Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Piperine: Medicinal, Analytical and Therapeutics perspective

Author(s): Mehul Patel*, Deep Patel, Umang Shah, Ashish Patel, Nilay Solanki, Sandip Patel, Swayamprakash Patel and Bhumika Patel

Volume 18, Issue 1, 2022

Published on: 02 June, 2021

Article ID: e290921193794 Pages: 21

DOI: 10.2174/1573407217666210602152735

Price: $65

Open Access Journals Promotions 2
Abstract

Abstract: Piperine, a bioactive alkaloid of pepper, has been considered for its medicinal properties. It has received significant attention from pharmaceutical scientists for its bioavailability enhancement action for the development of novel formulations. Piperine has shown numerous effects on health and therapeutic properties; however, its pharmacological actions are limited due to its poor aqueous solubility. Numerous reports have been published which depicted the potential of piperine in pharmaceuticals development along with the treatment of various ailments. The present review emphasizes the different methods for isolation of piperine from natural resources, synthesis of piperine, chemistry, quality control aspects of piperine in bulk drug as well as in formulation, the usefulness of piperine in pharmaceutical formulations, its biological activities and clinical studies. The detailed review will help researchers to accelerate the transition of this lead molecule from kitchen spices to the clinic.

Keywords: Piperine, extraction, synthesis, analytical methods, biosynthesis, biological activity, clinical studies.

Graphical Abstract
[1]
Tiwari, A.; Mahadik, K.R.; Gabhe, S.Y. Piperine: A comprehensive review of methods of isolation, purification, and biological properties. Med. Drug Discov., 2020, 7, 100027.
[http://dx.doi.org/10.1016/j.medidd.2020.100027]
[2]
Meghwal, M.; Goswami, T.K. Piper nigrum and piperine: An update. Phytother. Res., 2013, 27(8), 1121-1130.
[http://dx.doi.org/10.1002/ptr.4972] [PMID: 23625885]
[3]
Reshmi, S.K.; Sathya, E.; Devi, P.S. Isolation of piperdine from piper nigrum and its antiproliferative activity. Afr. J. Pharm. Pharmacol., 2010, 4(8), 562-573.
[http://dx.doi.org/10.5897/JMPR10.033]
[4]
Chopra, B.; Dhingra, A.K.; Kapoor, R.P.; Prasad, D.N. Piperine and its various physicochemical and biological aspects: A review. Open Chem. J., 2017, 3(1), 75-96.
[http://dx.doi.org/10.2174/1874842201603010075]
[5]
Sozzi, G.O.; Peter, V.; Nirmal Babu, K; Divakaran, M. 10 - Capers and Caperberries. In: Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing, 2012; pp. 193-224.
[http://dx.doi.org/10.1533/9780857095688.193]
[6]
Rahman Khan, Z.; Moni, F.; Sharmin, S.; Al-Mansur, M.A.; Gafur, A.; Rahman, O.; Afroz, F. Isolation of bulk amount of piperine as Active Pharmaceutical Ingredient (API) from black pepper and white pepper (Piper nigrum L.). Pharmacol. Amp. Pharm., 2017, 08(07), 253-262.
[http://dx.doi.org/10.4236/pp.2017.87018]
[7]
Bhat, B.G.; Chandrasekhara, N. Studies on the metabolism of piperine: Absorption, tissue distribution and excretion of urinary conjugates in rats. Toxicology, 1986, 40(1), 83-92.
[http://dx.doi.org/10.1016/0300-483X(86)90048-X] [PMID: 3715893]
[8]
Sunila, E.S.; Kuttan, G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J. Ethnopharmacol., 2004, 90(2-3), 339-346.
[http://dx.doi.org/10.1016/j.jep.2003.10.016] [PMID: 15013199]
[9]
Ørsted, H.C. Über Das Piperin, Ein Neues Pflanzenalkaloid. Schweiggers J. Chem. Phys., 1820, 29(1), 80-82.
[10]
Vasavirama, K.; Upender, M. Piperine: A valuable alkaloid from piper species. Int. J. Pharm. Pharm. Sci., 2014, 6(4), 34-38.
[11]
Pruthi, J.S. Quality Assurance in Spices and Spice Products, Modern Methods of Analysis; Allied Publishers Ltd: New Delhi, 1999.
[12]
Gorgani, L.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Piperine-the bioactive compound of black pepper: From isolation to medicinal formulations. Compr. Rev. Food Sci. Food Saf., 2017, 16(1), 124-140.
[http://dx.doi.org/10.1111/1541-4337.12246] [PMID: 33371546]
[13]
Singh Kumar, N.; Kumar, P. K.; Gupta Kumar, D.; Singh, S.; Kumar Singh, V. Scholars research library UV-spectrophotometric method development for estimation of piperine in Chitrakadi Vati. Der Pharmacia Lettre., 2011, 3(3), 178-182.
[14]
Khamar, J. First derivative spectrophotometric method for the simultaneous estimation of rifampicin and piperine in their combined capsule dosage form. Asian J. Pharm. Life Sci., 2012, 2(1), 49-55.
[15]
Patel, S.; Vyas, N. Validated spectrofluorimetric method for estimation of piperine in an Ayurvedic formulation. Asian J. Pharm. Clin. Res., 2012, 5(Suppl. 4), 231-233.
[16]
Khismatrao, A.; Bhairy, S.; Hirlekar, R. Development and Validation of RP-HPLC Method for Simultaneous Estimation of Curcumin and Piperine. Int. J. Appl. Pharm., 2018, 10(5), 43-48.
[http://dx.doi.org/10.22159/ijap.2018v10i5.21140]
[17]
Moorthi, C.; Senthil Kumar, C.; Mohan, S.; Krishnan, K.; Kathiresan, K. Application of validated RP–HPLC–PDA method for the simultaneous estimation of curcumin and piperine in eudragit e 100 nanoparticles. J. Pharm. Res., 2013, 7(3), 224-229.
[http://dx.doi.org/10.1016/j.jopr.2013.03.006]
[18]
Shah, U.; Jasani, A.U.V. Spectrophotometric and RP- HPLC methods for simultaneous estimation of isoniazid, rifampicin and piperine in pharmaceutical dosage formsss. Int. J. Pharm. Pharm. Sci., 2014, 6(10), 274-280.
[19]
Kamal, Y.T.; Mohammed Musthaba, S.; Singh, M.; Parveen, R.; Ahmad, S.; Baboota, S.; Ali, I.; Siddiqui, K.M.; Arif Zaidi, S.M. Development and validation of HPLC method for simultaneous estimation of piperine and guggulsterones in compound Unani formulation (tablets) and a nanoreservoir system. Biomed. Chromatogr., 2012, 26(10), 1183-1190.
[http://dx.doi.org/10.1002/bmc.2676] [PMID: 22213335]
[20]
Bajad, S.; Singla, A.K.; Bedi, K.L. Liquid chromatographic method for determination of piperine in rat plasma: Application to pharmacokinetics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 776(2), 245-249.
[http://dx.doi.org/10.1016/S1570-0232(02)00352-5] [PMID: 12138007]
[21]
Kurangi, B.; Jalalpure, S.; Jagwani, S. A validated stability-indicating HPLC method for simultaneous estimation of resveratrol and piperine in cubosome and human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1122-1123, 39-48.
[http://dx.doi.org/10.1016/j.jchromb.2019.05.017] [PMID: 31150952]
[22]
Hazra, A.K.; Chakraborty, B.; Mitra, A.; Sur, T.K. A rapid HPTLC method to estimate piperine in Ayurvedic formulations. J. Ayurveda Integr. Med., 2019, 10(4), 248-254.
[http://dx.doi.org/10.1016/j.jaim.2017.07.006] [PMID: 30318249]
[23]
Hamrapurkar, P.D.; Jadhav, K.; Zine, S. Quantitative Estimation of Piperine in Piper nigrum andPiper longum using high performance thin layer chromatography. J. Appl. Pharm. Sci., 2011, 1(3), 117-120.
[24]
Tapadiya, G.; Metku, M.; Deokate, U.; Khadabadi, S.; Saboo, S.; Sahu, K. quantitative estimation of piperine from pharmaceutical dosage form by HPTLC. Asian J. Pharm. Clin. Res., 2009, 2(2), 47-50.
[25]
Vaykole, A.M.; Nirmal, S.A.; Jadhav, R.S.; Pattan, S.R. Development and validation of HPTLC method to detect curcumin, piperine, and boswellic acid in polyherbal transdermal Patch. J. Liq. Chromatogr. Relat. Technol., 2014, 37(3), 367-378.
[http://dx.doi.org/10.1080/10826076.2012.745141]
[26]
Jain, K.L.; Patel, R.K.; Patel, H.P. HPTLC method for simultaneous determination of piperine, embeline, and carvone in the ayurvedic formulation Catpusphadhya churna. J. AOAC Int., 2014, 97(3), 773-777.
[http://dx.doi.org/10.5740/jaoacint.10-118] [PMID: 25051624]
[27]
Basu, S.; Patel, V.B.; Jana, S.; Patel, H. liquid chromatography tandem mass spectrometry method (lc-ms/ms) for simultaneous determination of piperine, cinnamic acid and gallic acid in rat plasma using a polarity switch technique. Anal. Methods, 2013, 5(4), 967-976.
[http://dx.doi.org/10.1039/c2ay26289d]
[28]
Gomathi, D.; Kalaiselvi, M.; Ravikumar, G.; Devaki, K.; Uma, C. GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. J. Food Sci. Technol., 2015, 52(2), 1212-1217.
[http://dx.doi.org/10.1007/s13197-013-1105-9] [PMID: 25694742]
[29]
Tsuboi, S.; Takeda, A. A new synthesis of piperine and isochavicine. Tetrahedron Lett., 1979, 20(12), 1043-1044.
[http://dx.doi.org/10.1016/S0040-4039(01)87185-9]
[30]
Olsen, R.A.; Spessard, G.O.A. Short, stereoselective synthesis of piperine and related pepper-derived alkaloids. J. Agric. Food Chem., 1981, 29(5), 942-944.
[http://dx.doi.org/10.1021/jf00107a013]
[31]
Mandai, T.; Moriyama, T.; Tsujimoto, K.; Kawada, M.; Otera, J. Highly stereoselective synthesis of (2E, 4E)-dienamides and (2E, 4E)-dienoates via a double elimination reaction. Tetrahedron Lett., 1986, 27(5), 603-606.
[http://dx.doi.org/10.1016/S0040-4039(00)84052-6]
[32]
Sloop, J.C. Microscale synthesis of the natural products carpanone and piperine. J. Chem. Educ., 1995, 72(2), 25.
[http://dx.doi.org/10.1021/ed072pA25]
[33]
Chandrasekhar, S.; Venkat Reddy, M.; Srinivasa Reddy, K.; Ramarao, C. Addition of carbon nucleophiles to aldehyde tosylhydrazones of aromatic and heteroaromatic-compounds: Total synthesis of piperine and its analogs. Tetrahedron Lett., 2000, 41(15), 2667-2670.
[http://dx.doi.org/10.1016/S0040-4039(00)00219-7]
[34]
Okwute, S.K.; Egharevba, H.O. Piperine-type amides: Review of the chemical and biological characteristics. Int. J. Chem., 2013, 5(3), 99-122.
[http://dx.doi.org/10.5539/ijc.v5n3p99]
[35]
Wu, H.; Chen, M.; Fan, Y.; Elsebaei, F.; Zhu, Y. Determination of rutin and quercetin in Chinese herbal medicine by ionic liquid-based pressurized liquid extraction-liquid chromatography-chemiluminescence detection. Talanta, 2012, 88, 222-229.
[http://dx.doi.org/10.1016/j.talanta.2011.10.036] [PMID: 22265491]
[36]
Raynie, D.E. Modern Extraction Techniques, Copyright. Foreword. American Chemical Society Washington, US 2006, i–v.
[http://dx.doi.org/10.1021/bk-2006-0926.fw001]
[37]
Anani, W.; Shurin, M.R. Targeting myeloid-derived suppressor cells in cancer. Adv. Exp. Med. Biol., 2017, 1036, 105-128.
[http://dx.doi.org/10.1007/978-3-319-67577-0_8] [PMID: 29275468]
[38]
Naseera Nagar, M. Isolation, identification and quantitative analysis of piperine from Piper nigrum Linn of various regions of Kerala by RP-HPLC Method. Ajmal. World J. Pharm. Pharm. Sci., 2018, 7(6), 1023-1049.
[http://dx.doi.org/10.20959/wjpps20186-11743]
[39]
Ahmad, R.; Ahmad, N.; Shehzad, A. Solvent and temperature effects of Accelerated Solvent Extraction (ASE) with Ultra-High Pressure Liquid Chromatography (UHPLC-PDA) technique for determination of piperine and its ICP-MS analysis. Ind. Crops Prod., 2019, 136, 37-49.
[http://dx.doi.org/10.1016/j.indcrop.2019.04.016]
[40]
Luque de Castro, M.D.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A, 2010, 1217(16), 2383-2389.
[http://dx.doi.org/10.1016/j.chroma.2009.11.027] [PMID: 19945707]
[41]
Ramluckan, K.; Moodley, K.G.; Bux, F. An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel, 2014, 116, 103-108.
[http://dx.doi.org/10.1016/j.fuel.2013.07.118]
[42]
Ansari, K.B.; Gaikar, V.G. Green hydrotropic extraction technology for delignification of sugarcane bagasse by using alkybenzene sulfonates as hydrotropes. Chem. Eng. Sci., 2014, 115, 157-166.
[http://dx.doi.org/10.1016/j.ces.2013.10.042]
[43]
Dhapte, V.; Mehta, P. Advances in hydrotropic solutions: An updated review. St. Petersbg. Polytech. Univ. J. Phys. Math., 2015, 1(4), 424-435.
[http://dx.doi.org/10.1016/j.spjpm.2015.12.006]
[44]
Raman, G.; Gaikar, V.G. Extraction of piperine from Piper nigrum (Black Pepper) by hydrotropic solubilization. Ind. Eng. Chem. Res., 2002, 41(12), 2966-2976.
[http://dx.doi.org/10.1021/ie0107845]
[45]
Christen, P.; Kaufmann, B. Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal, 2002, 113, 105-113.
[46]
Varghese, T.; Pare, A. Effect of microwave assisted extraction on yield and protein characteristics of soymilk. J. Food Eng., 2019, 262(January), 92-99.
[http://dx.doi.org/10.1016/j.jfoodeng.2019.05.020]
[47]
Bagade, S.B.; Patil, M. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review. Crit. Rev. Anal. Chem., 2021, 51(2), 138-149.
[http://dx.doi.org/10.1080/10408347.2019.1686966] [PMID: 31729248]
[48]
Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: a comprehensive review. Chin. Med., 2018, 13(1), 20.
[http://dx.doi.org/10.1186/s13020-018-0177-x] [PMID: 29692864]
[49]
Szydłowska-Czerniak, A.; Tułodziecka, A. Antioxidant capacity of rapeseed extracts obtained by conventional and ultrasound-assisted extraction. J. Am. Oil Chem. Soc., 2014, 91(12), 2011-2019.
[http://dx.doi.org/10.1007/s11746-014-2557-4] [PMID: 25431498]
[50]
Xu, J.; Wang, W.; Liang, H.; Zhang, Q.; Li, Q. Optimization of ionic liquid based ultrasonic assisted extraction of antioxidant compounds from Curcuma Longa L. Using response surface methodology. Ind. Crops Prod., 2015, 76, 487-493.
[http://dx.doi.org/10.1016/j.indcrop.2015.07.025]
[51]
Yousefi, M.; Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Wysokowski, M.; Jesionowski, T.; Ehrlich, H.; Mirsadeghi, S. Supercritical fluid extraction of essential oils. TrAC -. Trends Analyt. Chem., 2019, 118, 182-193.
[http://dx.doi.org/10.1016/j.trac.2019.05.038]
[52]
Lima, R.N.; Santos, A.D.C.; Ribeiro, A.S.; Cardozo-Filho, L.; Freitas, L.S.; Barison, A.; Costa, E.V.; Alves, P.B. Selective amides extraction and biological activity from Piper hispidum leaves using the supercritical extraction. J. Supercrit. Fluids, 2020, 157
[http://dx.doi.org/10.1016/j.supflu.2019.104712]
[53]
Subramanian, R.; Subbramaniyan, P.; Noorul Ameen, J.; Raj, V. Double bypasses soxhlet apparatus for extraction of piperine from Piper nigrum. Arab. J. Chem., 2016, 9, S537-S540.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.022]
[54]
Raman, G.; Gaikar, V.G. Microwave-assisted extraction of piperine from Piper nigrum. Ind. Eng. Chem. Res., 2002, 41(10), 2521-2528.
[http://dx.doi.org/10.1021/ie010359b]
[55]
Rathod, S.S.; Rathod, V.K. Extraction of piperine from Piper longum using ultrasound. Ind. Crops Prod., 2014, 58, 259-264.
[http://dx.doi.org/10.1016/j.indcrop.2014.03.040]
[56]
Cao, X.; Ye, X.; Lu, Y.; Yu, Y.; Mo, W. Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Anal. Chim. Acta, 2009, 640(1-2), 47-51.
[http://dx.doi.org/10.1016/j.aca.2009.03.029] [PMID: 19362618]
[57]
Shityakov, S.; Bigdelian, E.; Hussein, A.A.; Hussain, M.B.; Tripathi, Y.C.; Khan, M.U.; Shariati, M.A. Phytochemical and pharmacological attributes of piperine: A bioactive ingredient of black pepper. Eur. J. Med. Chem., 2019, 176, 149-161.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.002] [PMID: 31103896]
[58]
Sovová, H.; Jez, J.; Bártlová, M.; St’astová, J. Supercritical carbon dioxide extraction of black pepper. J. Supercrit. Fluids, 1995, 8(4), 295-301.
[http://dx.doi.org/10.1016/0896-8446(95)90004-7]
[59]
Shah, U.; Patel, S.; Raval, M. Stability indicating reverse phase HPLC method for estimation of rifampicin and piperine in pharmaceutical dosage form. Curr. Drug Discov. Technol., 2018, 15(1), 54-64.
[http://dx.doi.org/10.2174/1570163814666170619092224] [PMID: 28625149]
[60]
Bose Subhash, Chandra; Dubey, P. K.; M. P., M. Identification and Characterization of stressed degradation products of piperine and profiling with black pepper (Piper nigrum L.) extraction by using LC/Q-TOF-Dual ESI-MS experiments. Anal. Methods, 2014, 6, 8022-8029.
[http://dx.doi.org/10.1039/C4AY01088D]
[61]
Praneetha, P.; Balhara, A.; Ladumor, M.K.; Singh, D.K.; Patil, A.; Preethi, J.; Pokharkar, S.; Deshpande, A.Y.; Giri, S.; Singh, S. Characterization of stable and reactive metabolites of piperine formed on incubation with human liver microsomes. J. Mass Spectrom., 2019, 54(9), 738-749.
[http://dx.doi.org/10.1002/jms.4424] [PMID: 31368246]
[62]
Rofes, L.; Arreola, V.; Martin, A.; Clavé, P. Effect of oral piperine on the swallow response of patients with oropharyngeal dysphagia. J. Gastroenterol., 2014, 49(12), 1517-1523.
[http://dx.doi.org/10.1007/s00535-013-0920-0] [PMID: 24326980]
[63]
O’Connor, A.; Corbin, K.D.; Nieman, D.C.; Swick, A.G.A. Randomized, controlled trial to assess short-term black pepper consumption on 24-hour energy expenditure and substrate utilization. Funct. Food Health Dis., 2013, 3(10), 377.
[http://dx.doi.org/10.31989/ffhd.v3i10.38]
[64]
Panahi, Y.; Valizadegan, G.; Ahamdi, N.; Ganjali, S.; Majeed, M.; Sahebkar, A. Curcuminoids plus piperine improve nonalcoholic fatty liver disease: A clinical trial. J. Cell. Biochem., 2019, 120(9), 15989-15996.
[http://dx.doi.org/10.1002/jcb.28877] [PMID: 31168845]
[65]
Panahi, Y.; Ghanei, M.; Hajhashemi, A.; Sahebkar, A. Effects of Curcuminoids-Piperine Combination on Systemic Oxidative Stress, Clinical Symptoms and Quality of Life in Subjects with Chronic Pulmonary Complications Due to Sulfur Mustard: A Randomized Controlled Trial. J. Diet. Suppl., 2016, 13(1), 93-105.
[http://dx.doi.org/10.3109/19390211.2014.952865] [PMID: 25171552]
[66]
Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Majeed, M.; Sahebkar, A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin. Nutr., 2015, 34(6), 1101-1108.
[http://dx.doi.org/10.1016/j.clnu.2014.12.019] [PMID: 25618800]
[67]
Shafiee, A.; Hoormand, M.; Shahidi-Dadras, M.; Abadi, A. The effect of topical piperine combined with narrowband UVB on vitiligo treatment: A clinical trial study. Phytother. Res., 2018, 32(9), 1812-1817.
[http://dx.doi.org/10.1002/ptr.6116] [PMID: 29781089]
[68]
Mihăilă, B.; Dinică, R.M.; Tatu, A.L.; Buzia, O.D. New insights in vitiligo treatments using bioactive compounds from Piper nigrum. Exp. Ther. Med., 2019, 17(2), 1039-1044.
[http://dx.doi.org/10.3892/etm.2018.6977] [PMID: 30679971]
[69]
Linn, C.; Lam, C.; Hook, F. Comparative antipyretic and analgesic activities of Cissampelos pareira Linn. and Cyclea peltata (Lam.) Hook. F. and Thomas. Ayu, 2016, 37(1), 62-66.
[http://dx.doi.org/10.4103/ayu.AYU]
[70]
Dudhatra, G.B.; Mody, S.K.; Awale, M.M.; Patel, H.B.; Modi, C.M.; Kumar, A.; Kamani, D.R.; Chauhan, B.N. A comprehensive review on pharmacotherapeutics of herbal bioenhancers. Sci. World J., 2012, 2012, 637953.
[http://dx.doi.org/10.1100/2012/637953] [PMID: 23028251]
[71]
Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed., 2013, 3(4), 253-266.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X] [PMID: 23620848]
[72]
Shrivastava, P.; Vaibhav, K.; Tabassum, R.; Khan, A.; Ishrat, T.; Khan, M.M.; Ahmad, A.; Islam, F.; Safhi, M.M.; Islam, F. Anti-apoptotic and anti-inflammatory effect of Piperine on 6-OHDA induced Parkinson’s rat model. J. Nutr. Biochem., 2013, 24(4), 680-687.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.018] [PMID: 22819561]
[73]
Mehmood, M.H.; Gilani, A.H. Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders. J. Med. Food, 2010, 13(5), 1086-1096.
[http://dx.doi.org/10.1089/jmf.2010.1065] [PMID: 20828313]
[74]
Liang, Y.D.; Bai, W.J.; Li, C.G.; Xu, L.H.; Wei, H.X.; Pan, H.; He, X.H.; Ouyang, D.Y. Piperine suppresses pyroptosis and interleukin-1β release upon ATP triggering and bacterial infection. Front. Pharmacol., 2016, 7, 390.
[http://dx.doi.org/10.3389/fphar.2016.00390] [PMID: 27812336]
[75]
Vasudevan, K.; Vembar, S.; Veeraraghavan, K.; Haranath, P.S. Influence of intragastric perfusion of aqueous spice extracts on acid secretion in anesthetized albino rats. Indian J. Gastroenterol., 2000, 19(2), 53-56.
[PMID: 10812814]
[76]
Ononiwu, I.M.; Ibeneme, C.E.; Ebong, O.O. Effects of piperine on gastric acid secretion in albino rats. Afr. J. Med. Med. Sci., 2002, 31(4), 293-295.
[PMID: 15027765]
[77]
Gupta, I.; Parihar, A.; Malhotra, P.; Gupta, S.; Lüdtke, R.; Safayhi, H.; Ammon, H.P. Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med., 2001, 67(5), 391-395.
[http://dx.doi.org/10.1055/s-2001-15802] [PMID: 11488449]
[78]
Gupta, R.A.; Motiwala, M.N.; Dumore, N.G.; Danao, K.R.; Ganjare, A.B. Effect of piperine on inhibition of FFA induced TLR4 mediated inflammation and amelioration of acetic acid induced ulcerative colitis in mice. J. Ethnopharmacol., 2015, 164, 239-246.
[http://dx.doi.org/10.1016/j.jep.2015.01.039] [PMID: 25683300]
[79]
Guo, G.; Shi, F.; Zhu, J.; Shao, Y.; Gong, W.; Zhou, G.; Wu, H.; She, J.; Shi, W. Piperine, a functional food alkaloid, exhibits inhibitory potential against TNBS-induced colitis via the inhibition of IκB-α/NF-κB and induces tight junction protein (claudin-1, occludin, and ZO-1) signaling pathway in experimental mice. Hum. Exp. Toxicol., 2020, 39(4), 477-491.
[http://dx.doi.org/10.1177/0960327119892042] [PMID: 31835924]
[80]
Kim, S-H.; Lee, Y-C. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model. J. Pharm. Pharmacol., 2009, 61(3), 353-359.
[http://dx.doi.org/10.1211/jpp.61.03.0010] [PMID: 19222908]
[81]
Khawas, S.; Nosáľová, G.; Majee, S.K.; Ghosh, K.; Raja, W.; Sivová, V.; Ray, B. In vivo cough suppressive activity of pectic polysaccharide with arabinogalactan type II side chains of Piper nigrum fruits and its synergistic effect with piperine. Int. J. Biol. Macromol., 2017, 99, 335-342.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.093] [PMID: 28254575]
[82]
Siddiqui, S.; Ahamad, M.S.; Jafri, A.; Afzal, M.; Arshad, M. Piperine triggers apoptosis of human oral squamous carcinoma through cell cycle Arrest and mitochondrial oxidative stress. Nutr. Cancer, 2017, 69(5), 791-799.
[http://dx.doi.org/10.1080/01635581.2017.1310260] [PMID: 28426244]
[83]
Talib, W.H. Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci. Pharm., 2017, 85(3), 1-11.
[http://dx.doi.org/10.3390/scipharm85030027] [PMID: 28671634]
[84]
Do, M.T.; Kim, H.G.; Choi, J.H.; Khanal, T.; Park, B.H.; Tran, T.P.; Jeong, T.C.; Jeong, H.G. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem., 2013, 141(3), 2591-2599.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.125] [PMID: 23870999]
[85]
Ba, Y.; Malhotra, A. Potential of piperine in modulation of voltage-gated K+ current and its influences on cell cycle arrest and apoptosis in human prostate cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(24), 8999-9011.
[http://dx.doi.org/10.26355/eurrev_201812_16671] [PMID: 30575945]
[86]
Yoo, E.S.; Choo, G.S.; Kim, S.H.; Woo, J.S.; Kim, H.J.; Park, Y.S.; Kim, B.S.O.O.; Kim, S.K.; Park, B.K.; Cho, S.D.; Nam, J.S.; Choi, C.S.; Che, J.H.; Jung, J.Y. Antitumor and apoptosis-inducing effects of piperine on human melanoma cells. Anticancer Res., 2019, 39(4), 1883-1892.
[http://dx.doi.org/10.21873/anticanres.13296] [PMID: 30952729]
[87]
Vijaykumar, R.S.; Nalini, N. Lipid-lowering efficacy of piperine from Piper nigrum l. In high-fat diet and antithyroid drug-induced hypercholesterolemic rats. J. Food Biochem., 2006, 30(4), 405-421.
[http://dx.doi.org/10.1111/j.1745-4514.2006.00074.x]
[88]
Maneesai, P.; Scholfield, C.; Chootip, K. Piperine Is Anti-Hyperlipidemic and Improves Endothelium-Dependent Vasorelaxation in Rats on a High Cholesterol Diet 2012.
[89]
Sharma, S.; Kalia, N.P.; Suden, P.; Chauhan, P.S.; Kumar, M.; Ram, A.B.; Khajuria, A.; Bani, S.; Khan, I.A. Protective efficacy of piperine against Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2014, 94(4), 389-396.
[http://dx.doi.org/10.1016/j.tube.2014.04.007] [PMID: 24880706]
[90]
Jin, J.; Zhang, J.; Guo, N.; Feng, H.; Li, L.; Liang, J.; Sun, K.; Wu, X.; Wang, X.; Liu, M.; Deng, X.; Yu, L. The plant alkaloid piperine as a potential inhibitor of ethidium bromide efflux in Mycobacterium smegmatis. J. Med. Microbiol., 2011, 60(Pt 2), 223-229.
[http://dx.doi.org/10.1099/jmm.0.025734-0] [PMID: 21051548]
[91]
Pathak, N.; Khandelwal, S. Cytoprotective and immunomodulating properties of piperine on murine splenocytes: An in vitro study. Eur. J. Pharmacol., 2007, 576(1-3), 160-170.
[http://dx.doi.org/10.1016/j.ejphar.2007.07.033] [PMID: 17706638]
[92]
Selvendiran, K.; Singh, J. P. V.; Krishnan, K. B.; Sakthisekaran, D. Cytoprotective effect of piperine against benzo W. 2003, 74, 109-115.
[93]
Li, S.; Wang, C.; Wang, M.; Li, W.; Matsumoto, K.; Tang, Y. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci., 2007, 80(15), 1373-1381.
[http://dx.doi.org/10.1016/j.lfs.2006.12.027] [PMID: 17289085]
[94]
Mujumdar, A.M.; Dhuley, J.N.; Deshmukh, V.K.; Raman, P.H.; Naik, S.R. Anti-inflammatory activity of piperine. Jpn. J. Med. Sci. Biol., 1990, 43(3), 95-100.
[http://dx.doi.org/10.7883/yoken1952.43.95] [PMID: 2283727]
[95]
Murunikkara, V.; Pragasam, S.J.; Kodandaraman, G.; Sabina, E.P.; Rasool, M. Anti-inflammatory effect of piperine in adjuvant-induced arthritic rats-a biochemical approach. Inflammation, 2012, 35(4), 1348-1356.
[http://dx.doi.org/10.1007/s10753-012-9448-3] [PMID: 22389056]
[96]
Ying, X.; Yu, K.; Chen, X.; Chen, H.; Hong, J.; Cheng, S.; Peng, L. Piperine inhibits LPS induced expression of inflammatory mediators in RAW 264.7 cells. Cell. Immunol., 2013, 285(1-2), 49-54.
[http://dx.doi.org/10.1016/j.cellimm.2013.09.001] [PMID: 24071564]
[97]
Ren, C.; Liang, Z. Piperine alleviates lipopolysaccharide-induced inflammatory injury by down-regulating microRNA-127 in murine chondrogenic ATDC5 cells. Biomed. Pharmacother., 2018, 103(April), 947-954.
[http://dx.doi.org/10.1016/j.biopha.2018.04.108] [PMID: 29710511]
[98]
Ying, X.; Chen, X.; Cheng, S.; Shen, Y.; Peng, L.; Xu, H.Z. Piperine inhibits IL-β induced expression of inflammatory mediators in human osteoarthritis chondrocyte. Int. Immunopharmacol., 2013, 17(2), 293-299.
[http://dx.doi.org/10.1016/j.intimp.2013.06.025] [PMID: 23838114]
[99]
Wang-Sheng, C.; Jie, A.; Jian-Jun, L.; Lan, H.; Zeng-Bao, X.; Chang-Qing, L. Piperine attenuates lipopolysaccharide (LPS)-induced inflammatory responses in BV2 microglia. Int. Immunopharmacol., 2017, 42, 44-48.
[http://dx.doi.org/10.1016/j.intimp.2016.11.001] [PMID: 27875748]
[100]
Choi, J.W.; Lee, S.K.; Kim, M.J.; Kim, D.G.; Shin, J.Y.; Zhou, Z.; Jo, I.J.; Song, H.J.; Bae, G.S.; Park, S.J. Piperine ameliorates the severity of fibrosis via inhibition of TGF‑β/SMAD signaling in a mouse model of chronic pancreatitis. Mol. Med. Rep., 2019, 20(4), 3709-3718.
[http://dx.doi.org/10.3892/mmr.2019.10635] [PMID: 31485676]
[101]
Khalili-Fomeshi, M.; Azizi, M.G.; Esmaeili, M.R.; Gol, M.; Kazemi, S.; Ashrafpour, M.; Moghadamnia, A.A.; Hosseinzadeh, S. Piperine restores streptozotocin-induced cognitive impairments: Insights into oxidative balance in cerebrospinal fluid and hippocampus. Behav. Brain Res., 2018, 337(September), 131-138.
[http://dx.doi.org/10.1016/j.bbr.2017.09.031] [PMID: 28939403]
[102]
Wang, C.; Cai, Z.; Wang, W.; Wei, M.; Kou, D.; Li, T.; Yang, Z.; Guo, H.; Le, W.; Li, S. Piperine attenuates cognitive impairment in an experimental mouse model of sporadic Alzheimer’s disease. J. Nutr. Biochem., 2019, 70, 147-155.
[http://dx.doi.org/10.1016/j.jnutbio.2019.05.009] [PMID: 31207354]
[103]
Chonpathompikunlert, P.; Wattanathorn, J.; Muchimapura, S. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem. Toxicol., 2010, 48(3), 798-802.https://doi.org/https://doi.org/10.1016/j.fct.2009.12.009
[http://dx.doi.org/10.1016/j.fct.2009.12.009] [PMID: 20034530]
[104]
Rauscher, F.M.; Sanders, R.A.; Watkins, J.B. III Effects of piperine on antioxidant pathways in tissues from normal and streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol., 2000, 14(6), 329-334.
[http://dx.doi.org/10.1002/1099-0461(2000)14:6<329::AID-JBT5>3.0.CO;2-G] [PMID: 11083086]
[105]
Atal, S.; Agrawal, R.P.; Vyas, S.; Phadnis, P.; Rai, N. Evaluation of the effect of piperine per se on blood glucose level in alloxan-induced diabetic mice. Acta Pol. Pharm., 2012, 69(5), 965-969.
[PMID: 23061294]
[106]
Maeda, A.; Shirao, T.; Shirasaya, D.; Yoshioka, Y.; Yamashita, Y.; Akagawa, M.; Ashida, H. Piperine promotes glucose uptake through ROS-dependent activation of the CAMKK/AMPK signaling pathway in skeletal muscle. Mol. Nutr. Food Res., 2018, 62(11), e1800086.
[http://dx.doi.org/10.1002/mnfr.201800086] [PMID: 29683271]
[107]
Wang, Y.; Sun, H.; Zhang, J.; Xia, Z.; Chen, W. Streptozotocin-induced diabetic cardiomyopathy in rats: Ameliorative effect of Piperine via Bcl2, Bax/Bcl2, and caspase-3 pathways. Biosci. Biotechnol. Biochem., 2020, 84(12), 2533-2544.
[http://dx.doi.org/10.1080/09168451.2020.1815170] [PMID: 32892714]
[108]
Stojanović-Radić, Z.; Pejčić, M.; Dimitrijević, M.; Aleksić, A.; Anil Kumar, N.V.; Salehi, B.; Cho, W.C.; Sharifi-Rad, J. Piperine-a major principle of black pepper: A review of its bioactivity and studies. Appl. Sci. (Basel), 2019, 9(20), 1-29.
[http://dx.doi.org/10.3390/app9204270]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy