Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Role of ZEB Family Members in Proliferation, Metastasis, and Chemoresistance of Prostate Cancer Cells: Revealing Signaling Networks

Author(s): Leyla soleymani, Ali Zarrabi, Farid Hashemi, Fardin Hashemi, Amirhossein Zabolian, Seyed Mohammad Banihashemi, Shirin Sabouhi Moghadam, Kiavash Hushmandi, Saeed Samarghandian, Milad Ashrafizadeh* and Haroon Khan*

Volume 21, Issue 9, 2021

Published on: 01 June, 2021

Page: [749 - 767] Pages: 19

DOI: 10.2174/1568009621666210601114631

Price: $65

Abstract

Prostate cancer (PCa) is one of the leading causes of death worldwide. A variety of strategies, including surgery, chemotherapy, radiotherapy, and immunotherapy, are applied for PCa treatment. PCa cells are responsive towards therapy at early stages, but they can obtain resistance in the advanced stage. Furthermore, their migratory ability is high in advanced stages. It seems that genetic and epigenetic factors play an important role in this case. Zinc finger E-box-binding homeobox (ZEB) is a family of transcription with two key members, including ZEB1 and ZEB2. ZEB family members are known due to their involvement in promoting cancer metastasis via EMT induction. Recent studies have shown their role in cancer proliferation and inducing therapy resistance. In the current review, we focus on revealing the role of ZEB1 and ZEB2 in PCa. ZEB family members are able to significantly promote the proliferation and viability of cancer cells. ZEB1 and ZEB2 enhance migration and invasion of PCa cells via EMT induction. Overexpression of ZEB1 and ZEB2 is associated with a poor prognosis of PCa. ZEB1 and ZEB2 upregulation occurs during PCa progression and can provide therapy resistance to cancer cells. PRMT1, Smad2, and non-coding RNAs can function as upstream mediators of the ZEB family. Besides, Bax, Bcl-2, MRP1, Ncadherin, and E-cadherin can be considered as downstream targets of the ZEB family in PCa.

Keywords: Prostate cancer, zinc finger E-box-binding homeobox (ZEB), metastasis, chemoresistance, proliferation, epithelialto- mesenchymal transition (EMT), microRNA, lncRNA.

Graphical Abstract
[1]
Brockmueller, A.; Sameri, S.; Liskova, A.; Zhai, K.; Varghese, E.; Samuel, S.M.; Büsselberg, D.; Kubatka, P.; Shakibaei, M. Resveratrol’s anti-cancer effects through the modulation of tumor glucose metabolism. Cancers (Basel), 2021, 13(2), 188.
[http://dx.doi.org/10.3390/cancers13020188] [PMID: 33430318]
[2]
Kubatka, P.; Kello, M.; Kajo, K.; Samec, M.; Liskova, A.; Jasek, K.; Koklesova, L.; Kuruc, T.; Adamkov, M.; Smejkal, K.; Svajdlenka, E.; Solar, P.; Pec, M.; Büsselberg, D.; Sadlonova, V.; Mojzis, J. Rhus coriaria l. (sumac) demonstrates oncostatic activity in the therapeutic and preventive model of breast carcinoma. Int. J. Mol. Sci., 2020, 22(1), 183.
[http://dx.doi.org/10.3390/ijms22010183] [PMID: 33375383]
[3]
Zhai, K.; Brockmüller, A.; Kubatka, P.; Shakibaei, M.; Büsselberg, D. Curcumin’s beneficial effects on neuroblastoma: mechanisms, challenges, and potential solutions. Biomolecules, 2020, 10(11), 1469.
[http://dx.doi.org/10.3390/biom10111469] [PMID: 33105719]
[4]
Samec, M.; Liskova, A.; Koklesova, L.; Samuel, S.M.; Murin, R.; Zubor, P.; Bujnak, J.; Kwon, T.K.; Büsselberg, D.; Prosecky, R.; Caprnda, M.; Rodrigo, L.; Ciccocioppo, R.; Kruzliak, P.; Kubatka, P. The role of plant-derived natural substances as immunomodulatory agents in carcinogenesis. J. Cancer Res. Clin. Oncol., 2020, 146(12), 3137-3154.
[http://dx.doi.org/10.1007/s00432-020-03424-2] [PMID: 33063131]
[5]
Vadakekolathu, J.; Minden, M.D.; Hood, T.; Church, S.E.; Reeder, S.; Altmann, H.; Sullivan, A.H.; Viboch, E.J.; Patel, T.; Ibrahimova, N.; Warren, S.E.; Arruda, A.; Liang, Y.; Smith, T.H.; Foulds, G.A.; Bailey, M.D.; Gowen-MacDonald, J.; Muth, J.; Schmitz, M.; Cesano, A.; Pockley, A.G.; Valk, P.J.M.; Löwenberg, B.; Bornhäuser, M.; Tasian, S.K.; Rettig, M.P.; Davidson-Moncada, J.K.; DiPersio, J.F.; Rutella, S. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci. Transl. Med., 2020, 12(546), 12.
[http://dx.doi.org/10.1126/scitranslmed.aaz0463] [PMID: 32493790]
[6]
Schoenfeld, A.J.; Hellmann, M.D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell, 2020, 37(4), 443-455.
[http://dx.doi.org/10.1016/j.ccell.2020.03.017] [PMID: 32289269]
[7]
Ashrafizadeh, M.; Bakhoda, M.R.; Bahmanpour, Z.; Ilkhani, K.; Zarrabi, A.; Makvandi, P.; Khan, H.; Mazaheri, S.; Darvish, M.; Mirzaei, H. Apigenin as tumor suppressor in cancers: biotherapeutic activity, nanodelivery, and mechanisms with emphasis on pancreatic cancer. Front Chem., 2020, 8, 829.
[http://dx.doi.org/10.3389/fchem.2020.00829] [PMID: 33195038]
[8]
Ashrafizadeh, M.; Delfi, M.; Hashemi, F.; Zabolian, A.; Saleki, H.; Bagherian, M.; Azami, N.; Farahani, M.V.; Sharifzadeh, S.O.; Hamzehlou, S.; Hushmandi, K.; Makvandi, P.; Zarrabi, A.; Hamblin, M.R.; Varma, R.S. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr. Polym., 2021, 260, 117809.
[http://dx.doi.org/10.1016/j.carbpol.2021.117809] [PMID: 33712155]
[9]
Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent global patterns in prostate cancer incidence and mortality rates. Eur. Urol., 2020, 77(1), 38-52.
[http://dx.doi.org/10.1016/j.eururo.2019.08.005] [PMID: 31493960]
[10]
Boettcher, A.N.; Usman, A.; Morgans, A.; VanderWeele, D.J.; Sosman, J.; Wu, J.D. Past, current, and future of immunotherapies for prostate cancer. Front. Oncol., 2019, 9, 884.
[http://dx.doi.org/10.3389/fonc.2019.00884] [PMID: 31572678]
[11]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global cancer observatory: Cancer today; International Agency for Research on Cancer: Lyon, France, 2018.
[12]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[13]
Schottenfeld, D.; Fraumeni, J.F., Jr Cancer epidemiology and prevention; Oxford University Press, 2006.
[http://dx.doi.org/10.1093/acprof:oso/9780195149616.001.0001]
[14]
Hayes, R.B.; Ziegler, R.G.; Gridley, G.; Swanson, C.; Greenberg, R.S.; Swanson, G.M.; Schoenberg, J.B.; Silverman, D.T.; Brown, L.M.; Pottern, L.M.; Liff, J.; Schwartz, A.G.; Fraumeni, J.F., Jr; Hoover, R.N. Dietary factors and risks for prostate cancer among blacks and whites in the United States. Cancer Epidemiol. Biomarkers Prev., 1999, 8(1), 25-34.
[PMID: 9950236]
[15]
Haffner, M.C.; Zwart, W.; Roudier, M.P.; True, L.D.; Nelson, W.G.; Epstein, J.I.; De Marzo, A.M.; Nelson, P.S.; Yegnasubramanian, S. Genomic and phenotypic heterogeneity in prostate cancer. Nat. Rev. Urol., 2020, 1-14.
[PMID: 33328650]
[16]
Lan, M.; Zhu, L.; Wang, Y.; Shen, D.; Fang, K.; Liu, Y.; Peng, Y.; Qiao, B.; Guo, Y. Multifunctional nanobubbles carrying indocyanine green and paclitaxel for molecular imaging and the treatment of prostate cancer. J. Nanobiotechnol, 2020, 18(1), 121.
[http://dx.doi.org/10.1186/s12951-020-00650-1] [PMID: 32883330]
[17]
Marchioni, M.; Di Nicola, M.; Primiceri, G.; Novara, G.; Castellan, P.; Paul, A.K.; Veccia, A.; Autorino, R.; Cindolo, L.; Schips, L. New antiandrogen compounds compared to docetaxel for metastatic hormone sensitive prostate cancer: Results from a network meta-analysis. J. Urol., 2020, 203(4), 751-759.
[http://dx.doi.org/10.1097/JU.0000000000000636] [PMID: 31689158]
[18]
Yang, C.; Lee, M.; Song, G.; Lim, W. tRNAlys-derived fragment alleviates cisplatin-induced apoptosis in prostate cancer cells. Pharmaceutics, 2021, 13(1), 13.
[http://dx.doi.org/10.3390/pharmaceutics13010055] [PMID: 33406670]
[19]
Laber, D.A.; Eatrides, J.; Jaglal, M.V.; Haider, M.; Visweshwar, N.; Patel, A. A phase I/II study of docetaxel in combination with pegylated liposomal doxorubicin in metastatic castration-resistant prostate cancer. Med. Oncol., 2020, 37(10), 95.
[http://dx.doi.org/10.1007/s12032-020-01420-7] [PMID: 32979106]
[20]
Shore, N.D.; Antonarakis, E.S.; Cookson, M.S.; Crawford, E.D.; Morgans, A.K.; Albala, D.M.; Hafron, J.; Harris, R.G.; Saltzstein, D.; Brown, G.A.; Henderson, J.; Lowentritt, B.; Spier, J.M.; Concepcion, R. Optimizing the role of androgen deprivation therapy in advanced prostate cancer: Challenges beyond the guidelines. Prostate, 2020, 80(6), 527-544.
[http://dx.doi.org/10.1002/pros.23967] [PMID: 32130741]
[21]
Klein, E.A.; Li, J.; Milinovich, A.; Schold, J.D.; Sharifi, N.; Kattan, M.W.; Jehi, L. Androgen deprivation therapy in men with prostate cancer does not affect risk of infection with SARS-CoV-2. J. Urol., 2021, 205(2), 441-443.
[http://dx.doi.org/10.1097/JU.0000000000001338] [PMID: 32897764]
[22]
Shore, N.D.; Saad, F.; Cookson, M.S.; George, D.J.; Saltzstein, D.R.; Tutrone, R.; Akaza, H.; Bossi, A.; van Veenhuyzen, D.F.; Selby, B.; Fan, X.; Kang, V.; Walling, J.; Tombal, B. Oral relugolix for androgen-deprivation therapy in advanced prostate cancer. N. Engl. J. Med., 2020, 382(23), 2187-2196.
[http://dx.doi.org/10.1056/NEJMoa2004325] [PMID: 32469183]
[23]
Heidenreich, A.; Bastian, P.J.; Bellmunt, J.; Bolla, M.; Joniau, S.; van der Kwast, T.; Mason, M.; Matveev, V.; Wiegel, T.; Zattoni, F.; Mottet, N. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol., 2014, 65(2), 467-479.
[http://dx.doi.org/10.1016/j.eururo.2013.11.002] [PMID: 24321502]
[24]
Cetin, B.; Ozet, A. The Potential for chemotherapy-free strategies in advanced prostate cancer. Curr. Urol., 2019, 13(2), 57-63.
[http://dx.doi.org/10.1159/000499292] [PMID: 31768170]
[25]
Eisenberger, M.A.; Antonarakis, E.S. Hormonal therapy or chemotherapy for metastatic prostate cancer - playing the right CARD. N. Engl. J. Med., 2019, 381(26), 2564-2566.
[http://dx.doi.org/10.1056/NEJMe1912750] [PMID: 31881143]
[26]
Jung, S.I.; Kim, M.S.; Jeong, C.W.; Kwak, C.; Hong, S.K.; Kang, S.H.; Joung, J.Y.; Lee, S.H.; Yun, S.J.; Kim, T.H.; Park, S.W.; Jeon, S.S.; Kang, M.; Lee, J.Y.; Chung, B.H.; Hong, J.H.; Ahn, H.; Kim, C.S.; Kwon, D.D. Enzalutamide in chemotherapy-naive patients with metastatic castration-resistant prostate cancer: A retrospective Korean multicenter study in a real-world setting. Investig. Clin. Urol., 2020, 61(1), 19-27.
[http://dx.doi.org/10.4111/icu.2020.61.1.19] [PMID: 31942459]
[27]
Liu, N.; Ji, J.; Qiu, H.; Shao, Z.; Wen, X.; Chen, A.; Yao, S.; Zhang, X.; Yao, H.; Zhang, L. Improving radio-chemotherapy efficacy of prostate cancer by co-deliverying docetaxel and dbait with biodegradable nanoparticles. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 305-314.
[http://dx.doi.org/10.1080/21691401.2019.1703726] [PMID: 31858836]
[28]
Beltran, H.; Hruszkewycz, A.; Scher, H.I.; Hildesheim, J.; Isaacs, J.; Yu, E.Y.; Kelly, K.; Lin, D.; Dicker, A.; Arnold, J.; Hecht, T.; Wicha, M.; Sears, R.; Rowley, D.; White, R.; Gulley, J.L.; Lee, J.; Diaz Meco, M.; Small, E.J.; Shen, M.; Knudsen, K.; Goodrich, D.W.; Lotan, T.; Zoubeidi, A.; Sawyers, C.L.; Rudin, C.M.; Loda, M.; Thompson, T.; Rubin, M.A.; Tawab-Amiri, A.; Dahut, W.; Nelson, P.S. The role of lineage plasticity in prostate cancer therapy resistance. Clin. Cancer Res., 2019, 25(23), 6916-6924.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1423] [PMID: 31363002]
[29]
Shi, Q.; Zhu, Y.; Ma, J.; Chang, K.; Ding, D.; Bai, Y.; Gao, K.; Zhang, P.; Mo, R.; Feng, K.; Zhao, X.; Zhang, L.; Sun, H.; Jiao, D.; Chen, Y.; Sun, Y.; Zhao, S.M.; Huang, H.; Li, Y.; Ren, S.; Wang, C. Prostate cancer-associated SPOP mutations enhance cancer cell survival and docetaxel resistance by upregulating Caprin1-dependent stress granule assembly. Mol. Cancer, 2019, 18(1), 170.
[http://dx.doi.org/10.1186/s12943-019-1096-x] [PMID: 31771591]
[30]
Van den Broeck, T.; van den Bergh, R.C.N.; Briers, E.; Cornford, P.; Cumberbatch, M.; Tilki, D.; De Santis, M.; Fanti, S.; Fossati, N.; Gillessen, S.; Grummet, J.P.; Henry, A.M.; Lardas, M.; Liew, M.; Mason, M.; Moris, L.; Schoots, I.G.; van der Kwast, T.; van der Poel, H.; Wiegel, T.; Willemse, P.M.; Rouvière, O.; Lam, T.B.; Mottet, N. Biochemical recurrence in prostate cancer: The european association of urology prostate cancer guidelines panel recommendations. Eur. Urol. Focus, 2020, 6(2), 231-234.
[http://dx.doi.org/10.1016/j.euf.2019.06.004] [PMID: 31248850]
[31]
Henzler, C.; Li, Y.; Yang, R.; McBride, T.; Ho, Y.; Sprenger, C.; Liu, G.; Coleman, I.; Lakely, B.; Li, R.; Ma, S.; Landman, S.R.; Kumar, V.; Hwang, T.H.; Raj, G.V.; Higano, C.S.; Morrissey, C.; Nelson, P.S.; Plymate, S.R.; Dehm, S.M. Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nat. Commun., 2016, 7, 13668.
[http://dx.doi.org/10.1038/ncomms13668] [PMID: 27897170]
[32]
Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; Lotan, T.L.; Zheng, Q.; De Marzo, A.M.; Isaacs, J.T.; Isaacs, W.B.; Nadal, R.; Paller, C.J.; Denmeade, S.R.; Carducci, M.A.; Eisenberger, M.A.; Luo, J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med., 2014, 371(11), 1028-1038.
[http://dx.doi.org/10.1056/NEJMoa1315815] [PMID: 25184630]
[33]
Mateo, J.; Seed, G.; Bertan, C.; Rescigno, P.; Dolling, D.; Figueiredo, I.; Miranda, S.; Nava Rodrigues, D.; Gurel, B.; Clarke, M.; Atkin, M.; Chandler, R.; Messina, C.; Sumanasuriya, S.; Bianchini, D.; Barrero, M.; Petermolo, A.; Zafeiriou, Z.; Fontes, M.; Perez-Lopez, R.; Tunariu, N.; Fulton, B.; Jones, R.; McGovern, U.; Ralph, C.; Varughese, M.; Parikh, O.; Jain, S.; Elliott, T.; Sandhu, S.; Porta, N.; Hall, E.; Yuan, W.; Carreira, S.; de Bono, J.S. Genomics of lethal prostate cancer at diagnosis and castration resistance. J. Clin. Invest., 2020, 130(4), 1743-1751.
[http://dx.doi.org/10.1172/JCI132031] [PMID: 31874108]
[34]
Isaacsson Velho, P.; Fu, W.; Wang, H.; Mirkheshti, N.; Qazi, F.; Lima, F.A.S.; Shaukat, F.; Carducci, M.A.; Denmeade, S.R.; Paller, C.J.; Markowski, M.C.; Marshall, C.H.; Eisenberger, M.A.; Antonarakis, E.S. Wnt-pathway activating mutations are associated with resistance to first-line abiraterone and enzalutamide in castration-resistant prostate cancer. Eur. Urol., 2020, 77(1), 14-21.
[http://dx.doi.org/10.1016/j.eururo.2019.05.032] [PMID: 31176623]
[35]
Lee, M.S.; Lee, J.; Kim, Y.M.; Lee, H. The metastasis suppressor CD82/KAI1 represses the TGF-β 1 and Wnt signalings inducing epithelial-to-mesenchymal transition linked to invasiveness of prostate cancer cells. Prostate, 2019, 79(12), 1400-1411.
[http://dx.doi.org/10.1002/pros.23837] [PMID: 31212375]
[36]
Cheaito, K.A.; Bahmad, H.F.; Hadadeh, O.; Saleh, E.; Dagher, C.; Hammoud, M.S.; Shahait, M.; Mrad, Z.A.; Nassif, S.; Tawil, A.; Bulbul, M.; Khauli, R.; Wazzan, W.; Nasr, R.; Shamseddine, A.; Temraz, S.; El-Sabban, M.E.; El-Hajj, A.; Mukherji, D.; Abou-Kheir, W. EMT markers in locally-advanced prostate cancer: Predicting recurrence? Front. Oncol., 2019, 9, 131.
[http://dx.doi.org/10.3389/fonc.2019.00131] [PMID: 30915272]
[37]
Tsai, Y.C.; Chen, W.Y.; Abou-Kheir, W.; Zeng, T.; Yin, J.J.; Bahmad, H.; Lee, Y.C.; Liu, Y.N. Androgen deprivation therapy-induced epithelial-mesenchymal transition of prostate cancer through downregulating SPDEF and activating CCL2. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(5 Pt A), 1717-1727.
[http://dx.doi.org/10.1016/j.bbadis.2018.02.016] [PMID: 29477409]
[38]
Cui, Y.; Yang, Y.; Ren, L.; Yang, J.; Wang, B.; Xing, T.; Chen, H.; Chen, M. miR-15a-3p suppresses prostate cancer cell proliferation and invasion by targeting slc39a7 via downregulating wnt/β- catenin signaling pathway. Cancer Biother. Radiopharm., 2019, 34(7), 472-479.
[http://dx.doi.org/10.1089/cbr.2018.2722] [PMID: 31135177]
[39]
Daouk, R.; Bahmad, H.F.; Saleh, E.; Monzer, A.; Ballout, F.; Kadara, H.; Abou-Kheir, W. Genome-wide gene expression analysis of a murine model of prostate cancer progression: Deciphering the roles of IL-6 and p38 MAPK as potential therapeutic targets. PLoS One, 2020, 15(8), e0237442.
[http://dx.doi.org/10.1371/journal.pone.0237442] [PMID: 32790767]
[40]
Stopsack, K.H.; Ebot, E.M.; Downer, M.K.; Gerke, T.A.; Rider, J.R.; Kantoff, P.W.; Mucci, L.A. Regular aspirin use and gene expression profiles in prostate cancer patients. Cancer Causes Control, 2018, 29(8), 775-784.
[http://dx.doi.org/10.1007/s10552-018-1049-5] [PMID: 29915914]
[41]
Conteduca, V.; Wetterskog, D.; Sharabiani, M.T.A.; Grande, E.; Fernandez-Perez, M.P.; Jayaram, A.; Salvi, S.; Castellano, D.; Romanel, A.; Lolli, C.; Casadio, V.; Gurioli, G.; Amadori, D.; Font, A.; Vazquez-Estevez, S.; González Del Alba, A.; Mellado, B.; Fernandez-Calvo, O.; Méndez-Vidal, M.J.; Climent, M.A.; Duran, I.; Gallardo, E.; Rodriguez, A.; Santander, C.; Sáez, M.I.; Puente, J.; Gasi Tandefelt, D.; Wingate, A.; Dearnaley, D.; Demichelis, F.; De Giorgi, U.; Gonzalez-Billalabeitia, E.; Attard, G. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: A multi-institution correlative biomarker study. Ann. Oncol., 2017, 28(7), 1508-1516.
[http://dx.doi.org/10.1093/annonc/mdx155] [PMID: 28472366]
[42]
Madany, M.; Thomas, T.; Edwards, L.A. The curious case of ZEB1. Discoveries (Craiova), 2018, 6(4), e86.
[http://dx.doi.org/10.15190/d.2018.7] [PMID: 32309604]
[43]
Kim, J.Y.; Cho, K.H.; Jeong, B.Y.; Park, C.G.; Lee, H.Y. Zeb1 for RCP-induced oral cancer cell invasion and its suppression by resveratrol. Exp. Mol. Med., 2020, 52(7), 1152-1163.
[http://dx.doi.org/10.1038/s12276-020-0474-1] [PMID: 32728068]
[44]
Sun, S.; Yang, X.; Qin, X.; Zhao, Y. TCF4 promotes colorectal cancer drug resistance and stemness via regulating ZEB1/ZEB2 expression. Protoplasma, 2020, 257(3), 921-930.
[http://dx.doi.org/10.1007/s00709-020-01480-6] [PMID: 31933004]
[45]
Drápela, S.; Bouchal, J.; Jolly, M.K.; Culig, Z.; Souček, K. ZEB1: A Critical regulator of cell plasticity, dna damage response, and therapy resistance. Front. Mol. Biosci., 2020, 7, 36.
[http://dx.doi.org/10.3389/fmolb.2020.00036] [PMID: 32266287]
[46]
Bruneel, K.; Verstappe, J.; Vandamme, N.; Berx, G. Intrinsic balance between zeb family members is important for melanocyte homeostasis and melanoma progression. Cancers (Basel), 2020, 12(8), 2248-2273.
[http://dx.doi.org/10.3390/cancers12082248] [PMID: 32796736]
[47]
Wu, H-T.; Zhong, H-T.; Li, G-W.; Shen, J-X.; Ye, Q-Q.; Zhang, M-L.; Liu, J. Oncogenic functions of the EMT-related transcription factor ZEB1 in breast cancer. J. Transl. Med., 2020, 18(1), 51.
[http://dx.doi.org/10.1186/s12967-020-02240-z] [PMID: 32014049]
[48]
Zhang, P.; Sun, Y.; Ma, L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 2015, 14(4), 481-487.
[http://dx.doi.org/10.1080/15384101.2015.1006048] [PMID: 25607528]
[49]
Soen, B.; Vandamme, N.; Berx, G.; Schwaller, J.; Van Vlierberghe, P.; Goossens, S. ZEB proteins in leukemia: friends, foes, or friendly foes? HemaSphere, 2018, 2(3), e43.
[http://dx.doi.org/10.1097/HS9.0000000000000043] [PMID: 31723771]
[50]
Vandewalle, C.; Van Roy, F.; Berx, G. The role of the ZEB family of transcription factors in development and disease. Cell. Mol. Life Sci., 2009, 66(5), 773-787.
[http://dx.doi.org/10.1007/s00018-008-8465-8] [PMID: 19011757]
[51]
Zhang, Y.; Xu, L.; Li, A.; Han, X. The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed. Pharmacother., 2019, 110, 400-408.
[http://dx.doi.org/10.1016/j.biopha.2018.11.112] [PMID: 30530042]
[52]
Postigo, A.A.; Depp, J.L.; Taylor, J.J.; Kroll, K.L. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J., 2003, 22(10), 2453-2462.
[http://dx.doi.org/10.1093/emboj/cdg226] [PMID: 12743039]
[53]
Clark, S.G.; Chiu, C. C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation. Development, 2003, 130(16), 3781-3794.
[http://dx.doi.org/10.1242/dev.00571] [PMID: 12835394]
[54]
Fortini, M.E.; Lai, Z.C.; Rubin, G.M. The Drosophila zfh-1 and zfh-2 genes encode novel proteins containing both zinc-finger and homeodomain motifs. Mech. Dev., 1991, 34(2-3), 113-122.
[http://dx.doi.org/10.1016/0925-4773(91)90048-B] [PMID: 1680376]
[55]
Hegarty, S.V.; Sullivan, A.M.; O’Keeffe, G.W. Zeb2: A multifunctional regulator of nervous system development. Prog. Neurobiol., 2015, 132, 81-95.
[http://dx.doi.org/10.1016/j.pneurobio.2015.07.001] [PMID: 26193487]
[56]
Liang, T.C.; Fu, W.G.; Zhong, Y.S. MicroRNA-1236-3p inhibits proliferation and invasion of breast cancer cells by targeting ZEB1. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(22), 9988-9995.
[PMID: 31799668]
[57]
Jiang, R.; Zhang, C.; Liu, G.; Gu, R.; Wu, H. MicroRNA-126 inhibits proliferation, migration, invasion, and emt in osteosarcoma by targeting ZEB1. J. Cell. Biochem., 2017, 118(11), 3765-3774.
[http://dx.doi.org/10.1002/jcb.26024] [PMID: 28379605]
[58]
Lin, Z.; Chen, Y.; Lin, Z.; Chen, C.; Dong, Y. Overexpressing PRMT1 inhibits proliferation and invasion in pancreatic cancer by inverse correlation of ZEB1. IUBMB Life, 2018, 70(10), 1032-1039.
[http://dx.doi.org/10.1002/iub.1917] [PMID: 30194893]
[59]
Zhang, C.; Xue, Q.; Xu, Z.; Lu, C. MiR-5702 suppresses proliferation and invasion in non-small-cell lung cancer cells via posttranscriptional suppression of ZEB1. J. Biochem. Mol. Toxicol., 2018, e22163.
[http://dx.doi.org/10.1002/jbt.22163] [PMID: 29975439]
[60]
Zhu, X.; Li, W.; Zhang, R.; Liu, Y. MicroRNA-342 inhibits cell proliferation and invasion in nasopharyngeal carcinoma by directly targeting ZEB1. Oncol. Lett., 2018, 16(1), 1298-1304.
[http://dx.doi.org/10.3892/ol.2018.8788] [PMID: 30061949]
[61]
Zhang, X.; Xu, X.; Ge, G.; Zang, X.; Shao, M.; Zou, S.; Zhang, Y.; Mao, Z.; Zhang, J.; Mao, F.; Qian, H.; Xu, W. miR-498 inhibits the growth and metastasis of liver cancer by targeting ZEB2. Oncol. Rep., 2019, 41(3), 1638-1648.
[PMID: 30592286]
[62]
Yan, Z.; Tian, X.; Wang, R.; Cheng, X.; Mi, J.; Xiong, L.; Wang, Y.; Deng, J.; Jia, M. Title Prognosis significance of zeb2 and tgf-β1 as well as other clinical characteristics in epithelial ovarian cancer. Int. J. Gynecol. Cancer, 2017, 27(7), 1343-1349.
[http://dx.doi.org/10.1097/IGC.0000000000001037] [PMID: 30814239]
[63]
Cui, J.; Pan, G.; He, Q.; Yin, L.; Guo, R.; Bi, H. MicroRNA-545 targets ZEB2 to inhibit the development of non-small cell lung cancer by inactivating Wnt/β-catenin pathway. Oncol. Lett., 2019, 18(3), 2931-2938.
[http://dx.doi.org/10.3892/ol.2019.10619] [PMID: 31452774]
[64]
Huang, L.; Liu, Z.; Hu, J.; Luo, Z.; Zhang, C.; Wang, L.; Wang, Z. MiR-377-3p suppresses colorectal cancer through negative regulation on Wnt/β-catenin signaling by targeting XIAP and ZEB2. Pharmacol. Res., 2020, 156, 104774.
[http://dx.doi.org/10.1016/j.phrs.2020.104774] [PMID: 32220639]
[65]
Li, X.; Liu, J.; Liu, M.; Xia, C.; Zhao, Q. The Lnc LINC00461/miR-30a-5p facilitates progression and malignancy in non-small cell lung cancer via regulating ZEB2. Cell Cycle, 2020, 19(7), 825-836.
[http://dx.doi.org/10.1080/15384101.2020.1731946] [PMID: 32106756]
[66]
Hu, Y.; Xie, H.; Liu, Y.; Liu, W.; Liu, M.; Tang, H. miR-484 suppresses proliferation and epithelial-mesenchymal transition by targeting ZEB1 and SMAD2 in cervical cancer cells. Cancer Cell Int., 2017, 17, 36.
[http://dx.doi.org/10.1186/s12935-017-0407-9] [PMID: 28286418]
[67]
He, J.; Xiang, D.; Lin, Y. MicroRNA-708 inhibits the proliferation and invasion of osteosarcoma cells by directly targeting ZEB1. Mol. Med. Rep., 2019, 19(5), 3948-3954.
[http://dx.doi.org/10.3892/mmr.2019.10013] [PMID: 30864726]
[68]
Ma, D.J.; Liu, H.S.; Li, S.Q.; Qin, Y.Z.; He, J.; Li, L.; Cui, Y.S. Correlations of the ZEB1 expression with the incidence and prognosis of non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(4), 1528-1535.
[PMID: 30840275]
[69]
Zhu, L.; Liu, Z.; Dong, R.; Wang, X.; Zhang, M.; Guo, X.; Yu, N.; Zeng, A. MicroRNA-3662 targets ZEB1 and attenuates the invasion of the highly aggressive melanoma cell line A375. Cancer Manag. Res., 2019, 11, 5845-5856.
[http://dx.doi.org/10.2147/CMAR.S200540] [PMID: 31388313]
[70]
Qin, Y.; Yu, J.; Zhang, M.; Qin, F.; Lan, X. ZEB1 promotes tumorigenesis and metastasis in hepatocellular carcinoma by regulating the expression of vimentin. Mol. Med. Rep., 2019, 19(3), 2297-2306.
[http://dx.doi.org/10.3892/mmr.2019.9866] [PMID: 30664206]
[71]
Zheng, L.; Xu, M.; Xu, J.; Wu, K.; Fang, Q.; Liang, Y.; Zhou, S.; Cen, D.; Ji, L.; Han, W.; Cai, X. ELF3 promotes epithelial-mesenchymal transition by protecting ZEB1 from miR-141-3p-mediated silencing in hepatocellular carcinoma. Cell Death Dis., 2018, 9(3), 387.
[http://dx.doi.org/10.1038/s41419-018-0399-y] [PMID: 29523781]
[72]
Cao, G.; Chen, D.; Liu, G.; Pan, Y.; Liu, Q. CPEB4 promotes growth and metastasis of gastric cancer cells via ZEB1-mediated epithelial- mesenchymal transition. OncoTargets Ther., 2018, 11, 6153-6165.
[http://dx.doi.org/10.2147/OTT.S175428] [PMID: 30288051]
[73]
Zhu, W.; Luo, X.; Fu, H.; Liu, L.; Sun, P.; Wang, Z. MiR-3653 inhibits the metastasis and epithelial-mesenchymal transition of colon cancer by targeting Zeb2. Pathol. Res. Pract., 2019, 215(10), 152577.
[http://dx.doi.org/10.1016/j.prp.2019.152577] [PMID: 31405759]
[74]
Shi, D.; Li, Y.; Fan, L.; Zhao, Q.; Tan, B.; Cui, G. Upregulation of miR-153 inhibits triple-negative breast cancer progression by targeting ZEB2-mediated EMT and contributes to better prognosis. OncoTargets Ther., 2019, 12, 9611-9625.
[http://dx.doi.org/10.2147/OTT.S223598] [PMID: 32009797]
[75]
Xavier, P.L.P.; Cordeiro, Y.G.; Rochetti, A.L.; Sangalli, J.R.; Zuccari, D.A.P.C.; Silveira, J.C.; Bressan, F.F.; Fukumasu, H. ZEB1 and ZEB2 transcription factors are potential therapeutic targets of canine mammary cancer cells. Vet. Comp. Oncol., 2018, 16(4), 596-605.
[http://dx.doi.org/10.1111/vco.12427] [PMID: 30047225]
[76]
Zhang, W.Y.; Liu, Q.H.; Wang, T.J.; Zhao, J.; Cheng, X.H.; Wang, J.S. CircZFR serves as a prognostic marker to promote bladder cancer progression by regulating miR-377/ZEB2 signaling. Biosci. Rep., 2019, 39(12), 39.
[http://dx.doi.org/10.1042/BSR20192779] [PMID: 31746333]
[77]
Lazarova, D.; Bordonaro, M. ZEB1 mediates drug resistance and EMT in p300-deficient CRC. J. Cancer, 2017, 8(8), 1453-1459.
[http://dx.doi.org/10.7150/jca.18762] [PMID: 28638460]
[78]
Long, L.; Xiang, H.; Liu, J.; Zhang, Z.; Sun, L. ZEB1 mediates doxorubicin (Dox) resistance and mesenchymal characteristics of hepatocarcinoma cells. Exp. Mol. Pathol., 2019, 106, 116-122.
[http://dx.doi.org/10.1016/j.yexmp.2019.01.001] [PMID: 30615851]
[79]
Zhang, J.; Zhou, C.; Jiang, H.; Liang, L.; Shi, W.; Zhang, Q.; Sun, P.; Xiang, R.; Wang, Y.; Yang, S. ZEB1 induces ER-α promoter hypermethylation and confers antiestrogen resistance in breast cancer. Cell Death Dis., 2017, 8(4), e2732.
[http://dx.doi.org/10.1038/cddis.2017.154] [PMID: 28383555]
[80]
Zhang, X.; Zhang, Z.; Zhang, Q.; Zhang, Q.; Sun, P.; Xiang, R.; Ren, G.; Yang, S. ZEB1 confers chemotherapeutic resistance to breast cancer by activating ATM. Cell Death Dis., 2018, 9(2), 57.
[http://dx.doi.org/10.1038/s41419-017-0087-3] [PMID: 29352223]
[81]
Li, N.; Babaei-Jadidi, R.; Lorenzi, F.; Spencer-Dene, B.; Clarke, P.; Domingo, E.; Tulchinsky, E.; Vries, R.G.J.; Kerr, D.; Pan, Y.; He, Y.; Bates, D.O.; Tomlinson, I.; Clevers, H.; Nateri, A.S. An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis, 2019, 8(3), 13.
[http://dx.doi.org/10.1038/s41389-019-0125-3] [PMID: 30783098]
[82]
Wu, D.M.; Zhang, T.; Liu, Y.B.; Deng, S.H.; Han, R.; Liu, T.; Li, J.; Xu, Y. The PAX6-ZEB2 axis promotes metastasis and cisplatin resistance in non-small cell lung cancer through PI3K/AKT signaling. Cell Death Dis., 2019, 10(5), 349.
[http://dx.doi.org/10.1038/s41419-019-1591-4] [PMID: 31024010]
[83]
Depner, C.; Zum Buttel, H.; Böğürcü, N.; Cuesta, A.M.; Aburto, M.R.; Seidel, S.; Finkelmeier, F.; Foss, F.; Hofmann, J.; Kaulich, K.; Barbus, S.; Segarra, M.; Reifenberger, G.; Garvalov, B.K.; Acker, T.; Acker-Palmer, A. EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance. Nat. Commun., 2016, 7, 12329.
[http://dx.doi.org/10.1038/ncomms12329] [PMID: 27470974]
[84]
Jiang, T.; Dong, P.; Li, L.; Ma, X.; Xu, P.; Zhu, H.; Wang, Y.; Yang, B.; Liu, K.; Liu, J.; Xue, J.; Lv, R.; Su, P.; Kong, G.; Chang, Y.; Zhao, C.; Wang, L. MicroRNA-200c regulates cisplatin resistance by targeting ZEB2 in human gastric cancer cells. Oncol. Rep., 2017, 38(1), 151-158.
[http://dx.doi.org/10.3892/or.2017.5659] [PMID: 28534959]
[85]
Yang, J.; Cui, R.; Liu, Y. MicroRNA-212-3p inhibits paclitaxel resistance through regulating epithelial-mesenchymal transition, migration and invasion by targeting ZEB2 in human hepatocellular carcinoma. Oncol. Lett., 2020, 20(4), 23.
[PMID: 32774496]
[86]
Zhou, X.; Men, X.; Zhao, R.; Han, J.; Fan, Z.; Wang, Y.; Lv, Y.; Zuo, J.; Zhao, L.; Sang, M.; Liu, X.D.; Shan, B. miR-200c inhibits TGF-β-induced-EMT to restore trastuzumab sensitivity by targeting ZEB1 and ZEB2 in gastric cancer. Cancer Gene Ther., 2018, 25(3-4), 68-76.
[http://dx.doi.org/10.1038/s41417-017-0005-y] [PMID: 29302045]
[87]
Wang, J.; Li, X.; Xiao, Z.; Wang, Y.; Han, Y.; Li, J.; Zhu, W.; Leng, Q.; Wen, Y.; Wen, X. MicroRNA-488 inhibits proliferation and glycolysis in human prostate cancer cells by regulating PFKFB3. FEBS Open Bio, 2019, 9(10), 1798-1807.
[http://dx.doi.org/10.1002/2211-5463.12718] [PMID: 31410981]
[88]
You, Z.; Liu, C.; Wang, C.; Ling, Z.; Wang, Y.; Wang, Y.; Zhang, M.; Chen, S.; Xu, B.; Guan, H.; Chen, M. LncRNA CCAT1 promotes prostate cancer cell proliferation by interacting with DDX5 and MIR-28-5P. Mol. Cancer Ther., 2019, 18(12), 2469-2479.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0095] [PMID: 31387890]
[89]
Li, T.; Sun, X.; Chen, L. Exosome circ_0044516 promotes prostate cancer cell proliferation and metastasis as a potential biomarker. J. Cell. Biochem., 2020, 121(3), 2118-2126.
[http://dx.doi.org/10.1002/jcb.28239] [PMID: 31625175]
[90]
Sun, D.Y.; Wu, J.Q.; He, Z.H.; He, M.F.; Sun, H.B. Cancer-associated fibroblast regulate proliferation and migration of prostate cancer cells through TGF-β signaling pathway. Life Sci., 2019, 235, 116791.
[http://dx.doi.org/10.1016/j.lfs.2019.116791] [PMID: 31465732]
[91]
Lee, S.Y.; Jeong, E.K.; Ju, M.K.; Jeon, H.M.; Kim, M.Y.; Kim, C.H.; Park, H.G.; Han, S.I.; Kang, H.S. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer, 2017, 16(1), 10.
[http://dx.doi.org/10.1186/s12943-016-0577-4] [PMID: 28137309]
[92]
Li, L.; Zhao, L-M.; Dai, S.L.; Cui, W-X.; Lv, H-L.; Chen, L.; Shan, B-E. Periplocin extracted from cortex periplocae induced apoptosis of gastric cancer cells via the ERK1/2-EGR1 pathway. Cell. Physiol. Biochem., 2016, 38(5), 1939-1951.
[http://dx.doi.org/10.1159/000445555] [PMID: 27160973]
[93]
Dai, T.; Hu, Y.; Zheng, H. Hypoxia increases expression of CXC chemokine receptor 4 via activation of PI3K/Akt leading to enhanced migration of endothelial progenitor cells. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(8), 1820-1827.
[PMID: 28485797]
[94]
Cheng, Z.; Li, X.; Hou, S.; Wu, Y.; Sun, Y.; Liu, B. K-Ras-ERK1/2 accelerates lung cancer cell development via mediating H3K18ac through the MDM2-GCN5-SIRT7 axis. Pharm. Biol., 2019, 57(1), 701-709.
[http://dx.doi.org/10.1080/13880209.2019.1672756] [PMID: 31613681]
[95]
Zhang, J.; Liu, M.; Liu, W.; Wang, W. Ras-ERK1/2 signalling promotes the development of osteosarcoma through regulation of H4K12ac through HAT1. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1207-1215.
[http://dx.doi.org/10.1080/21691401.2019.1593857] [PMID: 30942624]
[96]
Song, X.F.; Chang, H.; Liang, Q.; Guo, Z.F.; Wu, J.W. ZEB1 promotes prostate cancer proliferation and invasion through ERK1/2 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(18), 4032-4038.
[PMID: 29028100]
[97]
Wang, X.; Chen, Q.; Wang, X.; Li, W.; Yu, G.; Zhu, Z.; Zhang, W. ZEB1 activated-VPS9D1-AS1 promotes the tumorigenesis and progression of prostate cancer by sponging miR-4739 to upregulate MEF2D. Biomed. Pharmacother., 2020, 122, 109557.
[http://dx.doi.org/10.1016/j.biopha.2019.109557] [PMID: 31918265]
[98]
Student, S.; Hejmo, T.; Poterała-Hejmo, A.; Leśniak, A.; Bułdak, R. Anti-androgen hormonal therapy for cancer and other diseases. Eur. J. Pharmacol., 2020, 866, 172783.
[http://dx.doi.org/10.1016/j.ejphar.2019.172783] [PMID: 31712062]
[99]
Brawer, M.K. Hormonal therapy for prostate cancer. Rev. Urol., 2006, 8(Suppl. 2), S35-S47.
[PMID: 17021641]
[100]
Li, P.; Wang, J.; Chu, M.; Zhang, K.; Yang, R.; Gao, W.Q. Zeb1 promotes androgen independence of prostate cancer via induction of stem cell-like properties. Exp. Biol. Med. (Maywood), 2014, 239(7), 813-822.
[http://dx.doi.org/10.1177/1535370214538727] [PMID: 24912507]
[101]
Herrera, D.; Orellana-Serradell, O.; Villar, P.; Torres, M.J.; Paciucci, R.; Castellón, E.A.; Contreras, H.R. Silencing of the transcriptional factor ZEB1 alters the steroidogenic pathway, and increases the concentration of testosterone and DHT in DU145 cells. Oncol. Rep., 2019, 41(2), 1275-1283.
[PMID: 30483800]
[102]
Anose, B.M.; Sanders, M.M. Androgen receptor regulates transcription of the ZEB1 transcription factor. Int. J. Endocrinol., 2011, 2011, 903918.
[http://dx.doi.org/10.1155/2011/903918] [PMID: 22190929]
[103]
Mooney, S.M.; Parsana, P.; Hernandez, J.R.; Liu, X.; Verdone, J.E.; Torga, G.; Harberg, C.A.; Pienta, K.J. The presence of androgen receptor elements regulates ZEB1 expression in the absence of androgen receptor. J. Cell. Biochem., 2015, 116(1), 115-123.
[http://dx.doi.org/10.1002/jcb.24948] [PMID: 25160502]
[104]
Yang, Q.; Lang, C.; Wu, Z.; Dai, Y.; He, S.; Guo, W.; Huang, S.; Du, H.; Ren, D.; Peng, X. MAZ promotes prostate cancer bone metastasis through transcriptionally activating the KRas-dependent RalGEFs pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 391.
[http://dx.doi.org/10.1186/s13046-019-1374-x] [PMID: 31488180]
[105]
Zhang, X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond), 2019, 39(1), 76.
[http://dx.doi.org/10.1186/s40880-019-0425-1] [PMID: 31753020]
[106]
Wang, Y.H.; Huang, J.T.; Chen, W.L.; Wang, R.H.; Kao, M.C.; Pan, Y.R.; Chan, S.H.; Tsai, K.W.; Kung, H.J.; Lin, K.T.; Wang, L.H. Dysregulation of cystathionine γ-lyase promotes prostate cancer progression and metastasis. EMBO Rep., 2019, 20(10), e45986.
[http://dx.doi.org/10.15252/embr.201845986] [PMID: 31468690]
[107]
Bidarra, D.; Constâncio, V.; Barros-Silva, D.; Ramalho-Carvalho, J.; Moreira-Barbosa, C.; Antunes, L.; Maurício, J.; Oliveira, J.; Henrique, R.; Jerónimo, C. Circulating micrornas as biomarkers for prostate cancer detection and metastasis development prediction. Front. Oncol., 2019, 9, 900.
[http://dx.doi.org/10.3389/fonc.2019.00900] [PMID: 31572685]
[108]
Beauvais, D.M.; Rapraeger, A.C. Syndecans in tumor cell adhesion and signaling. Reprod. Biol. Endocrinol., 2004, 2, 3.
[http://dx.doi.org/10.1186/1477-7827-2-3] [PMID: 14711376]
[109]
Tumova, S.; Woods, A.; Couchman, J.R. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int. J. Biochem. Cell Biol., 2000, 32(3), 269-288.
[http://dx.doi.org/10.1016/S1357-2725(99)00116-8] [PMID: 10716625]
[110]
Couchman, J.R.; Chen, L.; Woods, A. Syndecans and cell adhesion. Int. Rev. Cytol., 2001, 207, 113-150.
[http://dx.doi.org/10.1016/S0074-7696(01)07004-8] [PMID: 11352265]
[111]
Farfán, N.; Ocarez, N.; Castellón, E.A.; Mejía, N.; de Herreros, A.G.; Contreras, H.R. The transcriptional factor ZEB1 represses Syndecan 1 expression in prostate cancer. Sci. Rep., 2018, 8(1), 11467.
[http://dx.doi.org/10.1038/s41598-018-29829-1] [PMID: 30065348]
[112]
Orellana-Serradell, O.; Herrera, D.; Castellon, E.A.; Contreras, H.R. The transcription factor ZEB1 promotes an aggressive phenotype in prostate cancer cell lines. Asian J. Androl., 2018, 20(3), 294-299.
[http://dx.doi.org/10.4103/aja.aja_61_17] [PMID: 29271397]
[113]
Collak, F.K.; Demir, U.; Sagir, F. YAP1 is involved in tumorigenic properties of prostate cancer cells. Pathol. Oncol. Res., 2020, 26(2), 867-876.
[http://dx.doi.org/10.1007/s12253-019-00634-z] [PMID: 30859486]
[114]
Collak, F.K.; Demir, U.; Ozkanli, S.; Kurum, E.; Zerk, P.E. Increased expression of YAP1 in prostate cancer correlates with extraprostatic extension. Cancer Biol. Med., 2017, 14(4), 405-413.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0083] [PMID: 29372107]
[115]
Shen, T.; Li, Y.; Zhu, S.; Yu, J.; Zhang, B.; Chen, X.; Zhang, Z.; Ma, Y.; Niu, Y.; Shang, Z. YAP1 plays a key role of the conversion of normal fibroblasts into cancer-associated fibroblasts that contribute to prostate cancer progression. J. Exp. Clin. Cancer Res., 2020, 39(1), 36.
[http://dx.doi.org/10.1186/s13046-020-1542-z] [PMID: 32066485]
[116]
Jiang, N.; Ke, B.; Hjort-Jensen, K.; Iglesias-Gato, D.; Wang, Z.; Chang, P.; Zhao, Y.; Niu, X.; Wu, T.; Peng, B.; Jiang, M.; Li, X.; Shang, Z.; Wang, Q.; Chang, C.; Flores-Morales, A.; Niu, Y. YAP1 regulates prostate cancer stem cell-like characteristics to promote castration resistant growth. Oncotarget, 2017, 8(70), 115054-115067.
[http://dx.doi.org/10.18632/oncotarget.23014] [PMID: 29383141]
[117]
Selth, L.A.; Das, R.; Townley, S.L.; Coutinho, I.; Hanson, A.R.; Centenera, M.M.; Stylianou, N.; Sweeney, K.; Soekmadji, C.; Jovanovic, L.; Nelson, C.C.; Zoubeidi, A.; Butler, L.M.; Goodall, G.J.; Hollier, B.G.; Gregory, P.A.; Tilley, W.D.A. A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene, 2017, 36(1), 24-34.
[http://dx.doi.org/10.1038/onc.2016.185] [PMID: 27270433]
[118]
Moiola, C.P.; De Luca, P.; Zalazar, F.; Cotignola, J.; Rodríguez-Seguí, S.A.; Gardner, K.; Meiss, R.; Vallecorsa, P.; Pignataro, O.; Mazza, O.; Vazquez, E.S.; De Siervi, A. Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice. Clin. Cancer Res., 2014, 20(15), 4086-4095.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0322] [PMID: 24842953]
[119]
De Luca, P.; Dalton, G.N.; Scalise, G.D.; Moiola, C.P.; Porretti, J.; Massillo, C.; Kordon, E.; Gardner, K.; Zalazar, F.; Flumian, C.; Todaro, L.; Vazquez, E.S.; Meiss, R.; De Siervi, A. CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs. Oncotarget, 2016, 7(14), 18798-18811.
[http://dx.doi.org/10.18632/oncotarget.7711] [PMID: 26933806]
[120]
Elble, R.C.; Walia, V.; Cheng, H.C.; Connon, C.J.; Mundhenk, L.; Gruber, A.D.; Pauli, B.U. The putative chloride channel hCLCA2 has a single C-terminal transmembrane segment. J. Biol. Chem., 2006, 281(40), 29448-29454.
[http://dx.doi.org/10.1074/jbc.M605919200] [PMID: 16873362]
[121]
Gruber, A.D.; Pauli, B.U. Tumorigenicity of human breast cancer is associated with loss of the Ca2+-activated chloride channel CLCA2. Cancer Res., 1999, 59(21), 5488-5491.
[PMID: 10554024]
[122]
Li, X.; Cowell, J.K.; Sossey-Alaoui, K. CLCA2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene, 2004, 23(7), 1474-1480.
[http://dx.doi.org/10.1038/sj.onc.1207249] [PMID: 14973555]
[123]
Bustin, S.A.; Li, S.R.; Dorudi, S. Expression of the Ca2+-activated chloride channel genes CLCA1 and CLCA2 is downregulated in human colorectal cancer. DNA Cell Biol., 2001, 20(6), 331-338.
[http://dx.doi.org/10.1089/10445490152122442] [PMID: 11445004]
[124]
Tanikawa, C.; Nakagawa, H.; Furukawa, Y.; Nakamura, Y.; Matsuda, K. CLCA2 as a p53-inducible senescence mediator. Neoplasia, 2012, 14(2), 141-149.
[http://dx.doi.org/10.1593/neo.111700] [PMID: 22431922]
[125]
Porretti, J.; Dalton, G.N.; Massillo, C.; Scalise, G.D.; Farré, P.L.; Elble, R.; Gerez, E.N.; Accialini, P.; Cabanillas, A.M.; Gardner, K.; De Luca, P.; De Siervi, A. CLCA2 epigenetic regulation by CTBP1, HDACs, ZEB1, EP300 and miR-196b-5p impacts prostate cancer cell adhesion and EMT in metabolic syndrome disease. Int. J. Cancer, 2018, 143(4), 897-906.
[http://dx.doi.org/10.1002/ijc.31379] [PMID: 29536528]
[126]
Yeh, H.W.; Hsu, E.C.; Lee, S.S.; Lang, Y.D.; Lin, Y.C.; Chang, C.Y.; Lee, S.Y.; Gu, D.L.; Shih, J.H.; Ho, C.M.; Chen, C.F.; Chen, C.T.; Tu, P.H.; Cheng, C.F.; Chen, R.H.; Yang, R.B.; Jou, Y.S. PSPC1 mediates TGF-β1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis. Nat. Cell Biol., 2018, 20(4), 479-491.
[http://dx.doi.org/10.1038/s41556-018-0062-y] [PMID: 29593326]
[127]
Kang, J.H.; Jung, M.Y.; Leof, E.B. B7-1 drives TGF-β stimulated pancreatic carcinoma cell migration and expression of EMT target genes. PLoS One, 2019, 14(9), e0222083.
[http://dx.doi.org/10.1371/journal.pone.0222083] [PMID: 31483844]
[128]
Dai, Y.; Wu, Z.; Lang, C.; Zhang, X.; He, S.; Yang, Q.; Guo, W.; Lai, Y.; Du, H.; Peng, X.; Ren, D. Copy number gain of ZEB1 mediates a double-negative feedback loop with miR-33a-5p that regulates EMT and bone metastasis of prostate cancer dependent on TGF-β signaling. Theranostics, 2019, 9(21), 6063-6079.
[http://dx.doi.org/10.7150/thno.36735] [PMID: 31534537]
[129]
Couture, J.F.; Collazo, E.; Brunzelle, J.S.; Trievel, R.C. Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Genes Dev., 2005, 19(12), 1455-1465.
[http://dx.doi.org/10.1101/gad.1318405] [PMID: 15933070]
[130]
Fang, J.; Feng, Q.; Ketel, C.S.; Wang, H.; Cao, R.; Xia, L.; Erdjument-Bromage, H.; Tempst, P.; Simon, J.A.; Zhang, Y. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr. Biol., 2002, 12(13), 1086-1099.
[http://dx.doi.org/10.1016/S0960-9822(02)00924-7] [PMID: 12121615]
[131]
Yang, F.; Sun, L.; Li, Q.; Han, X.; Lei, L.; Zhang, H.; Shang, Y. SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J., 2012, 31(1), 110-123.
[http://dx.doi.org/10.1038/emboj.2011.364] [PMID: 21983900]
[132]
Serrano-Gomez, S.J.; Maziveyi, M.; Alahari, S.K. Regulation of epithelial-mesenchymal transition through epigenetic and post- translational modifications. Mol. Cancer, 2016, 15, 18.
[http://dx.doi.org/10.1186/s12943-016-0502-x] [PMID: 26905733]
[133]
Hou, L.; Li, Q.; Yu, Y.; Li, M.; Zhang, D. SET8 induces epithelial‑mesenchymal transition and enhances prostate cancer cell metastasis by cooperating with ZEB1. Mol. Med. Rep., 2016, 13(2), 1681-1688.
[http://dx.doi.org/10.3892/mmr.2015.4733] [PMID: 26717907]
[134]
Yoshimoto, S.; Tanaka, F.; Morita, H.; Hiraki, A.; Hashimoto, S. Hypoxia-induced HIF-1α and ZEB1 are critical for the malignant transformation of ameloblastoma via TGF-β-dependent EMT. Cancer Med., 2019, 8(18), 7822-7832.
[http://dx.doi.org/10.1002/cam4.2667] [PMID: 31674718]
[135]
Zhang, D.; Yang, L.; Liu, X.; Gao, J.; Liu, T.; Yan, Q.; Yang, X. Hypoxia modulates stem cell properties and induces EMT through N-glycosylation of EpCAM in breast cancer cells. J. Cell. Physiol., 2020, 235(4), 3626-3633.
[http://dx.doi.org/10.1002/jcp.29252] [PMID: 31584203]
[136]
Zhang, J.; Jin, H.Y.; Wu, Y.; Zheng, Z.C.; Guo, S.; Wang, Y.; Yang, D.; Meng, X.Y.; Xu, X.; Zhao, Y. Hypoxia-induced LncRNA PCGEM1 promotes invasion and metastasis of gastric cancer through regulating SNAI1. Clin. Transl. Oncol., 2019, 21(9), 1142-1151.
[http://dx.doi.org/10.1007/s12094-019-02035-9] [PMID: 30690667]
[137]
Bery, F.; Figiel, S.; Kouba, S.; Fontaine, D.; Guéguinou, M.; Potier-Cartereau, M.; Vandier, C.; Guibon, R.; Bruyère, F.; Fromont, G.; Mahéo, K. Hypoxia promotes prostate cancer aggressiveness by upregulating emt-activator zeb1 and sk3 channel expression. Int. J. Mol. Sci., 2020, 21(13), 21.
[http://dx.doi.org/10.3390/ijms21134786] [PMID: 32640738]
[138]
Putzke, A.P.; Ventura, A.P.; Bailey, A.M.; Akture, C.; Opoku-Ansah, J.; Celiktaş, M.; Hwang, M.S.; Darling, D.S.; Coleman, I.M.; Nelson, P.S.; Nguyen, H.M.; Corey, E.; Tewari, M.; Morrissey, C.; Vessella, R.L.; Knudsen, B.S. Metastatic progression of prostate cancer and e-cadherin regulation by zeb1 and SRC family kinases. Am. J. Pathol., 2011, 179(1), 400-410.
[http://dx.doi.org/10.1016/j.ajpath.2011.03.028] [PMID: 21703419]
[139]
Drake, J.M.; Strohbehn, G.; Bair, T.B.; Moreland, J.G.; Henry, M.D. ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol. Biol. Cell, 2009, 20(8), 2207-2217.
[http://dx.doi.org/10.1091/mbc.e08-10-1076] [PMID: 19225155]
[140]
Wang, H.; Huang, B.; Li, B.M.; Cao, K.Y.; Mo, C.Q.; Jiang, S.J.; Pan, J.C.; Wang, Z.R.; Lin, H.Y.; Wang, D.H.; Qiu, S.P. ZEB1- mediated vasculogenic mimicry formation associates with epithelial-mesenchymal transition and cancer stem cell phenotypes in prostate cancer. J. Cell. Mol. Med., 2018, 22, 3768-3781.
[http://dx.doi.org/10.1111/jcmm.13637] [PMID: 29754422]
[141]
Inamori, K.; Yoshida-Moriguchi, T.; Hara, Y.; Anderson, M.E.; Yu, L.; Campbell, K.P. Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science, 2012, 335(6064), 93-96.
[http://dx.doi.org/10.1126/science.1214115] [PMID: 22223806]
[142]
de Bernabé, D.B.; Inamori, K.; Yoshida-Moriguchi, T.; Weydert, C.J.; Harper, H.A.; Willer, T.; Henry, M.D.; Campbell, K.P. Loss of alpha-dystroglycan laminin binding in epithelium-derived cancers is caused by silencing of LARGE. J. Biol. Chem., 2009, 284(17), 11279-11284.
[http://dx.doi.org/10.1074/jbc.C900007200] [PMID: 19244252]
[143]
Bao, X.; Kobayashi, M.; Hatakeyama, S.; Angata, K.; Gullberg, D.; Nakayama, J.; Fukuda, M.N.; Fukuda, M. Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase. Proc. Natl. Acad. Sci. USA, 2009, 106(29), 12109-12114.
[http://dx.doi.org/10.1073/pnas.0904515106] [PMID: 19587235]
[144]
Esser, A.K.; Miller, M.R.; Huang, Q.; Meier, M.M.; Beltran- Valero de Bernabé, D.; Stipp, C.S.; Campbell, K.P.; Lynch, C.F.; Smith, B.J.; Cohen, M.B.; Henry, M.D. Loss of LARGE2 disrupts functional glycosylation of α-dystroglycan in prostate cancer. J. Biol. Chem., 2013, 288(4), 2132-2142.
[http://dx.doi.org/10.1074/jbc.M112.432807] [PMID: 23223448]
[145]
Huang, Q.; Miller, M.R.; Schappet, J.; Henry, M.D. The glycosyltransferase LARGE2 is repressed by Snail and ZEB1 in prostate cancer. Cancer Biol. Ther., 2015, 16(1), 125-136.
[http://dx.doi.org/10.4161/15384047.2014.987078] [PMID: 25455932]
[146]
Yu, H.; Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl. Cancer Inst., 2000, 92(18), 1472-1489.
[http://dx.doi.org/10.1093/jnci/92.18.1472] [PMID: 10995803]
[147]
Wang, S.; Wang, N.; Yu, B.; Cao, M.; Wang, Y.; Guo, Y.; Zhang, Y.; Zhang, P.; Yu, X.; Wang, S.; Zeng, L.; Liang, B.; Li, X.; Wu, Y. Circulating IGF-1 promotes prostate adenocarcinoma via FOXO3A/BIM signaling in a double-transgenic mouse model. Oncogene, 2019, 38(36), 6338-6353.
[http://dx.doi.org/10.1038/s41388-019-0880-9] [PMID: 31312023]
[148]
Mansor, R.; Holly, J.; Barker, R.; Biernacka, K.; Zielinska, H.; Koupparis, A.; Rowe, E.; Oxley, J.; Sewell, A.; Martin, R.M.; Lane, A.; Hackshaw-McGeagh, L.; Perks, C. IGF-1 and hyperglycaemia-induced FOXA1 and IGFBP-2 affect epithelial to mesenchymal transition in prostate epithelial cells. Oncotarget, 2020, 11(26), 2543-2559.
[http://dx.doi.org/10.18632/oncotarget.27650] [PMID: 32655839]
[149]
Graham, T.R.; Zhau, H.E.; Odero-Marah, V.A.; Osunkoya, A.O.; Kimbro, K.S.; Tighiouart, M.; Liu, T.; Simons, J.W.; O’Regan, R.M. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res., 2008, 68(7), 2479-2488.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2559] [PMID: 18381457]
[150]
Hsieh, T.C.; Wu, J.M. Resveratrol suppresses prostate cancer epithelial cell scatter/invasion by targeting inhibition of hepatocyte growth factor (HGF) secretion by prostate stromal cells and upregulation of e-cadherin by prostate cancer epithelial cells. Int. J. Mol. Sci., 2020, 21(5), 21.
[http://dx.doi.org/10.3390/ijms21051760] [PMID: 32143478]
[151]
Han, Y.; Luo, Y.; Wang, Y.; Chen, Y.; Li, M.; Jiang, Y. Hepatocyte growth factor increases the invasive potential of PC-3 human prostate cancer cells via an ERK/MAPK and Zeb-1 signaling pathway. Oncol. Lett., 2016, 11(1), 753-759.
[http://dx.doi.org/10.3892/ol.2015.3943] [PMID: 26870279]
[152]
Drake, J.M.; Barnes, J.M.; Madsen, J.M.; Domann, F.E.; Stipp, C.S.; Henry, M.D. ZEB1 coordinately regulates laminin-332 and beta4 integrin expression altering the invasive phenotype of prostate cancer cells. J. Biol. Chem., 2010, 285(44), 33940-33948.
[http://dx.doi.org/10.1074/jbc.M110.136044] [PMID: 20729552]
[153]
Shen, Z.; Zhou, L.; Zhang, C.; Xu, J. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett., 2020, 468, 88-101.
[http://dx.doi.org/10.1016/j.canlet.2019.10.006] [PMID: 31593800]
[154]
Chen, L.; Cai, J.; Huang, Y.; Tan, X.; Guo, Q.; Lin, X.; Zhu, C.; Zeng, X.; Liu, H.; Wu, X. Identification of cofilin-1 as a novel mediator for the metastatic potentials and chemoresistance of the prostate cancer cells. Eur. J. Pharmacol., 2020, 880, 173100.
[http://dx.doi.org/10.1016/j.ejphar.2020.173100] [PMID: 32320704]
[155]
Liu, X.; Vaidya, A.M.; Sun, D.; Zhang, Y.; Ayat, N.; Schilb, A.; Lu, Z.R. Role of eIF4E on epithelial-mesenchymal transition, invasion, and chemoresistance of prostate cancer cells. Cancer Commun (Lond), 2020, 40(2-3), 126-131.
[http://dx.doi.org/10.1002/cac2.12011] [PMID: 32189455]
[156]
Luo, S.; Shao, L.; Chen, Z.; Hu, D.; Jiang, L.; Tang, W. NPRL2 promotes docetaxel chemoresistance in castration resistant prostate cancer cells by regulating autophagy through the mTOR pathway. Exp. Cell Res., 2020, 390(2), 111981.
[http://dx.doi.org/10.1016/j.yexcr.2020.111981] [PMID: 32234375]
[157]
Kawai, K.; Sakurai, M.; Sakai, T.; Misaki, M.; Kusano, I.; Shiraishi, T.; Yatani, R. Demonstration of MDR1 P-glycoprotein isoform expression in benign and malignant human prostate cells by isoform-specific monoclonal antibodies. Cancer Lett., 2000, 150(2), 147-153.
[http://dx.doi.org/10.1016/S0304-3835(99)00384-5] [PMID: 10704736]
[158]
David-Beabes, G.L.; Overman, M.J.; Petrofski, J.A.; Campbell, P.A.; de Marzo, A.M.; Nelson, W.G. Doxorubicin-resistant variants of human prostate cancer cell lines DU 145, PC-3, PPC-1, and TSU-PR1: characterization of biochemical determinants of antineoplastic drug sensitivity. Int. J. Oncol., 2000, 17(6), 1077-1086.
[http://dx.doi.org/10.3892/ijo.17.6.1077] [PMID: 11078791]
[159]
Orellana-Serradell, O.; Herrera, D.; Castellón, E.A.; Contreras, H.R. The transcription factor ZEB1 promotes chemoresistance in prostate cancer cell lines. Asian J. Androl., 2019, 21(5), 460-467.
[http://dx.doi.org/10.4103/aja.aja_1_19] [PMID: 30880686]
[160]
Lee, J.H.; Chinnathambi, A.; Alharbi, S.A.; Shair, O.H.M.; Sethi, G.; Ahn, K.S. Farnesol abrogates epithelial to mesenchymal transition process through regulating Akt/mTOR pathway. Pharmacol. Res., 2019, 150, 104504.
[http://dx.doi.org/10.1016/j.phrs.2019.104504] [PMID: 31678208]
[161]
Lee, J.H.; Mohan, C.D.; Deivasigamani, A.; Jung, Y.Y.; Rangappa, S.; Basappa, S.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Garg, M.; Lin, Z-X.; Rangappa, K.S.; Sethi, G.; Hui, K.M.; Ahn, K.S. Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma. J. Adv. Res., 2020, 26, 83-94.
[http://dx.doi.org/10.1016/j.jare.2020.07.004] [PMID: 33133685]
[162]
Liu, L.; Zhu, H.; Liao, Y.; Wu, W.; Liu, L.; Liu, L.; Wu, Y.; Sun, F.; Lin, H.W. Inhibition of Wnt/β-catenin pathway reverses multi- drug resistance and EMT in Oct4+/Nanog+ NSCLC cells. Biomed. Pharmacother., 2020, 127, 110225.
[http://dx.doi.org/10.1016/j.biopha.2020.110225] [PMID: 32428834]
[163]
Hanrahan, K.; O’Neill, A.; Prencipe, M.; Bugler, J.; Murphy, L.; Fabre, A.; Puhr, M.; Culig, Z.; Murphy, K.; Watson, R.W. The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer. Mol. Oncol., 2017, 11(3), 251-265.
[http://dx.doi.org/10.1002/1878-0261.12030] [PMID: 28133913]
[164]
Jacob, S.; Nayak, S.; Fernandes, G.; Barai, R.S.; Menon, S.; Chaudhari, U.K.; Kholkute, S.D.; Sachdeva, G. Androgen receptor as a regulator of ZEB2 expression and its implications in epithelial-to-mesenchymal transition in prostate cancer. Endocr. Relat. Cancer, 2014, 21(3), 473-486.
[http://dx.doi.org/10.1530/ERC-13-0514] [PMID: 24812058]
[165]
Kumar-Sinha, C.; Tomlins, S.A.; Chinnaiyan, A.M. Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer, 2008, 8(7), 497-511.
[http://dx.doi.org/10.1038/nrc2402] [PMID: 18563191]
[166]
Tomlins, S.A.; Laxman, B.; Varambally, S.; Cao, X.; Yu, J.; Helgeson, B.E.; Cao, Q.; Prensner, J.R.; Rubin, M.A.; Shah, R.B.; Mehra, R.; Chinnaiyan, A.M. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia, 2008, 10(2), 177-188.
[http://dx.doi.org/10.1593/neo.07822] [PMID: 18283340]
[167]
Carver, B.S.; Tran, J.; Chen, Z.; Carracedo-Perez, A.; Alimonti, A.; Nardella, C.; Gopalan, A.; Scardino, P.T.; Cordon-Cardo, C.; Gerald, W.; Pandolfi, P.P. ETS rearrangements and prostate cancer initiation. Nature, 2009, 457(7231), E1.
[http://dx.doi.org/10.1038/nature07738] [PMID: 19212347]
[168]
Saramäki, O.R.; Harjula, A.E.; Martikainen, P.M.; Vessella, R.L.; Tammela, T.L.; Visakorpi, T. TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin. Cancer Res., 2008, 14(11), 3395-3400.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-2051] [PMID: 18519769]
[169]
Wang, J.; Cai, Y.; Yu, W.; Ren, C.; Spencer, D.M.; Ittmann, M. Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res., 2008, 68(20), 8516-8524.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1147] [PMID: 18922926]
[170]
Demichelis, F.; Fall, K.; Perner, S.; Andrén, O.; Schmidt, F.; Setlur, S.R.; Hoshida, Y.; Mosquera, J.M.; Pawitan, Y.; Lee, C.; Adami, H.O.; Mucci, L.A.; Kantoff, P.W.; Andersson, S.O.; Chinnaiyan, A.M.; Johansson, J.E.; Rubin, M.A. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene, 2007, 26(31), 4596-4599.
[http://dx.doi.org/10.1038/sj.onc.1210237] [PMID: 17237811]
[171]
Attard, G.; Clark, J.; Ambroisine, L.; Fisher, G.; Kovacs, G.; Flohr, P.; Berney, D.; Foster, C.S.; Fletcher, A.; Gerald, W.L.; Moller, H.; Reuter, V.; De Bono, J.S.; Scardino, P.; Cuzick, J.; Cooper, C.S. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene, 2008, 27(3), 253-263.
[http://dx.doi.org/10.1038/sj.onc.1210640] [PMID: 17637754]
[172]
Leshem, O.; Madar, S.; Kogan-Sakin, I.; Kamer, I.; Goldstein, I.; Brosh, R.; Cohen, Y.; Jacob-Hirsch, J.; Ehrlich, M.; Ben-Sasson, S.; Goldfinger, N.; Loewenthal, R.; Gazit, E.; Rotter, V.; Berger, R. TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One, 2011, 6(7), e21650.
[http://dx.doi.org/10.1371/journal.pone.0021650] [PMID: 21747944]
[173]
Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; Lam, T.B.; Mason, M.D.; Matveev, V.B.; Moldovan, P.C.; van den Bergh, R.C.N.; Van den Broeck, T.; van der Poel, H.G.; van der Kwast, T.H.; Rouvière, O.; Schoots, I.G.; Wiegel, T.; Cornford, P. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol., 2017, 71(4), 618-629.
[http://dx.doi.org/10.1016/j.eururo.2016.08.003] [PMID: 27568654]
[174]
Zhong, Q.; Chen, Y.; Chen, Z. LncRNA MINCR regulates irradiation resistance in nasopharyngeal carcinoma cells via the microRNA-223/ZEB1 axis. Cell Cycle, 2020, 19(1), 53-66.
[http://dx.doi.org/10.1080/15384101.2019.1692176] [PMID: 31760895]
[175]
Zhang, P.; Wei, Y.; Wang, L.; Debeb, B.G.; Yuan, Y.; Zhang, J.; Yuan, J.; Wang, M.; Chen, D.; Sun, Y.; Woodward, W.A.; Liu, Y.; Dean, D.C.; Liang, H.; Hu, Y.; Ang, K.K.; Hung, M.C.; Chen, J.; Ma, L. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat. Cell Biol., 2014, 16(9), 864-875.
[http://dx.doi.org/10.1038/ncb3013] [PMID: 25086746]
[176]
Kowalski-Chauvel, A.; Modesto, A.; Gouaze-Andersson, V.; Baricault, L.; Gilhodes, J.; Delmas, C.; Lemarie, A.; Toulas, C.; Cohen-Jonathan-Moyal, E.; Seva, C. Alpha-6 integrin promotes radioresistance of glioblastoma by modulating DNA damage response and the transcription factor Zeb1. Cell Death Dis., 2018, 9(9), 872.
[http://dx.doi.org/10.1038/s41419-018-0853-x] [PMID: 30158599]
[177]
El Bezawy, R.; Tinelli, S.; Tortoreto, M.; Doldi, V.; Zuco, V.; Folini, M.; Stucchi, C.; Rancati, T.; Valdagni, R.; Gandellini, P.; Zaffaroni, N. miR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKCε and ZEB1 inhibition. J. Exp. Clin. Cancer Res., 2019, 38(1), 51.
[http://dx.doi.org/10.1186/s13046-019-1060-z] [PMID: 30717752]
[178]
El Bezawy, R.; Cominetti, D.; Fenderico, N.; Zuco, V.; Beretta, G.L.; Dugo, M.; Arrighetti, N.; Stucchi, C.; Rancati, T.; Valdagni, R.; Zaffaroni, N.; Gandellini, P. miR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis. Cancer Lett., 2017, 395, 53-62.
[http://dx.doi.org/10.1016/j.canlet.2017.02.033] [PMID: 28274892]
[179]
Chen, D.; Chou, F.J.; Chen, Y.; Tian, H.; Wang, Y.; You, B.; Niu, Y.; Huang, C.P.; Yeh, S.; Xing, N.; Chang, C. Targeting the radiation-induced TR4 nuclear receptor-mediated QKI/circZEB1/miR-141-3p/ZEB1 signaling increases prostate cancer radiosensitivity. Cancer Lett., 2020, 495, 100-111.
[http://dx.doi.org/10.1016/j.canlet.2020.07.040] [PMID: 32768524]
[180]
Jin, M.; Zhang, T.; Liu, C.; Badeaux, M.A.; Liu, B.; Liu, R.; Jeter, C.; Chen, X.; Vlassov, A.V.; Tang, D.G. miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells. Cancer Res., 2014, 74(15), 4183-4195.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0404] [PMID: 24903149]
[181]
Sun, X.; Yang, Z.; Zhang, Y.; He, J.; Wang, F.; Su, P.; Han, J.; Song, Z.; Fei, Y. Prognostic implications of tissue and serum levels of microRNA-128 in human prostate cancer. Int. J. Clin. Exp. Pathol., 2015, 8(7), 8394-8401.
[PMID: 26339409]
[182]
Sun, X.; Li, Y.; Yu, J.; Pei, H.; Luo, P.; Zhang, J. miR-128 modulates chemosensitivity and invasion of prostate cancer cells through targeting ZEB1. Jpn. J. Clin. Oncol., 2015, 45(5), 474-482.
[http://dx.doi.org/10.1093/jjco/hyv027] [PMID: 25921099]
[183]
Cha, Y.J.; Lee, J.H.; Han, H.H.; Kim, B.G.; Kang, S.; Choi, Y.D.; Cho, N.H. MicroRNA alteration and putative target genes in high- grade prostatic intraepithelial neoplasia and prostate cancer: STAT3 and ZEB1 are upregulated during prostate carcinogenesis. Prostate, 2016, 76(10), 937-947.
[http://dx.doi.org/10.1002/pros.23183] [PMID: 27017949]
[184]
Takeno, T.; Hasegawa, T.; Hasegawa, H.; Ueno, Y.; Hamataka, R.; Nakajima, A.; Okubo, J.; Sato, K.; Sakamaki, T. MicroRNA-205-5p inhibits three-dimensional spheroid proliferation of ErbB2-overexpressing breast epithelial cells through direct targeting of CLCN3. PeerJ, 2019, 7, e7799.
[http://dx.doi.org/10.7717/peerj.7799] [PMID: 31608175]
[185]
Ma, C.; Shi, X.; Guo, W.; Feng, F.; Wang, G. miR-205-5p downregulation decreases gemcitabine sensitivity of breast cancer cells via ERp29 upregulation. Exp. Ther. Med., 2019, 18(5), 3525-3533.
[http://dx.doi.org/10.3892/etm.2019.7962] [PMID: 31602229]
[186]
Li, L.; Li, S. miR-205-5p inhibits cell migration and invasion in prostatic carcinoma by targeting ZEB1. Oncol. Lett., 2018, 16(2), 1715-1721.
[http://dx.doi.org/10.3892/ol.2018.8862] [PMID: 30008858]
[187]
Liu, M.; Zhang, Y.; Yang, J.; Cui, X.; Zhou, Z.; Zhan, H.; Ding, K.; Tian, X.; Yang, Z.; Fung, K.A.; Edil, B.H.; Postier, R.G.; Bronze, M.S.; Fernandez-Zapico, M.E.; Stemmler, M.P.; Brabletz, T.; Li, Y.P.; Houchen, C.W.; Li, M. ZIP4 increases expression of transcription factor zeb1 to promote integrin α3β1 signaling and inhibit expression of the gemcitabine transporter ENT1 in pancreatic cancer cells. Gastroenterology, 2020, 158(3), 679-692.e1.
[http://dx.doi.org/10.1053/j.gastro.2019.10.038] [PMID: 31711924]
[188]
Sreekumar, R.; Emaduddin, M.; Al-Saihati, H.; Moutasim, K.; Chan, J.; Spampinato, M.; Bhome, R.; Yuen, H.M.; Mescoli, C.; Vitale, A.; Cillo, U.; Rugge, M.; Primrose, J.; Hilal, M.A.; Thirdborough, S.; Tulchinsky, E.; Thomas, G.; Mirnezami, A.; Sayan, A.E. Protein kinase C inhibitors override ZEB1-induced chemoresistance in HCC. Cell Death Dis., 2019, 10(10), 703.
[http://dx.doi.org/10.1038/s41419-019-1885-6] [PMID: 31543517]
[189]
Zhang, G.; Tian, X.; Li, Y.; Wang, Z.; Li, X.; Zhu, C. miR-27b and miR-34a enhance docetaxel sensitivity of prostate cancer cells through inhibiting epithelial-to-mesenchymal transition by targeting ZEB1. Biomed. Pharmacother., 2018, 97, 736-744.
[http://dx.doi.org/10.1016/j.biopha.2017.10.163] [PMID: 29102917]
[190]
Wu, G.; Wang, J.; Chen, G.; Zhao, X. microRNA-204 modulates chemosensitivity and apoptosis of prostate cancer cells by targeting zinc-finger E-box-binding homeobox 1 (ZEB1). Am. J. Transl. Res., 2017, 9(8), 3599-3610.
[PMID: 28861151]
[191]
Shermane Lim, Y.W.; Xiang, X.; Garg, M.; Le, M.T.N.; Li-Ann Wong, A.; Wang, L.; Goh, B-C. The double-edged sword of H19 lncRNA: Insights into cancer therapy. Cancer Lett., 2021, 500, 253-262.
[http://dx.doi.org/10.1016/j.canlet.2020.11.006] [PMID: 33221454]
[192]
Shen, C.; Yang, C.; Xia, B.; You, M. Long non-coding RNAs: Emerging regulators for chemo/immunotherapy resistance in cancer stem cells. Cancer Lett., 2021, 500, 244-252.
[http://dx.doi.org/10.1016/j.canlet.2020.11.010] [PMID: 33242560]
[193]
Wu, M.; Zhang, X.; Han, X.; Pandey, V.; Lobie, P.E.; Zhu, T. The potential of long noncoding RNAs for precision medicine in human cancer. Cancer Lett., 2021, 501, 12-19.
[http://dx.doi.org/10.1016/j.canlet.2020.11.040] [PMID: 33359450]
[194]
Robless, E.E.; Howard, J.A.; Casari, I.; Falasca, M. Exosomal long non-coding RNAs in the diagnosis and oncogenesis of pancreatic cancer. Cancer Lett., 2021, 501, 55-65.
[http://dx.doi.org/10.1016/j.canlet.2020.12.005] [PMID: 33359452]
[195]
Gala, K.; Khattar, E. Long non-coding RNAs at work on telomeres: Functions and implications in cancer therapy. Cancer Lett., 2021, 502, 120-132.
[http://dx.doi.org/10.1016/j.canlet.2020.12.036] [PMID: 33450357]
[196]
Bhardwaj, V.; Tan, Y.Q.; Wu, M.M.; Ma, L.; Zhu, T.; Lobie, P.E.; Pandey, V. Long non-coding RNAs in recurrent ovarian cancer: Theranostic perspectives. Cancer Lett., 2021, 502, 97-107.
[http://dx.doi.org/10.1016/j.canlet.2020.12.042] [PMID: 33429007]
[197]
Ma, T.; Chen, H.; Wang, P.; Yang, N.; Bao, J. Downregulation of lncRNA ZEB1-AS1 represses cell proliferation, migration, and invasion through mediating PI3K/AKT/mTOR signaling by miR-342-3p/CUL4B axis in prostate cancer. Cancer Biother. Radiopharm., 2020, 35(9), 661-672.
[http://dx.doi.org/10.1089/cbr.2019.3123] [PMID: 32275162]
[198]
Su, W.; Xu, M.; Chen, X.; Chen, N.; Gong, J.; Nie, L.; Li, L.; Li, X.; Zhang, M.; Zhou, Q. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer. Mol. Cancer, 2017, 16(1), 142.
[http://dx.doi.org/10.1186/s12943-017-0711-y] [PMID: 28830551]
[199]
Yuan, Q.; Chu, H.; Ge, Y.; Ma, G.; Du, M.; Wang, M.; Zhang, Z.; Zhang, W. LncRNA PCAT1 and its genetic variant rs1902432 are associated with prostate cancer risk. J. Cancer, 2018, 9(8), 1414-1420.
[http://dx.doi.org/10.7150/jca.23685] [PMID: 29721051]
[200]
Zhang, X.; Zhang, Y.; Mao, Y.; Ma, X. The lncRNA PCAT1 is correlated with poor prognosis and promotes cell proliferation, invasion, migration and EMT in osteosarcoma. OncoTargets Ther., 2018, 11, 629-638.
[http://dx.doi.org/10.2147/OTT.S152063] [PMID: 29430187]
[201]
Zhen, Q.; Gao, L.N.; Wang, R.F.; Chu, W.W.; Zhang, Y.X.; Zhao, X.J.; Lv, B.L.; Liu, J.B. LncRNA PCAT-1 promotes tumour growth and chemoresistance of oesophageal cancer to cisplatin. Cell Biochem. Funct., 2018, 36(1), 27-33.
[http://dx.doi.org/10.1002/cbf.3314] [PMID: 29314203]
[202]
Tian, R.; Zhang, C.; Xiong, F.; Chen, H. PCAT1/miR-129/ ABCB1 axis confers chemoresistance in non-small cell lung cancer. Front. Biosci., 2020, 25, 948-960.
[http://dx.doi.org/10.2741/4842] [PMID: 32114419]
[203]
Guo, Y.; Yue, P.; Wang, Y.; Chen, G.; Li, Y. PCAT-1 contributes to cisplatin resistance in gastric cancer through miR-128/ZEB1 axis. Biomed. Pharmacother., 2019, 118, 109255.
[http://dx.doi.org/10.1016/j.biopha.2019.109255] [PMID: 31352238]
[204]
Feng, X.; Wang, Z.; Fillmore, R.; Xi, Y. MiR-200, a new star miRNA in human cancer. Cancer Lett., 2014, 344(2), 166-173.
[http://dx.doi.org/10.1016/j.canlet.2013.11.004] [PMID: 24262661]
[205]
Wang, H.Y.; Liu, Y.N.; Wu, S.G.; Hsu, C.L.; Chang, T.H.; Tsai, M.F.; Lin, Y.T.; Shih, J.Y. MiR-200c-3p suppression is associated with development of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutant non-small cell lung cancer via a mediating epithelial-to-mesenchymal transition (EMT) process. Cancer Biomark., 2020, 28(3), 351-363.
[http://dx.doi.org/10.3233/CBM-191119] [PMID: 32417760]
[206]
Zhang, J.; Zhang, H.; Qin, Y.; Chen, C.; Yang, J.; Song, N.; Gu, M. MicroRNA-200c-3p/ZEB2 loop plays a crucial role in the tumor progression of prostate carcinoma. Ann. Transl. Med., 2019, 7(7), 141.
[http://dx.doi.org/10.21037/atm.2019.02.40] [PMID: 31157262]
[207]
Ren, D.; Wang, M.; Guo, W.; Huang, S.; Wang, Z.; Zhao, X.; Du, H.; Song, L.; Peng, X. Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells. Cell Tissue Res., 2014, 358(3), 763-778.
[http://dx.doi.org/10.1007/s00441-014-2001-y] [PMID: 25296715]
[208]
Zhang, P.; Wang, L.; Rodriguez-Aguayo, C.; Yuan, Y.; Debeb, B.G.; Chen, D.; Sun, Y.; You, M.J.; Liu, Y.; Dean, D.C.; Woodward, W.A.; Liang, H.; Yang, X.; Lopez-Berestein, G.; Sood, A.K.; Hu, Y.; Ang, K.K.; Chen, J.; Ma, L. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat. Commun., 2014, 5, 5671.
[http://dx.doi.org/10.1038/ncomms6671] [PMID: 25476932]
[209]
Jiang, Y.; Jin, S.; Tan, S.; Shen, Q.; Xue, Y. MiR-203 acts as a radiosensitizer of gastric cancer cells by directly targeting ZEB1. OncoTargets Ther., 2019, 12, 6093-6104.
[http://dx.doi.org/10.2147/OTT.S197539] [PMID: 31440062]
[210]
Tanaudommongkon, I.; Tanaudommongkon, A.; Prathipati, P.; Nguyen, J.T.; Keller, E.T.; Dong, X. Curcumin nanoparticles and their cytotoxicity in docetaxel-resistant castration-resistant prostate cancer cells. Biomedicines, 2020, 8(8), 8.
[http://dx.doi.org/10.3390/biomedicines8080253] [PMID: 32751450]
[211]
Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Siddiqui, I.A.; Panackal, J.E.; Mintie, C.A.; Ahmad, N. Quercetin-resveratrol combination for prostate cancer management in TRAMP mice. Cancer (Basel), 2020, 12(8), 12.
[http://dx.doi.org/10.3390/cancers12082141] [PMID: 32748838]
[212]
Li, X.; Zhang, A.; Sun, H.; Liu, Z.; Zhang, T.; Qiu, S.; Liu, L.; Wang, X. Metabolic characterization and pathway analysis of berberine protects against prostate cancer. Oncotarget, 2017, 8(39), 65022-65041.
[http://dx.doi.org/10.18632/oncotarget.17531] [PMID: 29029409]
[213]
Ashrafizadeh, M.; Taeb, S.; Hushmandi, K.; Orouei, S.; Shahinozzaman, M.; Zabolian, A.; Moghadam, E.R.; Raei, M.; Zarrabi, A.; Khan, H.; Najafi, M. Cancer and SOX proteins: New insight into their role in ovarian cancer progression/inhibition. Pharmacol. Res., 2020, 161, 105159.
[http://dx.doi.org/10.1016/j.phrs.2020.105159] [PMID: 32818654]
[214]
Dehghan Esmatabadi, M.J.; Farhangi, B.; Safari, Z.; Kazerooni, H.; Shirzad, H.; Zolghadr, F.; Sadeghizadeh, M. Dendrosomal curcumin inhibits metastatic potential of human SW480 colon cancer cells through Down-regulation of Claudin1, Zeb1 and Hef1-1 gene expression. Asian Pac. J. Cancer Prev., 2015, 16(6), 2473-2481.
[http://dx.doi.org/10.7314/APJCP.2015.16.6.2473] [PMID: 25824783]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy