Review Article

细菌素芽孢杆菌属:对抗细菌敌人的天然武器

卷 29, 期 12, 2022

发表于: 29 July, 2021

页: [2093 - 2108] 页: 16

弟呕挨: 10.2174/0929867328666210527093041

价格: $65

摘要

背景:目前,抗生素耐药性致病菌正在成为世界范围内的一个重要健康问题。寻找具有抗生素特性的新化合物是最有希望的替代方案。细菌素是抑制病原体的天然化合物,芽孢杆菌属是这些化合物的主要生产者,显示出对临床重要细菌的抗菌活性。这些肽不仅在制药行业具有潜力,而且在食品和农业领域也有潜力。 目的:概述近期从不同种类芽孢杆菌中分离出的细菌素,包括其应用和较老的细菌素。 结果:在本综述中,我们修订了一些关于细菌素生产改进的工作。 结论:这些应用使细菌素非常有前途的化合物,需要研究用于工业生产。

关键词: 细菌素,抗菌,抗菌肽,抗生素,病理细菌,芽孢杆菌天然化合物。

[1]
Sumi, C.D.; Yang, B.W.; Yeo, I-C.; Hahm, Y.T. Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Can. J. Microbiol., 2015, 61(2), 93-103.
[http://dx.doi.org/10.1139/cjm-2014-0613] [PMID: 25629960]
[2]
Dobson, A.; Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocin production: A probiotic trait? Appl. Environ. Microbiol., 2012, 78(1), 1-6.
[http://dx.doi.org/10.1128/AEM.05576-11] [PMID: 22038602]
[3]
Fischbach, M.A.; Walsh, C.T. Antibiotics for emerging pathogens. Science, 2009, 325(5944), 1089-1093.
[http://dx.doi.org/10.1126/science.1176667] [PMID: 19713519]
[4]
Yusuf, M.A. Lactic Acid Bacteria: Bacteriocin producer: A mini review. IOSR J. Pharm, 2013, 3, 44-50.
[5]
Bemena, L.D.; Mohamed, L.A.; Fernandes, A.M.; Lee, B.H. Applications of bacteriocins in food, livestock health and medicine. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 924-949.
[6]
Klaenhammer, T.R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev., 1993, 12(1-3), 39-85.
[http://dx.doi.org/10.1016/0168-6445(93)90057-G] [PMID: 8398217]
[7]
Riley, M.A.; Wertz, J.E. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol., 2002, 56, 117-137.
[http://dx.doi.org/10.1146/annurev.micro.56.012302.161024] [PMID: 12142491]
[8]
O’Sullivan, L.; Ryan, M.P.; Ross, R.P.; Hill, C. Generation of food-grade lactococcal starters which produce the lantibiotics lacticin 3147 and lacticin 481. Appl. Environ. Microbiol., 2003, 69(6), 3681-3685.
[http://dx.doi.org/10.1128/AEM.69.6.3681-3685.2003] [PMID: 12788782]
[9]
Tagg, J.R. Streptococcal Bacteriocin-Like Inhibitory Substances: Some Personal Insights into the Bacteriocin-Like Activities Produced by Streptococci Good and Bad. Probiotics Antimicrob. Proteins, 2009, 1(1), 60-66.
[http://dx.doi.org/10.1007/s12602-008-9002-7] [PMID: 26783132]
[10]
Sansinenea, E. Industrial Applications of Novel Compounds from Bacillus sp. In: Frontiers in Soil and Environmental Microbiology; Nayak, SK; Mishra, BB, Eds.; CRC Press, Taylor & Francis Group, 2020; pp. 81-88.
[11]
Sansinenea, E. Applications and Patents of Bacillus spp. Agriculture In: Intellectual Property Issues in Microbiology. Springer Singapore, 2019, pp. 133-146.
[http://dx.doi.org/10.1007/978-981-13-7466-1_8]
[12]
Ortiz, A.; Sansinenea, E. Chemical Compounds Produced by Bacillus sp. Factories and Their Role in Nature. Mini Rev. Med. Chem., 2019, 19(5), 373-380.
[http://dx.doi.org/10.2174/1389557518666180829113612] [PMID: 30156158]
[13]
Salazar-Marroquín, E.L.; Galán-Wong, L.J.; Moreno-Medina, V.R.; Reyes-López, M.A.; Pereyra-Alférez, B. Bacteriocins synthesized by Bacillus thuringiensis: Generalities and potential applications. Rev. Med. Microbiol., 2016, 27(3), 95-101.
[http://dx.doi.org/10.1097/MRM.0000000000000076] [PMID: 27340340]
[14]
Martirani, L.; Varcamonti, M.; Naclerio, G.; De Felice, M. Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis. Microb. Cell Fact., 2002, 1(1), 1-5.
[http://dx.doi.org/10.1186/1475-2859-1-1] [PMID: 12076356]
[15]
Abriouel, H.; Franz, C.M.A.P.; Ben Omar, N.; Gálvez, A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev., 2011, 35(1), 201-232.
