Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

外泌体在乳腺癌治疗中的作用:循证回顾

卷 21, 期 8, 2021

发表于: 01 June, 2021

页: [666 - 675] 页: 10

弟呕挨: 10.2174/1568009621666210601115707

价格: $65

摘要

近几十年来,癌症研究领域取得了巨大的发展,人们对根本原因有了更好的了解,并大大改进了治疗方法。乳腺癌 (BC) 是所有癌症中的第三大死亡原因,也是全球女性最常见的恶性疾病,占女性所有癌症的四分之一。癌细胞与周围微环境之间的串扰对于肿瘤进展和转移过程至关重要。肿瘤细胞不仅通过经典的旁分泌信号机制(包括细胞因子、趋化因子、生长因子)进行交流,而且还通过“外泌体”进行交流。外泌体是由各种类型的细胞释放的纳米囊泡。在过去的十年中,研究人员被外泌体在乳腺癌中的作用所吸引。已经证明外泌体影响主要的肿瘤相关通路,包括侵袭、迁移、上皮间质转化(EMT)、转移和耐药性。此外,外泌体在临床应用中发挥着重要作用。多项研究已经证明了外泌体在癌症治疗和诊断中的潜在应用。此外,外泌体已被设计为用作化学治疗药物的纳米递送系统。它们也可以设计成疫苗来触发患者的免疫系统。本综述讨论了外泌体作为药物递送系统、治疗剂、生物标志物和乳腺癌疫苗的最新进展。

关键词: 外泌体、乳腺癌、治疗、生物标志物、诊断、疫苗。

图形摘要
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Fang, S.; Tian, H.; Li, X.; Jin, D.; Li, X.; Kong, J.; Yang, C.; Yang, X.; Lu, Y.; Luo, Y.; Lin, B.; Niu, W.; Liu, T. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS One, 2017, 12(4), e0175050.
[http://dx.doi.org/10.1371/journal.pone.0175050] [PMID: 28369094]
[3]
Tutanov, O.; Orlova, E.; Proskura, K.; Grigor’eva, A.; Yunusova, N.; Tsentalovich, Y.; Alexandrova, A.; Tamkovich, S. Proteomic analysis of blood exosomes from healthy females and breast cancer patients reveals an association between different exosomal bioactivity on non-tumorigenic epithelial cell and breast cancer cell migration in vitro. Biomolecules, 2020, 10(4), 495.
[http://dx.doi.org/10.3390/biom10040495] [PMID: 32218180]
[4]
Gomari, H.; Forouzandeh Moghadam, M.; Soleimani, M.; Ghavami, M.; Khodashenas, S. Targeted delivery of doxorubicin to HER2 positive tumor models. Int. J. Nanomedicine, 2019, 14, 5679-5690.
[http://dx.doi.org/10.2147/IJN.S210731] [PMID: 31413568]
[5]
Stevic, I.; Müller, V.; Weber, K.; Fasching, P.A.; Karn, T.; Marmé, F.; Schem, C.; Stickeler, E.; Denkert, C.; van Mackelenbergh, M.; Salat, C.; Schneeweiss, A.; Pantel, K.; Loibl, S.; Untch, M.; Schwarzenbach, H. Specific microRNA signatures in exosomes of triple-negative and HER2-positive breast cancer patients undergoing neoadjuvant therapy within the GeparSixto trial. BMC Med., 2018, 16(1), 179.
[http://dx.doi.org/10.1186/s12916-018-1163-y] [PMID: 30301470]
[6]
Du, J.; Fan, J.J.; Dong, C.; Li, H.T.; Ma, B.L. Inhibition effect of exosomes-mediated Let-7a on the development and metastasis of triple negative breast cancer by down-regulating the expression of c-Myc. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(12), 5301-5314.
[PMID: 31298382]
[7]
Chaudhary, P.; Gibbs, L.D.; Maji, S.; Lewis, C.M.; Suzuki, S.; Vishwanatha, J.K. Serum exosomal-annexin A2 is associated with African-American triple-negative breast cancer and promotes angiogenesis. Breast Cancer Res., 2020, 22(1), 11.
[http://dx.doi.org/10.1186/s13058-020-1251-8] [PMID: 31992335]
[8]
Han, M.; Hu, J.; Lu, P.; Cao, H.; Yu, C.; Li, X.; Qian, X.; Yang, X.; Yang, Y.; Han, N.; Dou, D.; Zhang, F.; Ye, M.; Yang, C.; Gu, Y.; Dong, H. Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer. Cell Death Dis., 2020, 11(1), 43.
[http://dx.doi.org/10.1038/s41419-020-2250-5] [PMID: 31969559]
[9]
Hessvik, N.P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci., 2018, 75(2), 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[10]
Limoni, S.K.; Moghadam, M.F.; Moazzeni, S.M.; Gomari, H.; Salimi, F. Engineered exosomes for targeted transfer of siRNA to HER2 positive breast cancer cells. Appl. Biochem. Biotechnol., 2019, 187(1), 352-364.
[http://dx.doi.org/10.1007/s12010-018-2813-4] [PMID: 29951961]
[11]
Wang, P.; Wang, H.; Huang, Q.; Peng, C.; Yao, L.; Chen, H.; Qiu, Z.; Wu, Y.; Wang, L.; Chen, W. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics, 2019, 9(6), 1714-1727.
[http://dx.doi.org/10.7150/thno.30716] [PMID: 31037133]
[12]
Salimi, F.; Forouzandeh Moghadam, M.; Rajabibazl, M. Development of a novel anti-HER2 scFv by ribosome display and in silico evaluation of its 3D structure and interaction with HER2, alone and after fusion to LAMP2B. Mol. Biol. Rep., 2018, 45(6), 2247-2256.
[http://dx.doi.org/10.1007/s11033-018-4386-2] [PMID: 30225583]
[13]
Wang, J-H.; Forterre, A.V.; Zhao, J.; Frimannsson, D.O.; Delcayre, A.; Antes, T.J.; Efron, B.; Jeffrey, S.S.; Pegram, M.D.; Matin, A.C. Anti-HER2 scFv-directed extracellular vesicle-mediated mRNA-based gene delivery inhibits growth of HER2-positive human breast tumor xenografts by prodrug activation. Mol. Cancer Ther., 2018, 17(5), 1133-1142.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0827] [PMID: 29483213]
[14]
Barok, M.; Puhka, M.; Vereb, G.; Szollosi, J.; Isola, J.; Joensuu, H. Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation. BMC Cancer, 2018, 18(1), 504.
[http://dx.doi.org/10.1186/s12885-018-4418-2] [PMID: 29720111]
[15]
Yu, M.; Gai, C.; Li, Z.; Ding, D.; Zheng, J.; Zhang, W.; Lv, S.; Li, W. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci., 2019, 110(10), 3173-3182.
[http://dx.doi.org/10.1111/cas.14181] [PMID: 31464035]
[16]
Gong, C.; Tian, J.; Wang, Z.; Gao, Y.; Wu, X.; Ding, X.; Qiang, L.; Li, G.; Han, Z.; Yuan, Y.; Gao, S. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J. Nanobiotechnology, 2019, 17(1), 93.
[http://dx.doi.org/10.1186/s12951-019-0526-7] [PMID: 31481080]
[17]
Salvati, A.; Pitek, A.S.; Monopoli, M.P.; Prapainop, K.; Bombelli, F.B.; Hristov, D.R.; Kelly, P.M.; Åberg, C.; Mahon, E.; Dawson, K.A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol., 2013, 8(2), 137-143.
[http://dx.doi.org/10.1038/nnano.2012.237] [PMID: 23334168]
[18]
Sun, H.; Su, J.; Meng, Q.; Yin, Q.; Chen, L.; Gu, W.; Zhang, P.; Zhang, Z.; Yu, H.; Wang, S.; Li, Y. Cancer cell biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater., 2016, 28(43), 9581-9588.
[http://dx.doi.org/10.1002/adma.201602173] [PMID: 27628433]
[19]
Yong, T.; Zhang, X.; Bie, N.; Zhang, H.; Zhang, X.; Li, F.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H.A.; Yang, X. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun., 2019, 10(1), 3838.
[http://dx.doi.org/10.1038/s41467-019-11718-4] [PMID: 31444335]
[20]
Pakravan, K.; Babashah, S.; Sadeghizadeh, M.; Mowla, S.J.; Mossahebi-Mohammadi, M.; Ataei, F.; Dana, N.; Javan, M. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol. (Dordr.), 2017, 40(5), 457-470.
[http://dx.doi.org/10.1007/s13402-017-0335-7] [PMID: 28741069]
[21]
Lobos-González, L.; Bustos, R.; Campos, A.; Silva, V.; Silva, V.; Jeldes, E.; Salomon, C.; Varas-Godoy, M.; Cáceres-Verschae, A.; Duran, E.; Vera, T.; Ezquer, F.; Ezquer, M.; Burzio, V.A.; Villegas, J. Exosomes released upon mitochondrial ASncmtRNA knockdown reduce tumorigenic properties of malignant breast cancer cells. Sci. Rep., 2020, 10(1), 343.
[http://dx.doi.org/10.1038/s41598-019-57018-1] [PMID: 31941923]
[22]
Fu, W.; Lei, C.; Liu, S.; Cui, Y.; Wang, C.; Qian, K.; Li, T.; Shen, Y.; Fan, X.; Lin, F.; Ding, M.; Pan, M.; Ye, X.; Yang, Y.; Hu, S. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat. Commun., 2019, 10(1), 4355.
[http://dx.doi.org/10.1038/s41467-019-12321-3] [PMID: 31554797]
[23]
Shi, X.; Cheng, Q.; Hou, T.; Han, M.; Smbatyan, G.; Lang, J.E.; Epstein, A.L.; Lenz, H-J.; Zhang, Y. Genetically engineered cell-derived nanoparticles for targeted breast cancer immunotherapy. Mol. Ther., 2020, 28(2), 536-547.
[http://dx.doi.org/10.1016/j.ymthe.2019.11.020] [PMID: 31843452]
[24]
Molavipordanjani, S.; Khodashenas, S.; Abedi, S.M.; Moghadam, M.F.; Mardanshahi, A.; Hosseinimehr, S.J. 99mTc-radiolabeled HER2 targeted exosome for tumor imaging. Eur. J. Pharm. Sci., 2020, 148, 105312.
[http://dx.doi.org/10.1016/j.ejps.2020.105312] [PMID: 32198014]
[25]
Davidson, S.M.; Yellon, D.M. Exosomes and cardioprotection -a critical analysis. Mol. Aspects Med., 2018, 60, 104-114.
[http://dx.doi.org/10.1016/j.mam.2017.11.004] [PMID: 29122678]
[26]
Hirsch, A.M. Embryonic stem cell-derived exosomes increase the antiproliferative activity of doxorubicin in breast cancer. 2019.
[27]
Milano, G.; Biemmi, V.; Lazzarini, E.; Balbi, C.; Ciullo, A.; Bolis, S.; Ameri, P.; Di Silvestre, D.; Mauri, P.; Barile, L.; Vassalli, G. Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc. Res., 2020, 116(2), 383-392.
[PMID: 31098627]
[28]
Stevic, I. Embryonic stem cell-derived exosomes increase the antiproliferative activity of doxorubicin in breast cancer. Virginia commonwealth university, VCU scholars compass; Theses and dissertations graduate school, 2019.
[29]
Donnarumma, E.; Fiore, D.; Nappa, M.; Roscigno, G.; Adamo, A.; Iaboni, M.; Russo, V.; Affinito, A.; Puoti, I.; Quintavalle, C.; Rienzo, A.; Piscuoglio, S.; Thomas, R.; Condorelli, G. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget, 2017, 8(12), 19592-19608.
[http://dx.doi.org/10.18632/oncotarget.14752] [PMID: 28121625]
[30]
Ni, Q.; Stevic, I.; Pan, C.; Müller, V.; Oliveira-Ferrer, L.; Pantel, K.; Schwarzenbach, H. Different signatures of miR-16, miR-30b and miR-93 in exosomes from breast cancer and DCIS patients. Sci. Rep., 2018, 8(1), 12974.
[http://dx.doi.org/10.1038/s41598-018-31108-y] [PMID: 30154547]
[31]
Rodríguez-Martínez, A.; de Miguel-Pérez, D.; Ortega, F.G.; García-Puche, J.L.; Robles-Fernández, I.; Exposito, J.; Martorell- Marugan, J.; Carmona-Sáez, P.; Garrido-Navas, M.D.C.; Rolfo, C.; Ilyine, H.; Lorente, J.A.; Legueren, M.; Serrano, M.J. Exosomal miRNA profile as complementary tool in the diagnostic and prediction of treatment response in localized breast cancer under neoadjuvant chemotherapy. Breast Cancer Res., 2019, 21(1), 21.
[http://dx.doi.org/10.1186/s13058-019-1109-0] [PMID: 30728048]
[32]
Ando, W.; Kikuchi, K.; Uematsu, T.; Yokomori, H.; Takaki, T.; Sogabe, M.; Kohgo, Y.; Otori, K.; Ishikawa, S.; Okazaki, I. Novel breast cancer screening: combined expression of miR-21 and MMP-1 in urinary exosomes detects 95% of breast cancer without metastasis. Sci. Rep., 2019, 9(1), 13595.
[http://dx.doi.org/10.1038/s41598-019-50084-5] [PMID: 31537868]
[33]
Abdulhussain, M.M.; Hasan, N.A.; Hussain, A.G. Interrelation of the circulating and tissue microRNA-21 with tissue PDCD4 expression and the invasiveness of Iraqi female breast tumors. Indian J. Clin. Biochem., 2019, 34(1), 26-38.
[PMID: 30728670]
[34]
Xin, Y.; Wang, X.; Meng, K.; Ni, C.; Lv, Z.; Guan, D. Identification of exosomal miR-455-5p and miR-1255a as therapeutic targets for breast cancer. Biosci. Rep., 2020, 40(1), 40.
[http://dx.doi.org/10.1042/BSR20190303] [PMID: 31763681]
[35]
Yoshikawa, M.; Iinuma, H.; Umemoto, Y.; Yanagisawa, T.; Matsumoto, A.; Jinno, H. Exosome-encapsulated microRNA-223-3p as a minimally invasive biomarker for the early detection of invasive breast cancer. Oncol. Lett., 2018, 15(6), 9584-9592.
[http://dx.doi.org/10.3892/ol.2018.8457] [PMID: 29805680]
[36]
Hirschfeld, M.; Rücker, G.; Weiß, D.; Berner, K.; Ritter, A.; Jäger, M.; Erbes, T. Urinary exosomal MicroRNAs as potential non-invasive biomarkers in breast cancer detection. Mol. Diagn. Ther., 2020, 24(2), 215-232.
[http://dx.doi.org/10.1007/s40291-020-00453-y] [PMID: 32112368]
[37]
Zhong, G.; Wang, K.; Li, J.; Xiao, S.; Wei, W.; Liu, J. Determination of serum exosomal H19 as a noninvasive biomarker for breast cancer diagnosis. OncoTargets Ther., 2020, 13, 2563-2571.
[http://dx.doi.org/10.2147/OTT.S243601] [PMID: 32273726]
[38]
Wang, Y-L.; Liu, L-C.; Hung, Y.; Chen, C-J.; Lin, Y-Z.; Wu, W-R.; Wang, S-C. Long non-coding RNA HOTAIR in circulatory exosomes is correlated with ErbB2/HER2 positivity in breast cancer. Breast, 2019, 46, 64-69.
[http://dx.doi.org/10.1016/j.breast.2019.05.003] [PMID: 31100572]
[39]
Chakrabortty, S.K.; Kitchen, R.R.; Coticchia, C.M.; Tadigotla, V.R.; Eitan, E.; Castellanos-Rizaldos, E.; Bedford, L.; Badola, S.; Valentino, M.D.; Colafemina, N. In: Abstract LB-226: Exosomal liquid biopsy reveals mRNA and lincRNA biomarkers in early stage breast cancer patient plasma; Proceeding: AACR Annual Meeting, Chicago, IL, April 14-18, 2018.
[40]
Yang, S.; Tang, J. Circular RNAs in exosomes derived from breast cancer: Promising biomarkers for diagnosis and prognosis of triple negative breast cancer (TNBC). J. Clin. Oncol., 2020, 38, 3528-3528.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.3528]
[41]
Wang, X.; Zhong, W.; Bu, J.; Li, Y.; Li, R.; Nie, R.; Xiao, C.; Ma, K.; Huang, X.; Li, Y. Exosomal protein CD82 as a diagnostic biomarker for precision medicine for breast cancer. Mol. Carcinog., 2019, 58(5), 674-685.
[http://dx.doi.org/10.1002/mc.22960] [PMID: 30604894]
[42]
Cui, Z.; Chen, Y.; Hu, M.; Lin, Y.; Zhang, S.; Kong, L.; Chen, Y. Diagnostic and prognostic value of the cancer-testis antigen lactate dehydrogenase C4 in breast cancer. Clin. Chim. Acta, 2020, 503, 203-209.
[http://dx.doi.org/10.1016/j.cca.2019.11.032] [PMID: 31794764]
[43]
Li, R.; Chibbar, R.; Xiang, J. Novel EXO-T vaccine using polyclonal CD4+ T cells armed with HER2-specific exosomes for HER2- positive breast cancer. OncoTargets Ther., 2018, 11, 7089-7093.
[http://dx.doi.org/10.2147/OTT.S184898] [PMID: 30410365]
[44]
Xie, Y.; Wu, J.; Xu, A.; Ahmeqd, S.; Sami, A.; Chibbar, R.; Freywald, A.; Zheng, C.; Xiang, J. Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice. Vaccine, 2018, 36(11), 1414-1422.
[http://dx.doi.org/10.1016/j.vaccine.2018.01.078] [PMID: 29415817]
[45]
Anticoli, S.; Aricò, E.; Arenaccio, C.; Manfredi, F.; Chiozzini, C.; Olivetta, E.; Ferrantelli, F.; Lattanzi, L.; D’Urso, M.T.; Proietti, E.; Federico, M. Engineered exosomes emerging from muscle cells break immune tolerance to HER2 in transgenic mice and induce antigen-specific CTLs upon challenge by human dendritic cells. J. Mol. Med. (Berl.), 2018, 96(2), 211-221.
[http://dx.doi.org/10.1007/s00109-017-1617-2] [PMID: 29282521]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy