Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

A Novel Quinazoline-4-one Derivatives as a Promising Cytokine Inhibitors: Synthesis, Molecular Docking, and Structure-activity Relationship

Author(s): Rita M. Borik and Mohammed Abdalla Hussein*

Volume 23, Issue 9, 2022

Page: [1179 - 1203] Pages: 25

DOI: 10.2174/1389201022666210601170650

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Quinazolines are a common class of nitrogen-containing heterocyclic scaffolds, which exhibit a broad spectrum of pharmacological activities.

Objectives: In the present study, quinazoline and quinazolin-4-one derivatives were prepared, characterized, and evaluated for their biological activity, which may pave the way for possible therapeutic applications.

Materials and Methods: New derivatives of quinazoline and quinazolin-4-one were prepared and tested for antiulcerogenic, anti-inflammatory and hepatoprotective activities.

Results: The synthesized compounds were characterized by elemental analysis and spectral data. Also, the median lethal doses (LD50s) of compounds 1-3 in rats were 1125, 835 and 1785 mg/kg b.w., respectively. IC50 values of compounds (1-3) as measured by ABTS•+ radical method were 0.8, 0.92 and 0.08 mg/mL, respectively. Antiulcerogenic activity at dose 1/20 LD50 in albino rats was observed at 47.94, 24.60 and 56.45%, respectively. Anti-inflammatory effect at dose 1/20 LD50 of compounds (1-3) was observed in the induced edema model after 120 min. The prepared compounds were found to possess hepato gastric mucosa protective activity against ibuprofen-induced ulceration and LPS-induced liver toxicity, respectively, in rats etc. normalization of oxidative stress biomarkers, and inflammatory mediators were inhibited in peritoneal macrophage cells at a concentration of 100 μg/L. Molecular docking suggested that the most active compounds 1 and 2 could be positioned within the active sites of COX-2 at Arg121 and Tyr356, similarly to ibuprofen (Arg-120, Glu-524, and Tyr-355). The compound 3–COX-2 complex generated by docking revealed intricate interactions with a COX-2 channel.

Conclusion: These findings suggest that compounds 1-3 exhibited good antioxidant, antiulcer, and anti-inflammatory activities, and were safe on liver enzymes in rats.

Keywords: Quinazoline, quinazoline-4-one, COX-2, LD50, anti-inflammatory, gastric mucosa, antioxidant, antiulcer, COX-2.

Graphical Abstract
[1]
Tripathi, D. Non-steroidal Anti-inflammatory Drugs and Anti-pyretic Analgesics.In: Essentials of Medical Pharmacology, 5th ed; Jaypee Brothers: New Delhi, 2003, p. 176.
[2]
Orlando, B.J.; McDougle, D.R.; Lucido, M.J.; Eng, E.T.; Graham, L.A.; Schneider, C.; Stokes, D.L.; Das, A.; Malkowski, M.G. Cyclooxygenase-2 catalysis and inhibition in lipid bilayer nanodiscs. Arch. Biochem. Biophys., 2014, 546, 33-40.
[http://dx.doi.org/10.1016/j.abb.2014.01.026] [PMID: 24503478]
[3]
Elgizawy, H.A.; Ali, A.A.; Hussein, M.A. Resveratrol: Isolation, and Its nanostructured lipid carriers, Inhibits cell proliferation, induces cell apoptosis in certain human cell lines carcinoma and exerts protective effect against paraquat-induced hepatotoxicity. J. Med. Food, 2021, 24(1), 89-100.
[http://dx.doi.org/10.1089/jmf.2019.0286] [PMID: 32580673]
[4]
Prusakiewicz, J.J.; Duggan, K.C.; Rouzer, C.A.; Marnett, L.J. Differential sensitivity and mechanism of inhibition of COX-2 oxygenation of arachidonic acid and 2-arachidonoylglycerol by ibuprofen and mefenamic acid. Biochemistry, 2009, 48(31), 7353-7355.
[http://dx.doi.org/10.1021/bi900999z] [PMID: 19603831]
[5]
Duggan, K.C.; Hermanson, D.J.; Musee, J.; Prusakiewicz, J.J.; Scheib, J.L.; Carter, B.D.; Banerjee, S.; Oates, J.A.; Marnett, L.J. (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nat. Chem. Biol., 2011, 7(11), 803-809.
[http://dx.doi.org/10.1038/nchembio.663] [PMID: 22053353]
[6]
Ghorab, M.M.; Ismail, Z.H.; Abdalla, M. Synthesis and biological activities of some novel triazoloquinazolines and triazinoquina-zolines containing benzenesulfonamide moieties. Arzneimittel-Forschung. Drug Res., 2010, 60, 87-95.
[http://dx.doi.org/10.1055/s-0031-1296254]
[7]
Abou-Taleb, N.I.; Elblasy, O.A.; Elbesoumy, E.A.; Basuny, H.I.; Elhamadi, E.A. Nasr eldin M.S., Emara A.A., Ali A.A, Salem M.A., Ahmed F.M.; Hussein M.A. Mechanism of Antiangiogenic and Antioxidant Activity of Newly Synthesized CAMBA in Ehrlich Ascites Carcinoma-Bearing Mice. Asian J. Chem., 2021, 33(10), 2465-2471.
[8]
Abdel-Gawad, S.M.M.M.; Ghorab, M.M. El-Sharief, A.M. El-Telbany, F.A.; Abdel-Alla M. Design, synthesis, and antimicrobial activity of some new pyrazolo[3,4-d] pyrimidines. Heteroatom Chem., 2003, 14, 530-534.
[9]
Dohle, W.; Jourdan, F.L.; Menchon, G.; Prota, A.E.; Foster, P.A.; Mannion, P.; Hamel, E.; Thomas, M.P.; Kasprzyk, P.G.; Ferrandis, E.; Steinmetz, M.O.; Leese, M.P.; Potter, B.V.L. Quinazolinone based anticancer agents: Synthesis, antiproliferative SAR, antitubulin activity, and tubulin co-crystal structure. J. Med. Chem., 2018, 61(3), 1031-1044.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01474] [PMID: 29227648]
[10]
Abdel-Aziz, A.A.; Abou-Zeid, L.A.; ElTahir, K.E.H.; Ayyad, R.R.; El-Sayed, M.A.; El-Azab, A.S. Synthesis, anti-inflammatory, analgesic, COX-1/2 inhibitory activities and molecular docking studies of substituted 2-mercapto-4(3H)-quinazolinones. Eur. J. Med. Chem., 2016, 121, 410-421.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.066] [PMID: 27318118]
[11]
Yejella, R.P.; Atla, S.R. A study of anti-inflammatory and analgesic activity of new 2,4,6-trisubstituted pyrimidines. Chem. Pharm. Bull. (Tokyo), 2011, 59(9), 1079-1082.
[http://dx.doi.org/10.1248/cpb.59.1079] [PMID: 21881248]
[12]
Al-Salahi, R.; Abuelizz, H.A.; Ghabbour, H.A.; El-Dib, R.; Marzouk, M. Molecular docking study and antiviral evaluation of 2-thioxo-benzo[g]quinazolin-4(3H)-one derivatives. Chem. Cent. J., 2016, 10, 21.
[http://dx.doi.org/10.1186/s13065-016-0168-x] [PMID: 27099618]
[13]
Alagarsamy, V.; Chitra, K.; Saravanan, G.; Solomon, V.R.; Sulthana, M.T.; Narendhar, B. An overview of quinazolines: Pharmacological significance and recent developments. Eur. J. Med. Chem., 2018, 151, 628-685.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.076] [PMID: 29656203]
[14]
Hussein, M.A. Synthesis and biochemical evaluation of some novel anti-inflammatory quinazolines. Int J Org Bioorg Chem., 2011, 1, 12-20.
[15]
Hussein, M.A.; Omar, R.F.; Farghaly, H.S. Design, Synthesis, structure elucidation and biochemical evaluation of some novel anti-inflammatory schiff’s base derivatives bearing pyrazolo[3,4-d] pyrimidine-4-ones. Int. J. Acad. Res., 2011, 3, 454-462.
[16]
Rakesh, K.P.; Shantharam, C.S.; Manukumar, H.M. Synthesis and SAR studies of potent H(+)/K(+)-ATPase inhibitors of quinazolinone-Schiff’s base analogues. Bioorg. Chem., 2016, 68, 1-8.
[http://dx.doi.org/10.1016/j.bioorg.2016.07.001] [PMID: 27399885]
[17]
Hussein, M.A. Synthesis of some novel triazoloquinazolines and triazinoquinazolines and their evaluation for anti-inflammatory activity. Med. Chem. Res., 2011, 21, 1876-1886.
[http://dx.doi.org/10.1007/s00044-011-9707-0]
[18]
Koopman, F. Beekwilder, J.; Crimi, B. “De novo production of the flvonoid naringenin in engineered Saccharomyces cerevisiae. Microb. Cell Fact., 2012, 11, 155-167.
[http://dx.doi.org/10.1186/1475-2859-11-155] [PMID: 23216753]
[19]
Tamilarasan, N.; Rajangam, U. In vitro antioxidant properties of phloretin—an important phytocompound. J. Biosci. Med. (Irvine), 2016, 04(01), 85-94.
[http://dx.doi.org/10.4236/jbm.2016.41010]
[20]
Auner, B.G.; Valenta, C.; Hadgraft, J. Influence of phloretin and 6-ketocholestanol on the skin permeation of sodium-fluorescein. J. Control. Release, 2003, 89(2), 321-328.
[http://dx.doi.org/10.1016/S0168-3659(03)00124-X] [PMID: 12711454]
[21]
Wu, C.H.; Ho, Y.S.; Tsai, C.Y.; Wang, Y.J.; Tseng, H.; Wei, P.L.; Lee, C.H.; Liu, R.S.; Lin, S.Y. In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Int. J. Cancer, 2009, 124(9), 2210-2219.
[http://dx.doi.org/10.1002/ijc.24189] [PMID: 19123483]
[22]
He, X.; Liu, R.H. Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple’s anticancer activity. J. Agric. Food Chem., 2007, 55(11), 4366-4370.
[http://dx.doi.org/10.1021/jf063563o] [PMID: 17488026]
[23]
Hussein, M.A.; Samir, M.O. Structure antioxidant activity relationship and free radical scavenging capacity of hesperidin. IJPI’s. J. Med. Chem., 2010, 1, 7-20.
[24]
Hussein, M.A. Synthesis, Anti-inflammatory and structure antioxidant activity relationship of novel 4-Quinazoline. Med. Chem. Res., 2013, 22, 4641-4653.
[http://dx.doi.org/10.1007/s00044-013-0468-9]
[25]
Hussein, M.A.; El-Gizawy, H.A.; Gobba, N.A.E.K.; Mosaad, Y.O. Synthesis of cinnamyl and caffeoyl derivatives of cucurbitacin-eglycoside isolated from citrullus colocynthis fruits and their structures antioxidant and anti-inflammatory activities relationship. Curr. Pharm. Biotechnol., 2017, 18(8), 677-693.
[http://dx.doi.org/10.2174/1389201018666171004144615] [PMID: 28982326]
[26]
Hamauzu, Y.; Yasui, H.; Inno, T.; Kume, C.; Omanyuda, M. Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. J. Agric. Food Chem., 2005, 53(4), 928-934.
[http://dx.doi.org/10.1021/jf0494635] [PMID: 15713000]
[27]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[28]
Jayaprakasha, G.K.; Jaganmohan Rao, L.; Sakariah, K.K. Antioxidant activities of flavidin in different in vitro model systems. Bioorg. Med. Chem., 2004, 12(19), 5141-5146.
[http://dx.doi.org/10.1016/j.bmc.2004.07.028] [PMID: 15351397]
[29]
Elizabeth, K.; Rao, M.N.A. Oxygen radical scavenging activity of curcumin. Int. J. Pharm., 1990, 58, 237-240.
[http://dx.doi.org/10.1016/0378-5173(90)90201-E]
[30]
Finney, D.J. Statistical Methods in Biological Assay; Charles Griffen & Company Limit: London, 1964.
[31]
Santhosh, S.; Anandan, R.; Sini, T.K.; Mathew, P.T. Protective effect of glucosamine against ibuprofen-induced peptic ulcer in rats. J. Gastroenterol. Hepatol., 2007, 22(6), 949-953.
[http://dx.doi.org/10.1111/j.1440-1746.2007.04840.x] [PMID: 17504261]
[32]
Nwafor, P.A.; Okwuasaba, F.K.; Binda, L.G.; Binda, L.G. Antidiarrhoeal and antiulcerogenic effects of methanolic extract of Asparagus pubescens root in rats. J. Ethnopharmacol., 2000, 72(3), 421-427.
[http://dx.doi.org/10.1016/S0378-8741(00)00261-0] [PMID: 10996281]
[33]
Alasmary, F.A.S.; Awaad, A.S.; Alafeefy, A.M.; El-Meligy, R.M.; Alqasoumi, S.I. Novel quinazoline and acetamide derivatives as safe anti-ulcerogenic agent and anti-ulcerative colitis activity. Saudi Pharm. J., 2018, 26(1), 138-143.
[http://dx.doi.org/10.1016/j.jsps.2017.09.011] [PMID: 29379346]
[34]
Kulkarni, A.P.; Policegoudra, R.S.; Aradhya, S.M. Chemical composition and antioxidant activity of sapota (Achras sapota Linn.) fruit. J. Food Biochem., 2007, 31, 399-414.
[http://dx.doi.org/10.1111/j.1745-4514.2007.00122.x]
[35]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[36]
Bonting, S.L. Sodium potassium activated adenosine triphosphatase and carbon transport.Membrane and Iron Transport; Bittar, EE, Ed.;; 257-363., 1970, 1, pp.
[37]
Domenjoz, R. [Effects of isonicotinic acid hydrazide on the formalin inflammation and the dextran edema] Schweiz. Med. Wochenschr., 1952, 82(40), 1023-1025.
[PMID: 12994862]
[38]
Koster, R.; Anderson, N.; Debber, E.J. Acetic acid for analgesic screening. Fed. Proc., 1959, 18, 412-418.
[39]
Reanmongkol, W.; Subhadhirasakul, S.; Kongsang, J.; Tanchong, M.; Kitti, J. Analgesic and antipyretic activities of n-butanol alkaloids extract from the stem bark of Hunteria zeylanica and its major constituent, strictosidinic acid in mice. Pharm. Biol., 2000, 38(1), 68-73.
[http://dx.doi.org/10.1076/1388-0209(200001)3811-BFT068] [PMID: 21214443]
[40]
Doğanyiğit, Z.; Küp, F.O.; Silici, S.; Deniz, K.; Yakan, B.; Atayoglu, T. Protective effects of propolis on female rats’ histopathological, biochemical and genotoxic changes during LPS induced endotoxemia. Phytomedicine, 2013, 20(7), 632-639.
[http://dx.doi.org/10.1016/j.phymed.2013.01.010] [PMID: 23453303]
[41]
Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 1967, 70(1), 158-169.
[PMID: 6066618]
[42]
Sinha, A.K. Colorimetric assay of catalase. Anal. Biochem., 1972, 47(2), 389-394.
[http://dx.doi.org/10.1016/0003-2697(72)90132-7] [PMID: 4556490]
[43]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[44]
Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 1968, 25(1), 192-205.
[http://dx.doi.org/10.1016/0003-2697(68)90092-4] [PMID: 4973948]
[45]
Van, K.E. Zijlstra, W. “Standardization of hemoglobinometry II. The hemiglobin-cyanide method. Clin. Chim. Acta, 1968, 6, 538-544.
[46]
Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 1957, 28(1), 56-63.
[http://dx.doi.org/10.1093/ajcp/28.1.56] [PMID: 13458125]
[47]
King, J. The dehydrogenase or oxidoreductatse. Lactate dehydrogenase.In: Practical Clinical Enzymology; Nostrand Co.: London, 1965, pp. 106-115.
[48]
Beyaert, R.; Fiers, W. Tumor Necrosis factor and lymphotoxin; Cytokines, A.R.M-S.R.T., Ed.; Academic Press: San Diego, , 1998; pp. 335-360.
[49]
Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 2001, 5(1), 62-71.
[http://dx.doi.org/10.1006/niox.2000.0319] [PMID: 11178938]
[50]
Nichans; W.H.; Samulelson, B. “Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur. J. Biochem., 1968, 6, 126-130.
[http://dx.doi.org/10.1111/j.1432-1033.1968.tb00428.x] [PMID: 4387188]
[51]
Bancroft, G.D.; Steven, A. Theory and Practice of Histological Technique, 4th ed; Churchill Livingstone: New York, 1983, pp. 99-112.
[52]
Kolaczkowska, E.; Arnold, B.; Opdenakker, G. Gelatinase B/MMP-9 as an inflammatory marker enzyme in mouse zymosan peritonitis: comparison of phase-specific and cell-specific production by mast cells, macrophages and neutrophils. Immunobiology, 2008, 213(2), 109-124.
[http://dx.doi.org/10.1016/j.imbio.2007.07.005] [PMID: 18241695]
[53]
Chu, H.; Tang, Q.; Huang, H.; Hao, W.; Wei, X. Grape-seed proanthocyanidins inhibit the lipopolysaccharide-induced inflammatory mediator expression in RAW264.7 macrophages by suppressing MAPK and NF-κb signal pathways. Environ. Toxicol. Pharmacol., 2016, 41, 159-166.
[http://dx.doi.org/10.1016/j.etap.2015.11.018] [PMID: 26708200]
[54]
Nakatsugi, S.; Sugimoto, N.; Furukawa, M. Effects of non-steroidal anti-inflammatory drugs on prostaglandin E2 production by cyclooxygenase-2 from endogenous and exogenous arachidonic acid in rat peritoneal macrophages stimulated with lipopolysaccharide. Prostaglandins Leukot. Essent. Fatty Acids, 1996, 55(6), 451-457.
[http://dx.doi.org/10.1016/S0952-3278(96)90130-1] [PMID: 9014225]
[55]
Campelo, S.R.; da Silva, M.B.; Vieira, J.L.; da Silva, J.P.; Salgado, C.G. Effects of immunomodulatory drugs on TNF-α and IL-12 production by purified epidermal langerhans cells and peritoneal macrophages. BMC Res. Notes, 2011, 4, 24-32.
[http://dx.doi.org/10.1186/1756-0500-4-24] [PMID: 21276247]
[56]
Zhang, M.Z.; Yao, B.; Wang, Y.; Yang, S.; Wang, S.; Fan, X.; Harris, R.C. Inhibition of cyclooxygenase-2 in hematopoietic cells results in salt-sensitive hypertension. J. Clin. Invest., 2015, 125(11), 4281-4294.
[http://dx.doi.org/10.1172/JCI81550] [PMID: 26485285]
[57]
Orlando, B.J.; Lucido, M.J.; Malkowski, M.G. The structure of ibuprofen bound to cyclooxygenase-2. J. Struct. Biol., 2015, 189(1), 62-66.
[http://dx.doi.org/10.1016/j.jsb.2014.11.005] [PMID: 25463020]
[58]
El Hilaly, J.; Israili, Z.H.; Lyoussi, B. Acute and chronic toxicological studies of Ajuga iva in experimental animals. J. Ethnopharmacol., 2004, 91(1), 43-50.
[http://dx.doi.org/10.1016/j.jep.2003.11.009] [PMID: 15036466]
[59]
Lanza, F.L.; Fakouhi, D.; Rubin, A.; Davis, R.E.; Rack, M.F.; Nissen, C.; Geis, S. A double-blind placebo-controlled comparison of the efficacy and safety of 50, 100, and 200 micrograms of misoprostol QID in the prevention of ibuprofen-induced gastric and duodenal mucosal lesions and symptoms. Am. J. Gastroenterol., 1989, 84(6), 633-636.
[PMID: 2499187]
[60]
Bothara, K.; Kadam, S.; Shivram, V. Synthesis and pharmacological screening of novel anti-inflammatory agents. Indian Drugs., 1998, 35, 372-376.
[61]
Rakesh, K.P.; Manukumar, H.M.; Gowda, D.C. Schiff’s bases of quinazolinone derivatives: Synthesis and SAR studies of a novel series of potential anti-inflammatory and antioxidants. Bioorg. Med. Chem. Lett., 2015, 25(5), 1072-1077.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.010] [PMID: 25638040]
[62]
Saxena, S.; Verma, M. Saxena, A.K. “Synthesis and biological activity of quino(2,1-b)-quinazolinones. Indian J. Chem., 1991, 30B, 453-456.
[63]
Alagarsamy, V.; Murugananthan, G.; Venkateshperumal, R. Synthesis, analgesic, anti-inflammatory and antibacterial activities of some novel 2-methyl-3-substituted quinazolin-4-(3H)-ones. Biol. Pharm. Bull., 2003, 26(12), 1711-1714.
[http://dx.doi.org/10.1248/bpb.26.1711] [PMID: 14646176]
[64]
Alagarsamy, V.; Revathi, S.; Kalaiselvi, R. Analgesic, anti-inflammatory and anti-bacterial activity of some novel 2-phenyl-3-(substitutedmethylamino) quinazolin-4(3 H)-ones. Indian J. Pharm. Sci., 2003, 65, 534-537.
[65]
Kaur, G.; Tirkey, N.; Chopra, K. Beneficial effect of hesperidin on lipopolysaccharide-induced hepatotoxicity. Toxicology, 2006, 226(2-3), 152-160.
[http://dx.doi.org/10.1016/j.tox.2006.06.018] [PMID: 16919860]
[66]
El Gizawy, H.A.E.H.; Hussein, M.A.; Abdel-Sattar, E. Biological activities, isolated compounds and HPLC profile of Verbascum nubicum. Pharm. Biol., 2019, 57(1), 485-497.
[http://dx.doi.org/10.1080/13880209.2019.1643378] [PMID: 31401911]
[67]
Hwang, R.Y.; Zhong, L.; Xu, Y.; Johnson, T.; Zhang, F.; Deisseroth, K.; Tracey, W.D. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol., 2007, 17(24), 2105-2116.
[http://dx.doi.org/10.1016/j.cub.2007.11.029] [PMID: 18060782]
[68]
Sethi, S.; Dikshit, M. Modulation of polymorphonuclear leukocytes function by nitric oxide. Thromb. Res., 2000, 100(3), 223-247.
[http://dx.doi.org/10.1016/S0049-3848(00)00320-0] [PMID: 11108909]
[69]
Wahby, M.W.; Yacout, G.; Kamal, K.; Awad, D. “LPS-induced oxidative inflammation and hyperlipidemia in male rats: The protective role of Origanum majorana extract”. beni-suef Uni. J. Basic Appl. Sci., 2015, 4, 291-298.
[70]
Xu, S.; Hermanson, D.J.; Banerjee, S.; Ghebreselasie, K.; Clayton, G.M.; Garavito, R.M.; Marnett, L.J. Oxicams bind in a novel mode to the cyclooxygenase active site via a two-water-mediated H-bonding Network. J. Biol. Chem., 2014, 289(10), 6799-6808.
[http://dx.doi.org/10.1074/jbc.M113.517987] [PMID: 24425867]
[71]
Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Miyashiro, J.M.; Penning, T.D.; Seibert, K.; Isakson, P.C.; Stallings, W.C. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 1996, 384(6610), 644-648.
[http://dx.doi.org/10.1038/384644a0] [PMID: 8967954]
[72]
Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441.
[http://dx.doi.org/10.1021/jm0613166] [PMID: 17341061]
[73]
Vecchio, A.J.; Simmons, D.M.; Malkowski, M.G. Structural basis of fatty acid substrate binding to cyclooxygenase-2. J. Biol. Chem., 2010, 285(29), 22152-22163.
[http://dx.doi.org/10.1074/jbc.M110.119867] [PMID: 20463020]
[74]
Unsal-Tan, O.; Ozadali, K.; Piskin, K.; Balkan, A. Molecular modeling, synthesis and screening of some new 4-thiazolidinone derivatives with promising selective COX-2 inhibitory activity. Eur. J. Med. Chem., 2012, 57, 59-64.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.046] [PMID: 23047224]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy