Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Systematic Review Article

Poloxamer 188 (P188), A Potential Polymeric Protective Agent for Central Nervous System Disorders: A Systematic Review

Author(s): Win Ning Chen, Mohd Farooq Shaikh*, Saatheeyavaane Bhuvanendran, Abhijit Date, Mohammad Tahir Ansari, Ammu Kutty Radhakrishnan and Iekhsan Othman

Volume 20, Issue 4, 2022

Published on: 10 March, 2022

Page: [799 - 808] Pages: 10

DOI: 10.2174/1570159X19666210528155801

Price: $65

Open Access Journals Promotions 2
Abstract

Poloxamer 188 (P188) is an FDA-approved biocompatible block copolymer composed of repeating units of Poly(Ethylene Oxide) (PEO) and poly(propylene oxide) (PPO). Due to its amphiphilic nature and high Hydrophile-Lipophile Balance (HLB) value of 29, P188 is used as a stabilizer/emulsifier in many cosmetics and pharmaceutical preparations. While the applications of P188 as an excipient are widely explored, the data on the pharmacological activity of P188 are scarce. Notably, the neuroprotective potential of P188 has gained a lot of interest. Therefore, this systematic review is aimed at summarizing evidence of neuroprotective potential of P188 in CNS disorders. The PRISMA model was used, and five databases (Google Scholar, Scopus, Wiley Online Library, ScienceDirect, and PubMed) were searched with relevant keywords. The search resulted in 11 articles, which met the inclusion criteria. These articles described the protective effects of P188 on traumatic brain injury or mechanical injury in cells, neurotoxicity, Parkinson’s disease, Amyotrophic lateral sclerosis (ALS), and ischemia/ reperfusion injury from stroke. All the articles were original research in experimental or pre-clinical stages using animal models or in vitro systems. The reported activities demonstrated the potential of P188 as a neuroprotective agent in improving CNS conditions such as neurodegeneration.

Keywords: Poloxamer 188 (P188), central nervous system (CNS), neuroprotection, neurodegenerative diseases, brain, trauma.

Graphical Abstract
[1]
Pringsheim, T.; Fiest, K.; Jette, N. The international incidence and prevalence of neurologic conditions: how common are they? Neurology, 2014, 83(18), 1661-1664.
[http://dx.doi.org/10.1212/WNL.0000000000000929] [PMID: 25349272]
[2]
Carroll, W.M. The global burden of neurological disorders. Lancet Neurol., 2019, 18(5), 418-419.
[http://dx.doi.org/10.1016/S1474-4422(19)30029-8] [PMID: 30879892]
[3]
Moloughney, J.G.; Weisleder, N. Poloxamer 188 (p188) as a membrane resealing reagent in biomedical applications. Recent Pat. Biotechnol., 2012, 6(3), 200-211.
[http://dx.doi.org/10.2174/1872208311206030200] [PMID: 23092436]
[4]
Bodratti, A.M.; Alexandridis, P. Formulation of poloxamers for drug delivery. J. Funct. Biomater., 2018, 9(1) ,E11.
[http://dx.doi.org/10.3390/jfb9010011] [PMID: 29346330]
[5]
Curry, D.J.; Wright, D.A.; Lee, R.C.; Kang, U.J.; Frim, D.M. Poloxamer 188 volumetrically decreases neuronal loss in the rat in a time-dependent manner. Neurosurgery, 2004, 55(4), 943-948.
[http://dx.doi.org/10.1227/01.NEU.0000137890.29862.2C] [PMID: 15458603]
[6]
Adams-Graves, P.; Kedar, A.; Koshy, M.; Steinberg, M.; Veith, R.; Ward, D.; Crawford, R.; Edwards, S.; Bustrack, J.; Emanuele, M. RheothRx (poloxamer 188) injection for the acute painful episode of sickle cell disease: A pilot study. Blood, 1997, 90(5), 2041-2046.
[http://dx.doi.org/10.1182/blood.V90.5.2041] [PMID: 9292541]
[7]
Murphy, A.D.; McCormack, M.C.; Bichara, D.A.; Nguyen, J.T.; Randolph, M.A.; Watkins, M.T.; Lee, R.C.; Austen, W.G. Jr. Poloxamer 188 protects against ischemia-reperfusion injury in a murine hind-limb model. Plast. Reconstr. Surg., 2010, 125(6), 1651-1660.
[http://dx.doi.org/10.1097/PRS.0b013e3181ccdbef] [PMID: 20517088]
[8]
Lee, R.C.; River, L.P.; Pan, F.S.; Ji, L.; Wollmann, R.L. Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc. Natl. Acad. Sci. USA, 1992, 89(10), 4524-4528.
[http://dx.doi.org/10.1073/pnas.89.10.4524] [PMID: 1584787]
[9]
McKenzie, M.; Betts, D.; Suh, A.; Bui, K.; Kim, L.D.; Cho, H. Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules, 2015, 20(11), 20397-20408.
[http://dx.doi.org/10.3390/molecules201119705] [PMID: 26580588]
[10]
Jung, Y.W.; Lee, H.; Kim, J.Y.; Koo, E.J.; Oh, K.S.; Yuk, S.H. Pluronic-based core/shell nanoparticles for drug delivery and diagnosis. Curr. Med. Chem., 2013, 20(28), 3488-3499.
[http://dx.doi.org/10.2174/09298673113209990036] [PMID: 23745558]
[11]
Shubhra, Q.T.H.; Tóth, J.; Gyenis, J.; Feczkó, T. Surface modification of HSA containing magnetic PLGA nanoparticles by poloxamer to decrease plasma protein adsorption. Colloids Surf. B Biointerfaces, 2014, 122, 529-536.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.025] [PMID: 25092588]
[12]
Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev., 2015, 4, 1.
[http://dx.doi.org/10.1186/2046-4053-4-1] [PMID: 25554246]
[13]
Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev., 2016, 5(1), 210.
[http://dx.doi.org/10.1186/s13643-016-0384-4] [PMID: 27919275]
[14]
Quinn, M.; Mukhida, K.; Sadi, D.; Hong, M.; Mendez, I. Adjunctive use of the non-ionic surfactant Poloxamer 188 improves fetal dopaminergic cell survival and reinnervation in a neural transplantation strategy for Parkinson’s disease. Eur. J. Neurosci., 2008, 27(1), 43-52.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05991.x] [PMID: 18093176]
[15]
Dong, H.; Qin, Y.; Huang, Y.; Ji, D.; Wu, F. Poloxamer 188 rescues MPTP-induced lysosomal membrane integrity impairment in cellular and mouse models of Parkinson’s disease. Neurochem. Int., 2019, 126, 178-186.
[http://dx.doi.org/10.1016/j.neuint.2019.03.013] [PMID: 30904670]
[16]
Bao, H.J.; Wang, T.; Zhang, M.Y.; Liu, R.; Dai, D.K.; Wang, Y.Q.; Wang, L.; Zhang, L.; Gao, Y.Z.; Qin, Z.H.; Chen, X.P.; Tao, L.Y. Poloxamer-188 attenuates TBI-induced blood-brain barrier damage leading to decreased brain edema and reduced cellular death. Neurochem. Res., 2012, 37(12), 2856-2867.
[http://dx.doi.org/10.1007/s11064-012-0880-4] [PMID: 23011204]
[17]
Serbest, G.; Horwitz, J.; Jost, M.; Barbee, K. Mechanisms of cell death and neuroprotection by poloxamer 188 after mechanical trauma. FASEB J., 2006, 20(2), 308-310.
[http://dx.doi.org/10.1096/fj.05-4024fje] [PMID: 16371428]
[18]
Inyang, E.; Abhyankar, V.; Chen, B.; Cho, M. Modulation of in vitro brain endothelium by mechanical trauma: Structural and functional restoration by poloxamer 188. Sci. Rep., 2020, 10(1), 3054.
[http://dx.doi.org/10.1038/s41598-020-59888-2] [PMID: 32080247]
[19]
Zhang, Y.; Chopp, M.; Emanuele, M.; Zhang, L.; Zhang, Z.G.; Lu, M.; Zhang, T.; Mahmood, A.; Xiong, Y. Purified poloxamer 188. J. Neurotrauma, 2018, 35(4), 661-670.
[http://dx.doi.org/10.1089/neu.2017.5284] [PMID: 29121826]
[20]
Mina, E.W.; Lasagna-Reeves, C.; Glabe, C.G.; Kayed, R. Poloxamer 188 copolymer membrane sealant rescues toxicity of amyloid oligomers in vitro. J. Mol. Biol., 2009, 391(3), 577-585.
[http://dx.doi.org/10.1016/j.jmb.2009.06.024] [PMID: 19524592]
[21]
Riehm, J.J.; Wang, L.; Ghadge, G.; Teng, M.; Correa, A.M.; Marks, J.D.; Roos, R.P.; Allen, M.J. Poloxamer 188 decreases membrane toxicity of mutant SOD1 and ameliorates pathology observed in SOD1 mouse model for ALS. Neurobiol. Dis., 2018, 115, 115-126.
[http://dx.doi.org/10.1016/j.nbd.2018.03.014] [PMID: 29627580]
[22]
Marks, J.D.; Pan, C.Y.; Bushell, T.; Cromie, W.; Lee, R.C. Amphiphilic, tri-block copolymers provide potent membrane-targeted neuroprotection. FASEB J., 2001, 15(6), 1107-1109.
[PMID: 11292683]
[23]
Prescher, H.; Ling, M.; Lee, R. Copolymer surfactant poloxamer 188 accelerates post-axonotemetic sciatic nerve regeneration. Regen. Eng. Transl. Med., 2020.
[http://dx.doi.org/10.1007/s40883-020-00174-y]
[24]
Gu, J.H.; Ge, J.B.; Li, M.; Xu, H.D.; Wu, F.; Qin, Z.H. Poloxamer 188 protects neurons against ischemia/reperfusion injury through preserving integrity of cell membranes and blood brain barrier. PLoS One, 2013, 8(4) ,e61641.
[http://dx.doi.org/10.1371/journal.pone.0061641] [PMID: 23613890]
[25]
Hess, C.W.; Hallett, M. The phenomenology of Parkinson’s disease. Semin. Neurol., 2017, 37(2), 109-117.
[http://dx.doi.org/10.1055/s-0037-1601869] [PMID: 28511251]
[26]
Lewitt, P.A. Levodopa for the treatment of Parkinson’s disease. N. Engl. J. Med., 2008, 359(23), 2468-2476.
[http://dx.doi.org/10.1056/NEJMct0800326] [PMID: 19052127]
[27]
Mendez, I.; Sanchez-Pernaute, R.; Cooper, O.; Viñuela, A.; Ferrari, D.; Björklund, L.; Dagher, A.; Isacson, O. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain, 2005, 128(Pt 7), 1498-1510.
[http://dx.doi.org/10.1093/brain/awh510] [PMID: 15872020]
[28]
Lindvall, O. Clinical translation of stem cell transplantation in Parkinson’s disease. J. Intern. Med., 2016, 279(1), 30-40.
[http://dx.doi.org/10.1111/joim.12415] [PMID: 26332959]
[29]
Radulovic, M.; Schink, K.O.; Wenzel, E.M.; Nähse, V.; Bongiovanni, A.; Lafont, F.; Stenmark, H. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival. EMBO J., 2018, 37(21) ,e99753.
[http://dx.doi.org/10.15252/embj.201899753] [PMID: 30314966]
[30]
Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveill. Summ., 2017, 66(9), 1-16.
[http://dx.doi.org/10.15585/mmwr.ss6609a1] [PMID: 28301451]
[31]
Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[32]
Pettus, E.H.; Christman, C.W.; Giebel, M.L.; Povlishock, J.T. Traumatically induced altered membrane permeability: Its relationship to traumatically induced reactive axonal change. J. Neurotrauma, 1994, 11(5), 507-522.
[http://dx.doi.org/10.1089/neu.1994.11.507] [PMID: 7861444]
[33]
Raghupathi, R. Cell death mechanisms following traumatic brain injury. Brain Pathol., 2004, 14(2), 215-222.
[http://dx.doi.org/10.1111/j.1750-3639.2004.tb00056.x] [PMID: 15193035]
[34]
Moreno-Gonzalez, I.; Soto, C. Misfolded protein aggregates: Mechanisms, structures and potential for disease transmission. Semin. Cell Dev. Biol., 2011, 22(5), 482-487.
[http://dx.doi.org/10.1016/j.semcdb.2011.04.002] [PMID: 21571086]
[35]
Emanuele, M.; Balasubramaniam, B. Differential effects of commercial-grade and purified poloxamer 188 on renal function. Drugs R D., 2014, 14(2), 73-83.
[http://dx.doi.org/10.1007/s40268-014-0041-0] [PMID: 24723148]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy