; Ohashi, P.S.; Haibe-Kains, B.; Siu, L.L. Rational design and identification of immuno-oncology drug combinations. Eur. J. Cancer (Oxford, England :1990); ; , 2018.
[59]
Do, P-C.; Lee, E.H.; Le, L. Steered molecular dynamics simulation in rational drug design. J. Chem. Inf. Model., 2018, 58(8), 1473-1482.
[http://dx.doi.org/10.1021/acs.jcim.8b00261] [PMID: 29975531]
[60]
Stocco, G. Perspectives on rational drug design and therapy for pediatric precision medicine. Curr. Med. Chem., 2018, 25(24), 2762-2763.
[http://dx.doi.org/10.2174/092986732524180704125041] [PMID: 30014795]
[61]
Vucicevic, J.; Nikolic, K.; Mitchell, J.B.O. Rational drug design of antineoplastic agents using 3D-QSAR, cheminformatic, and virtual screening approaches. Curr. Med. Chem., 2019, 26(21), 3874-3889.
[http://dx.doi.org/10.2174/0929867324666170712115411] [PMID: 28707592]
[62]
Naderi, M.; Lemoine, J.M.; Govindaraj, R.G.; Kana, O.Z.; Feinstein, W.P.; Brylinski, M. Binding site matching in rational drug design: Algorithms and applications. Brief. Bioinform., 2019, 20(6), 2167-2184.
[http://dx.doi.org/10.1093/bib/bby078] [PMID: 30169563]
[63]
Safayhi, H.; Sailer, E.R.; Ammon, H.P. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol. Pharmacol., 1995, 47(6), 1212-1216.
[PMID: 7603462]
[64]
Kemal, C.; Louis-Flamberg, P.; Krupinski-Olsen, R.; Shorter, A.L. Reductive inactivation of soybean lipoxygenase 1 by catechols: A possible mechanism for regulation of lipoxygenase activity. Biochemistry, 1987, 26(22), 7064-7072.
[http://dx.doi.org/10.1021/bi00396a031] [PMID: 3122826]
[65]
Choi, J.; Chon, J.K.; Kim, S.; Shin, W. Conformational flexibility in mammalian 15S-lipoxygenase: Reinterpretation of the crystallographic data. Proteins, 2008, 70(3), 1023-1032.
[http://dx.doi.org/10.1002/prot.21590] [PMID: 17847087]
[66]
Reddy, N.P.; Chandramohan Reddy, T.; Aparoy, P.; Achari, C.; Sridhar, P.R.; Reddanna, P. Structure based drug design, synthesis and evaluation of 4-(benzyloxy)-1-phenylbut-2-yn-1-ol derivatives as 5-lipoxygenase inhibitors. Eur. J. Med. Chem., 2012, 47(1), 351-359.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.003] [PMID: 22118829]
[67]
Droege, K.D.; Keithly, M.E.; Sanders, C.R.; Armstrong, R.N.; Thompson, M.K. Structural dynamics of 15-lipoxygenase-2 via hydrogen-deuterium exchange. Biochemistry, 2017, 56(38), 5065-5074.
[http://dx.doi.org/10.1021/acs.biochem.7b00559] [PMID: 28809482]
[68]
Ivanov, I.; Shang, W.; Toledo, L.; Masgrau, L.; Svergun, D.I.; Stehling, S.; Gómez, H.; Di Venere, A.; Mei, G.; Lluch, J.M.; Skrzypczak-Jankun, E.; González-Lafont, A.; Kühn, H. Ligand-induced formation of transient dimers of mammalian 12/15-lipoxygenase: A key to allosteric behavior of this class of enzymes? Proteins, 2012, 80(3), 703-712.
[http://dx.doi.org/10.1002/prot.23227] [PMID: 22189720]
[69]
Ivanov, I.; Di Venere, A.; Horn, T.; Scheerer, P.; Nicolai, E.; Stehling, S.; Richter, C.; Skrzypczak-Jankun, E.; Mei, G.; Maccarrone, M.; Kühn, H. Tight association of N-terminal and catalytic subunits of rabbit 12/15-lipoxygenase is important for protein stability and catalytic activity. Biochim. Biophys. Acta, 2011, 1811(12), 1001-1010.
[http://dx.doi.org/10.1016/j.bbalip.2011.08.008] [PMID: 21875687]
[70]
Sonogashira, K. Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J. Organomet. Chem., 2002, 653(1), 46-49.
[http://dx.doi.org/10.1016/S0022-328X(02)01158-0]
[71]
Buckle, D.R. Novel compounds. US patent 4,713,486 1987.
[72]
Hundertmark, T.; Littke, A.F.; Buchwald, S.L.; Fu, G.C. Pd(PhCN)(2)Cl(2)/P(t-Bu)(3): A versatile catalyst for Sonogashira reactions of aryl bromides at room temperature. Org. Lett., 2000, 2(12), 1729-1731.
[http://dx.doi.org/10.1021/ol0058947] [PMID: 10880212]
[73]
Chinchilla, R.; Nájera, C. The sonogashira reaction: A booming methodology in synthetic organic chemistry. Chem. Rev., 2007, 107(3), 874-922.
[http://dx.doi.org/10.1021/cr050992x] [PMID: 17305399]
[74]
Thorand, S.; Krause, N. Improved procedures for the palladium-catalyzed coupling of terminal alkynes with aryl bromides (sonogashira coupling). J. Org. Chem., 1998, 63, 8551-8553.
[http://dx.doi.org/10.1021/jo9808021]
[75]
Ohzu, Y.; Goto, K.; Sato, H.; Kawashima, T. Syntheses and structures of bowl-shaped triarylphosphines and their palladium(II) complexes. J. Organomet. Chem., 2005, 690, 4175-4183.
[http://dx.doi.org/10.1016/j.jorganchem.2005.06.025]
[76]
Allard, J.D.; Klein, R.D.; Peltz, G.A. Methods of threating and preventing bone loss. US 2003/0175680 A1 2003.

© 2024 Bentham Science Publishers | Privacy Policy