[http://dx.doi.org/10.1111/j.1574-6976.2010.00244.x] [PMID: 20695901]
[16]
Lee, H.; Kim, H.Y. Lantibiotics, class I bacteriocins from the genus Bacillus. J. Microbiol. Biotechnol., 2011, 21(3), 229-235.
[http://dx.doi.org/10.4014/jmb.1010.10017] [PMID: 21464591]
[17]
Liu, Q.; Gao, G.; Xu, H.; Qiao, M. Identification of the bacteriocin subtilosin A and loss of purL results in its high-level production in Bacillus amyloliquefaciens. Res. Microbiol., 2012, 163(6-7), 470-478.
[http://dx.doi.org/10.1016/j.resmic.2012.05.009] [PMID: 22677773]
[18]
Arguelles Arias, A.; Ongena, M.; Devreese, B.; Terrak, M.; Joris, B.; Fickers, P. Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PLoS One, 2013, 8(12), e83037.
[http://dx.doi.org/10.1371/journal.pone.0083037] [PMID: 24349428]
[19]
Kaewklom, S.; Lumlert, S.; Kraikul, W.; Aunpad, R. Control of Listeria monocytogenes on sliced bologna sausage using a novel bacteriocin, amysin, produced by Bacillus amyloliquefaciens isolated from Thai shrimp paste (Kapi). Food Control, 2013, 32, 552-557.
[http://dx.doi.org/10.1016/j.foodcont.2013.01.012]
[20]
Dunlap, C.A.; Kim, S.J.; Kwon, S.W.; Rooney, A.P. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol., 2016, 66(3), 1212-1217.
[http://dx.doi.org/10.1099/ijsem.0.000858] [PMID: 26702995]
[21]
Scholz, R.; Vater, J.; Budiharjo, A.; Wang, Z.; He, Y.; Dietel, K.; Schwecke, T.; Herfort, S.; Lasch, P.; Borriss, R. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J. Bacteriol., 2014, 196(10), 1842-1852.
[http://dx.doi.org/10.1128/JB.01474-14] [PMID: 24610713]
[22]
Scholz, R.; Molohon, K.J.; Nachtigall, J.; Vater, J.; Markley, A.L.; Süssmuth, R.D.; Mitchell, D.A.; Borriss, R. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J. Bacteriol., 2011, 193(1), 215-224.
[http://dx.doi.org/10.1128/JB.00784-10] [PMID: 20971906]
[23]
An, J.; Zhu, W.; Liu, Y.; Zhang, X.; Sun, L.; Hong, P.; Wang, Y.; Xu, C.; Xu, D.; Liu, H. Purification and characterization of a novel bacteriocin CAMT2 produced by Bacillus amyloliquefaciens isolated from marine fish Epinephelus areolatus. Food Control, 2015, 51, 278-282.
[http://dx.doi.org/10.1016/j.foodcont.2014.11.038]
[24]
Wu, Y.; An, J.; Liu, Y.; Wang, Y.; Ren, W.; Fang, Z.; Sun, L.; Gooneratne, R. Mode of action of a novel anti-Listeria bacteriocin (CAMT2) produced by Bacillus amyloliquefaciens ZJHD3-06 from Epinephelus areolatus. Arch. Microbiol., 2019, 201(1), 61-66.
[http://dx.doi.org/10.1007/s00203-018-1553-8] [PMID: 30203187]
[25]
Lim, K.B.; Balolong, M.P.; Kim, S.H.; Oh, J.K.; Lee, J.Y.; Kang, D-K. Isolation and Characterization of a Broad Spectrum Bacteriocin from Bacillus amyloliquefaciens RX7. BioMed Res. Int., 2016, 2016, 8521476.
[http://dx.doi.org/10.1155/2016/8521476] [PMID: 27239477]
[26]
Brock, S.; Knadler, J.; Ritter, T.; Baker, J.C. Characterization of a Bacteriocin from Bacillus amyloliquefaciens. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7, 1492-1503.
[http://dx.doi.org/10.20546/ijcmas.2018.706.177]
[27]
Sensoy-Karaoglu, S.; Sevim, A.; Sevim, E. Production and characterization of bacteriocin-like peptide produced by Bacillus amyloliquefaciens B10. Sevim ve ark. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2014, 30, 338-345.
[28]
Ayed, H.B.; Maalej, H.; Hmidet, N.; Nasri, M. Isolation and biochemical characterisation of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6. J. Glob. Antimicrob. Resist., 2015, 3(4), 255-261.
[http://dx.doi.org/10.1016/j.jgar.2015.07.001] [PMID: 27842869]
[29]
Salazar, F.; Ortiz, A.; Sansinenea, E. Characterisation of two novel bacteriocin-like substances produced by Bacillus amyloliquefaciens ELI149 with broad-spectrum antimicrobial activity. J. Glob. Antimicrob. Resist., 2017, 11, 177-182.
[http://dx.doi.org/10.1016/j.jgar.2017.08.008] [PMID: 28844975]
[30]
Palazzini, J.M.; Dunlap, C.A.; Bowman, M.J.; Chulze, S.N. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiol. Res., 2016, 192, 30-36.
[http://dx.doi.org/10.1016/j.micres.2016.06.002] [PMID: 27664721]
[31]
Perumal, V.; Yao, Z.; Kim, J.A.; Kim, H-J.; Kim, J.H. Purification and Characterization of a Bacteriocin, BacBS2, Produced by Bacillus velezensis BS2 Isolated from Meongge Jeotgal. J. Microbiol. Biotechnol., 2019, 29(7), 1033-1042.
[http://dx.doi.org/10.4014/jmb.1903.03065] [PMID: 31216789]
[32]
Butkhot, N.; Soodsawaeng, P.; Vuthiphandchai, V.; Nimrat, S. Characterisation and biosafety evaluation of a novel bacteriocin produced by Bacillus velezensis BUU004. Int. Food Res. J., 2019, 26, 1617-1625.
[33]
Tumbarski, Y.; Deseva, I.; Mihaylova, D.; Stoyanova, M.; Krastev, L.; Nikolova, R.; Yanakieva, V.; Ivanov, I. Isolation, Characterization and Amino Acid Composition of a Bacteriocin Produced by Bacillus methylotrophicus Strain BM47. Food Technol. Biotechnol., 2018, 56(4), 546-552.
[http://dx.doi.org/10.17113/ftb.56.04.18.5905] [PMID: 30923451]
[34]
Senbagam, D.; Gurusamy, R.; Senthilkumar, B. Physical chemical and biological characterization of a new bacteriocin produced by Bacillus cereus NS02. Asian Pac. J. Trop. Med., 2013, 6(12), 934-941.
[http://dx.doi.org/10.1016/S1995-7645(13)60167-4] [PMID: 24144023]
[35]
Wang, J.; Zhang, L.; Teng, K.; Sun, S.; Sun, Z.; Zhong, J. Cerecidins, novel lantibiotics from Bacillus cereus with potent antimicrobial activity. Appl. Environ. Microbiol., 2014, 80(8), 2633-2643.
[http://dx.doi.org/10.1128/AEM.03751-13] [PMID: 24532070]
[36]
Minnaard, J.; Alippi, A.M. Partial characterization of bacteriocin-like compounds from two strains of Bacillus cereus with biological activity against Paenibacillus larvae, the causal agent of American Foulbrood disease. Lett. Appl. Microbiol., 2016, 63(6), 442-449.
[http://dx.doi.org/10.1111/lam.12665] [PMID: 27589675]
[37]
Leite, J.A.; Tulini, F.L.; dos Reis-Teixeira, F.B.; Rabinovitch, L.; Chaves, J.Q.; Rosa, N.G.; Cabral, H.; De Martinis, E.C.P. Bacteriocin-like inhibitory substances (BLIS) produced by Bacillus cereus: Preliminary characterization and application of partially purified extract containing BLIS for inhibiting Listeria monocytogenes in pineapple pulp. L.W.T., 2016, 72, 261-266.
[38]
Shenkarev, Z.O.; Finkina, E.I.; Nurmukhamedova, E.K.; Balandin, S.V.; Mineev, K.S.; Nadezhdin, K.D.; Yakimenko, Z.A.; Tagaev, A.A.; Temirov, Y.V.; Arseniev, A.S.; Ovchinnikova, T.V. Isolation, structure elucidation, and synergistic antibacterial activity of a novel two-component lantibiotic lichenicidin from Bacillus licheniformis VK21. Biochemistry, 2010, 49(30), 6462-6472.
[http://dx.doi.org/10.1021/bi100871b] [PMID: 20578714]
[39]
Berić, T.; Stanković, S.; Draganić, V.; Kojić, M.; Lozo, J.; Fira, D. Novel antilisterial bacteriocin licheniocin 50.2 from Bacillus licheniformis VPS50.2 isolated from soil sample. J. Appl. Microbiol., 2014, 116(3), 502-510.
[http://dx.doi.org/10.1111/jam.12393] [PMID: 24238327]
[40]
Kayalvizhi, N.; Rameshkumar, N.; Gunasekaran, P. Cloning and characterization of mersacidin like bacteriocin from Bacillus licheniformis MKU3 in Escherichia coli. J. Food Sci. Technol., 2016, 53(5), 2298-2306.
[http://dx.doi.org/10.1007/s13197-016-2195-y] [PMID: 27407196]
[41]
Tigga, S.S.; Lawrence, R.; Jeyakumar, E. Production, purification and characterization of lichenin from Bacillus licheniformis. Int. J. Adv. Res. (Indore), 2017, 5, 1448-1507.
[http://dx.doi.org/10.21474/IJAR01/5665]
[42]
Guo, Y.; Yu, Z.; Xie, J.; Zhang, R. Identification of a new Bacillus licheniformis strain producing a bacteriocin-like substance. J. Microbiol., 2012, 50(3), 452-458.
[http://dx.doi.org/10.1007/s12275-012-2051-3] [PMID: 22752909]
[43]
Vadakedath, N.; Halami, P.M. Characterization and mode of action of a potent bio-preservative from food-grade Bacillus licheniformis MCC 2016. Prep. Biochem. Biotechnol., 2019, 49(4), 334-343.
[http://dx.doi.org/10.1080/10826068.2019.1566141] [PMID: 30712459]
[44]
Dehghanifar, S.; Keyhanfar, M.; Emtiazi, G. Production and partial purification of thermostable bacteriocins from Bacillus pumilus ZED17 and DFAR8 strains with antifungal activity. Mol. Biol. Res. Commun., 2019, 8(1), 41-49.
[PMID: 31528643]
[45]
Nayak, S.; Limsuwan, C.; Chichurd, N.; Kühlmann, K-J.; Pungpang, S. Antimicrobial activity of partially characterized analytes from Bacillus pumilus (B2). Aquacult. Res., 2017, 2017, 1-8.
[46]
Fuchs, S.W.; Jaskolla, T.W.; Bochmann, S.; Kötter, P.; Wichelhaus, T.; Karas, M.; Stein, T.; Entian, K-D. Entianin, a novel subtilin-like lantibiotic from Bacillus subtilis subsp. spizizenii DSM 15029T with high antimicrobial activity. Appl. Environ. Microbiol., 2011, 77(5), 1698-1707.
[http://dx.doi.org/10.1128/AEM.01962-10] [PMID: 21239550]
[47]
Kindoli, S.; Lee, H.A.; Kim, J.H. Properties of Bac W42, a bacteriocin produced by Bacillus subtilis W42 isolated from Cheonggukjang. J. Microbiol. Biotechnol., 2012, 22(8), 1092-1100.
[http://dx.doi.org/10.4014/jmb.1110.10002] [PMID: 22713985]
[48]
Salum, K.; Lee, H.A.; Heo, K.; Kim, J.H. Properties of a Bacteriocin from Bacillus subtilis H27 Isolated from Cheonggukjang. Food Sci. Biotechnol., 2012, 21, 1745-1751.
[http://dx.doi.org/10.1007/s10068-012-0232-9]
[49]
Hammami, I.; Jaouadi, B.; Bacha, A.B.; Rebai, A.; Bejar, S.; Nesme, X.; Rhouma, A. Bacillus subtilis bacteriocin Bac 14B with a broad inhibitory spectrum: Purification, amino acid sequence analysis, and physicochemical characterization. Biotechnol. Bioprocess Eng. BBE, 2012, 17, 41-49.
[http://dx.doi.org/10.1007/s12257-010-0401-8]
[50]
Phelan, R.W.; Barret, M.; Cotter, P.D.; O’Connor, P.M.; Chen, R.; Morrissey, J.P.; Dobson, A.D.W.; O’Gara, F.; Barbosa, T.M. Subtilomycin: A new lantibiotic from Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans. Mar. Drugs, 2013, 11(6), 1878-1898.
[http://dx.doi.org/10.3390/md11061878] [PMID: 23736764]
[51]
Li, J.; Li, H.; Zhang, Y.; Duan, X.; Liu, J. Characterization of a bacteriocin-like substance produced from a novel isolated strain of Bacillus subtilis SLYY-3. J. Ocean Univ. China, 2014, 13, 995-999.
[http://dx.doi.org/10.1007/s11802-014-2547-z]
[52]
Sharmila, P.S.; Vidya, A.K. Characterization and antibacterial activity of bacteriocin producing Bacillus subtilis isolated from raw milk. Int. J. Appl. Bioeng., 2015, 9, 1-6.
[http://dx.doi.org/10.18000/ijabeg.10129]
[53]
Liu, X.; Lee, J.Y.; Jeong, S-J.; Cho, K.M.; Kim, G.M.; Shin, J.H.; Kim, J-S.; Kim, J.H. Properties of a Bacteriocin Produced by Bacillus subtilis EMD4 Isolated from Ganjang (Soy Sauce). J. Microbiol. Biotechnol., 2015, 25(9), 1493-1501.
[http://dx.doi.org/10.4014/jmb.1502.02037] [PMID: 26017225]
[54]
Banerjee, G.; Nandi, A.; Ray, A.K. Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish. Arch. Microbiol., 2017, 199(1), 115-124.
[http://dx.doi.org/10.1007/s00203-016-1283-8] [PMID: 27590016]
[55]
Ansari, A.; Zohra, R.R.; Tarar, O.M.; Qader, S.A.U.; Aman, A. Screening, purification and characterization of thermostable, protease resistant Bacteriocin active against methicillin resistant Staphylococcus aureus (MRSA). BMC Microbiol., 2018, 18(1), 192.
[http://dx.doi.org/10.1186/s12866-018-1337-y] [PMID: 30466388]
[56]
Lee, S.G.; Chang, H.C. Purification and characterization of mejucin, a new bacteriocin produced by Bacillus subtilis SN7. LWT, 2018, 87, 8-15.
[http://dx.doi.org/10.1016/j.lwt.2017.08.044]
[57]
Sharma, G.; Dang, S.; Gupta, S.; Gabrani, R. Antibacterial activity, cytotoxicity, and the mechanism of action of bacteriocin from Bacillus subtilis GAS101. Med. Princ. Pract., 2018, 27(2), 186-192.
[http://dx.doi.org/10.1159/000487306] [PMID: 29402863]
[58]
Qin, Y.; Wang, Y.; He, Y.; Zhang, Y.; She, Q.; Chai, Y.; Li, P.; Shang, Q. Characterization of subtilin L-Q11, a novel class I bacteriocin synthesized by Bacillus subtilis L-Q11 isolated from orchard soil. Front. Microbiol., 2019, 10, 484.
[http://dx.doi.org/10.3389/fmicb.2019.00484] [PMID: 30930878]
[59]
Kamoun, F.; Fguira, I.B.; Hassen, N.B.B.; Mejdoub, H.; Lereclus, D.; Jaoua, S. Purification and characterization of a new Bacillus thuringiensis bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens. Appl. Biochem. Biotechnol., 2011, 165(1), 300-314.
[http://dx.doi.org/10.1007/s12010-011-9252-9] [PMID: 21487734]
[60]
Chehimi, S.; Limam, F.; Lanneluc, I.; Delalande, F.; Van Dorsselaer, A.; Sablé, S. Identification of three novel B. thuringiensis strains that produce the Thuricin S bacteriocin. Bt Res, 2012, 3, 3-10.
[61]
Ugras, S.; Sezen, K.; Kati, H.; Demirbag, Z. Purification and characterization of the bacteriocin Thuricin Bn1 produced by Bacillus thuringiensis subsp. kurstaki Bn1 isolated from a hazelnut pest. J. Microbiol. Biotechnol., 2013, 23(2), 167-176.
[http://dx.doi.org/10.4014/jmb.1209.09056] [PMID: 23412058]
[62]
Xin, B.; Zheng, J.; Xu, Z.; Li, C.; Ruan, L.; Peng, D.; Sun, M. Three novel lantibiotics, ticins A1, A3, and A4, have extremely stable properties and are promising food biopreservatives. Appl. Environ. Microbiol., 2015, 81(20), 6964-6972.
[http://dx.doi.org/10.1128/AEM.01851-15] [PMID: 26231642]
[63]
Huang, T.; Zhang, X.; Pan, J.; Su, X.; Jin, X.; Guan, X. Purification and characterization of a novel cold shock protein-like bacteriocin synthesized by Bacillus thuringiensis. Sci. Rep., 2016, 6, 35560.
[http://dx.doi.org/10.1038/srep35560] [PMID: 27762322]
[64]
Mouloud, G.; Daoud, H.; Bassem, J.; Laribi Atef, I.; Hani, B. New bacteriocin from Bacillus clausii strainGM17: Purification, characterization, and biological activity. Appl. Biochem. Biotechnol., 2013, 171(8), 2186-2200.
[http://dx.doi.org/10.1007/s12010-013-0489-3] [PMID: 24037515]
[65]
Riazi, S.; Dover, S.E.; Chikindas, M.L. Mode of action and safety of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050. J. Appl. Microbiol., 2012, 113(3), 714-722.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05376.x] [PMID: 22737982]
[66]
Abdhul, K.; Ganesh, M.; Shanmughapriya, S.; Vanithamani, S.; Kanagavel, M.; Anbarasu, K.; Natarajaseenivasan, K. Bacteriocinogenic potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari. Int. J. Biol. Macromol., 2015, 79, 800-806.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.005] [PMID: 26054664]
[67]
Fu, L.; Wang, C.; Ruan, X.; Li, G.; Zhao, Y.; Wang, Y. Preservation of large yellow croaker (Pseudosciaena crocea) by Coagulin L1208, a novel bacteriocin produced by Bacillus coagulans L1208. Int. J. Food Microbiol., 2018, 266, 60-68.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.11.012] [PMID: 29179097]
[68]
Al-Thubiani, A.S.A.; Maher, Y.A.; Fathi, A.; Abourehab, M.A.S.; Alarjah, M.; Khan, M.S.A.; Al-Ghamdi, S.B. Identification and characterization of a novel antimicrobial peptide compound produced by Bacillus megaterium strain isolated from oral microflora. Saudi Pharm. J., 2018, 26(8), 1089-1097.
[http://dx.doi.org/10.1016/j.jsps.2018.05.019] [PMID: 30532629]
[69]
Basi-Chipalu, S.; Dischinger, J.; Josten, M.; Szekat, C.; Zweynert, A.; Sahl, H-G.; Bierbaum, G. Pseudomycoicidin, a Class II Lantibiotic from Bacillus pseudomycoides. Appl. Environ. Microbiol., 2015, 81(10), 3419-3429.
[http://dx.doi.org/10.1128/AEM.00299-15] [PMID: 25769830]
[70]
Fields, F.R.; Carothers, K.E.; Balsara, R.D.; Ploplis, V.A.; Castellino, F.J.; Lee, S.W. Rational design of syn-safencin, a novel linear antimicrobial peptide derived from the circular bacteriocin safencin AS-48. J. Antibiot. (Tokyo), 2018, 71(6), 592-600.
[http://dx.doi.org/10.1038/s41429-018-0032-4] [PMID: 29463889]
[71]
Chopra, L.; Singh, G.; Choudhary, V.; Sahoo, D.K. Sonorensin: An antimicrobial peptide, belonging to the heterocycloanthracin subfamily of bacteriocins, from a new marine isolate, Bacillus sonorensis MT93. Appl. Environ. Microbiol., 2014, 80(10), 2981-2990.
[http://dx.doi.org/10.1128/AEM.04259-13] [PMID: 24610839]
[72]
Kim, Y-O.; Park, I-S.; Kim, D-J.; Nam, B-H.; Kim, D-G.; Jee, Y-J.; An, C-M. Identification and Characterization of a Bacteriocin Produced by an Isolated Bacillus sp. SW1-1 that Exhibits Antibacterial Activity against Fish Pathogens. J. Korean Soc. Appl. Biol. Chem., 2014, 57, 605-612.
[http://dx.doi.org/10.1007/s13765-014-4174-1]
[73]
Zhang, Y.; Zhou, J.; Pan, L.; Dai, Z.; Liu, C.; Wang, J.; Zhou, H. Production of Bacteriocin-like Substances by Bacillus Spp. JY-1 in Soy Whey. Adv. Biochem., 2019, 7, 65-70.
[http://dx.doi.org/10.11648/j.ab.20190703.12]
[74]
Rabbee, M.F.; Ali, M.S.; Choi, J.; Hwang, B.S.; Jeong, S.C.; Baek, K-H. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 2019, 24(6), 1046.
[http://dx.doi.org/10.3390/molecules24061046] [PMID: 30884857]
[75]
Oscáriz, J.C.; Cintas, L.; Holo, H.; Lasa, I.; Nes, I.F.; Pisabarro, A.G. Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiol. Lett., 2006, 254(1), 108-115.
[http://dx.doi.org/10.1111/j.1574-6968.2005.00009.x] [PMID: 16451187]
[76]
Pattnaik, P.; Kaushik, J.K.; Grover, S.; Batish, V.K. Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. J. Appl. Microbiol., 2001, 91(4), 636-645.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01429.x] [PMID: 11576300]
[77]
Aunpad, R.; Na-Bangchang, K. Pumilicin 4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly isolated bacteria Bacillus pumilus strain WAPB4. Curr. Microbiol., 2007, 55(4), 308-313.
[http://dx.doi.org/10.1007/s00284-006-0632-2] [PMID: 17700984]
[78]
Favret, M.E.; Yousten, A.A. Thuricin: The bacteriocin produced by Bacillus thuringiensis. J. Invertebr. Pathol., 1989, 53(2), 206-216.
[http://dx.doi.org/10.1016/0022-2011(89)90009-8] [PMID: 2723445]
[79]
Paik, H.D.; Bae, S.S.; Park, S.H.; Pan, J.G. Identification and partial characterization of tochicin, a bacteriocin offduced by Bacillus thuringiensis subsp tochigiensis. J. Ind. Microbiol. Biotechnol., 1997, 19(4), 294-298.
[http://dx.doi.org/10.1038/sj.jim.2900462] [PMID: 9439004]
[80]
Cherif, A.; Ouzari, H.; Daffonchio, D.; Cherif, H.; Ben Slama, K.; Hassen, A.; Jaoua, S.; Boudabous, A. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol., 2001, 32(4), 243-247.
[http://dx.doi.org/10.1046/j.1472-765X.2001.00898.x] [PMID: 11298934]
[81]
Lee, H.; Churey, J.J.; Worobo, R.W. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol. Lett., 2009, 299(2), 205-213.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01749.x] [PMID: 19732155]
[82]
Gray, E.J.; Lee, K.D.; Souleimanov, A.M.; Di Falco, M.R.; Zhou, X.; Ly, A.; Charles, T.C.; Driscoll, B.T.; Smith, D.L. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: Isolation and classification. J. Appl. Microbiol., 2006, 100(3), 545-554.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02822.x] [PMID: 16478494]
[83]
Ahern, M.; Verschueren, S.; van Sinderen, D. Isolation and characterisation of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol. Lett., 2003, 220(1), 127-131.
[http://dx.doi.org/10.1016/S0378-1097(03)00086-7] [PMID: 12644238]
[84]
Kamoun, F.; Mejdoub, H.; Aouissaoui, H.; Reinbolt, J.; Hammami, A.; Jaoua, S. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol., 2005, 98(4), 881-888.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02513.x] [PMID: 15752334]
[85]
Cherif, A.; Rezgui, W.; Raddadi, N.; Daffonchio, D.; Boudabous, A. Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. Entomocidus HD110. Microbiol. Res., 2008, 163(6), 684-692.
[http://dx.doi.org/10.1016/j.micres.2006.10.005] [PMID: 19216106]
[86]
Barboza-Corona, J.E.; Vázquez-Acosta, H.; Bideshi, D.K.; Salcedo-Hernández, R. Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis. Arch. Microbiol., 2007, 187(2), 117-126.
[http://dx.doi.org/10.1007/s00203-006-0178-5] [PMID: 17031616]
[87]
Rea, M.C.; Sit, C.S.; Clayton, E.; O’Connor, P.M.; Whittal, R.M.; Zheng, J.; Vederas, J.C.; Ross, R.P.; Hill, C. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci. USA, 2010, 107(20), 9352-9357.
[http://dx.doi.org/10.1073/pnas.0913554107] [PMID: 20435915]
[88]
Chopra, L.; Singh, G.; Jena, K.K.; Verma, H.; Sahoo, D.K. Bioprocess development for the production of sonorensin by Bacillus sonorensis MT93 and its application as a food preservative. Bioresour. Technol., 2015, 175, 358-366.
[http://dx.doi.org/10.1016/j.biortech.2014.10.105] [PMID: 25459843]
[89]
Nazari, M.; Smith, D.L. A PGPR-Produced Bacteriocin for Sustainable Agriculture: A Review of Thuricin 17 Characteristics and Applications. Front. Plant Sci., 2020, 11, 916.
[http://dx.doi.org/10.3389/fpls.2020.00916] [PMID: 32733506]
[90]
Egan, K.; Ross, R.P.; Hill, C. Bacteriocins: Antibiotics in the age of the microbiome. Emerg Top Life Sci, 2017, 1(1), 55-63.
[http://dx.doi.org/10.1042/ETLS20160015] [PMID: 33525813]
[91]
Thomas, L.V.; Clarkson, M.R.; Delves-Broughton, J. Nisin. Natural food antimicrobial systems; Naidu, A.S., Ed.; CRC Press: Boca-Raton, FL, 2000, pp. 463-524.
[92]
Jeevaratnam, K.; Jamuna, M.; Bawa, A.S. Biological preservation of foods Bacteriocins of lactic acid bacteria. Indian J. Biotechnol., 2005, 4, 446-454.
[93]
Kimura, K.; Yokoyama, S. Trends in the application of Bacillus in fermented foods. Curr. Opin. Biotechnol., 2019, 56, 36-42.
[http://dx.doi.org/10.1016/j.copbio.2018.09.001] [PMID: 30227296]
[94]
Bizani, D.; Brandelli, A. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. Strain 8 A. J. Appl. Microbiol., 2002, 93(3), 512-519.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01720.x] [PMID: 12174052]
[95]
O’Shea, E.F.; O’Connor, P.M.; Cotter, P.D.; Ross, R.P.; Hill, C. Synthesis of trypsin-resistant variants of the Listeria-active bacteriocin salivaricin P. Appl. Environ. Microbiol., 2010, 76(16), 5356-5362.
[http://dx.doi.org/10.1128/AEM.00523-10] [PMID: 20581174]
[96]
Field, D.; Begley, M.; O’Connor, P.M.; Daly, K.M.; Hugenholtz, F.; Cotter, P.D.; Hill, C.; Ross, R.P. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLoS One, 2012, 7(10), e46884.
[http://dx.doi.org/10.1371/journal.pone.0046884] [PMID: 23056510]
[97]
Chhetria, V.; Prakitchaiwattanaa, C.; Settachaimongkona, S. A potential protective culture; halophilic Bacillus isolates with bacteriocin encoding gene against Staphylococcus aureus in salt added foods. Food Control, 2019, 104, 292-299.
[http://dx.doi.org/10.1016/j.foodcont.2019.04.043]
[98]
Healy, B.; Field, D.; O’Connor, P.M.; Hill, C.; Cotter, P.D.; Ross, R.P. Intensive mutagenesis of the nisin hinge leads to the rational design of enhanced derivatives. PLoS One, 2013, 8(11), e79563.
[http://dx.doi.org/10.1371/journal.pone.0079563] [PMID: 24244524]
[99]
Jiao, D.; Liu, Y.; Liu, Y.; Zeng, R.; Hou, X.; Nie, G.; Sun, L.; Fang, Z. Preparation of phosphatidylcholine nanovesicles containing bacteriocin CAMT2 and their anti-listerial activity. Food Chem., 2020, 314, 126244.
[http://dx.doi.org/10.1016/j.foodchem.2020.126244] [PMID: 31982854]
[100]
Lawton, E.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Two-peptide lantibiotics: A medical perspective. Mini Rev. Med. Chem., 2007, 7(12), 1236-1247.
[http://dx.doi.org/10.2174/138955707782795638] [PMID: 18220976]
[101]
van Staden, A.D.; Brand, A.M.; Dicks, L.M. Nisin F-loaded brushite bone cement prevented the growth of Staphylococcus aureusin vivo. J. Appl. Microbiol., 2012, 112(4), 831-840.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05241.x] [PMID: 22268790]
[102]
Oman, T.J.; van der Donk, W.A. Insights into the mode of action of the two-peptide lantibiotic haloduracin. ACS Chem. Biol., 2009, 4(10), 865-874.
[http://dx.doi.org/10.1021/cb900194x] [PMID: 19678697]
[103]
Sutyak, K.E.; Wirawan, R.E.; Aroutcheva, A.A.; Chikindas, M.L. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J. Appl. Microbiol., 2008, 104(4), 1067-1074.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03626.x] [PMID: 17976171]
[104]
Rajavel, M.; Mitra, A.; Gopal, B. Role of Bacillus subtilis BacB in the synthesis of bacilysin. J. Biol. Chem., 2009, 284(46), 31882-31892.
[http://dx.doi.org/10.1074/jbc.M109.014522] [PMID: 19776011]
[105]
Wu, S.; Jia, S.; Sun, D.; Chen, M.; Chen, X.; Zhong, J.; Huan, L. Purification and characterization of two novel antimicrobial peptides Subpeptin JM4-A and Subpeptin JM4-B produced by Bacillus subtilis JM4. Curr. Microbiol., 2005, 51(5), 292-296.
[http://dx.doi.org/10.1007/s00284-005-0004-3] [PMID: 16211432]
[106]
Berditsch, M.; Lux, H.; Babii, O.; Afonin, S.; Ulrich, A.S. Therapeutic potential of Gramicidin S in the treatment of root canal infections. Pharmaceuticals (Basel), 2016, 9(3), 56.
[http://dx.doi.org/10.3390/ph9030056] [PMID: 27618065]
[107]
Ding, Y.; Qin, C.; Guo, Z.; Niu, W.; Zhang, R.; Li, Y. Solid-phase total synthesis and antimicrobial activities of loloatins A-D. Chem. Biodivers., 2007, 4(12), 2827-2834.
[http://dx.doi.org/10.1002/cbdv.200790232] [PMID: 18081093]
[108]
Munyuki, G.; Jackson, G.E.; Venter, G.A.; Kövér, K.E.; Szilágyi, L.; Rautenbach, M.; Spathelf, B.M.; Bhattacharya, B.; van der Spoel, D. β-sheet structures and dimer models of the two major tyrocidines, antimicrobial peptides from Bacillus aneurinolyticus. Biochemistry, 2013, 52(44), 7798-7806.
[http://dx.doi.org/10.1021/bi401363m] [PMID: 24151934]
[109]
Diez-Gonzalez, F. Applications of bacteriocins in livestock. Curr. Issues Intest. Microbiol., 2007, 8(1), 15-23.
[PMID: 17489435]
[110]
Callaway, T.R.; Anderson, R.C.; Edrington, T.S.; Genovese, K.J.; Harvey, R.B.; Poole, T.L.; Nisbet, D.J. Recent pre-harvest supplementation strategies to reduce carriage and shedding of zoonotic enteric bacterial pathogens in food animals. Anim. Health Res. Rev., 2004, 5(1), 35-47.
[http://dx.doi.org/10.1079/AHR200462] [PMID: 15460539]
[111]
Xie, J.; Zhang, R.; Shang, C.; Guo, Y. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol., 2009, 8, 5611-5619.
[112]
Gutiérrez-Chávez, A.J.; Martínez-Ortega, E.A.; Valencia- Posadas, M.; León-Galván, M.F.; de la Fuente-Salcido, N.M.; Bideshi, D.K.; Barboza-Corona, J.E. Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats. Folia Microbiol. (Praha), 2016, 61(1), 11-19.
[http://dx.doi.org/10.1007/s12223-015-0404-0] [PMID: 26022411]
[113]
Reilly, A.; Käferstein, F. Food safety and products from aquaculture. J. Appl. Microbiol., 1998, 85(Suppl. 1), 249S-257S.
[http://dx.doi.org/10.1111/j.1365-2672.1998.tb05305.x] [PMID: 21182715]
[114]
Sarojini, K.; Ajitha, S.S.; Ramasubburayan, R.; Palavesam, A.; Immanuel, G. Studies on the adhesion, aggregative properties and the probiotic efficiency of a potent bacteriocin-producing shrimp gut isolate Bacillus subtilis subsp. inaquosorum V1 against Carassius auratus. Aquacult. Int., 2020, 28, 1639-1656.
[http://dx.doi.org/10.1007/s10499-020-00548-7]
[115]
Taoka, Y.; Maeda, H.; Jo, J.Y.; Jeon, M.J.; Bai, S.C.; Lee, W.J.; Yuge, K.; Koshio, S. Growth, stress tolerance and non-specific immune response of Japanese flounder Paralichthys olivaceus to probiotics in a closed recirculating system. Fish. Sci., 2006, 72, 310-321.
[http://dx.doi.org/10.1111/j.1444-2906.2006.01152.x]
[116]
Gautam, K.; Schwinghamer, T.D.; Smith, D.L. The response of soybean to nod factors and a bacteriocin. Plant Signal. Behav., 2016, 11(10), e1241934.
[http://dx.doi.org/10.1080/15592324.2016.1241934] [PMID: 27700227]
[117]
Schwinghamer, T.; Souleimanov, A.; Dutilleul, P.; Smith, D.L. The response of canola cultivars to lipo-chitooligosaccharide (Nod Bj V [C18:1, MeFuc]) and thuricin 17. Plant Growth Regul., 2016, 78, 421-434.
[http://dx.doi.org/10.1007/s10725-015-0104-4]
[118]
Lajis, A.F.B. Biomanufacturing process for the production of bacteriocins from Bacillaceae family. Bioresour. Bioprocess., 2020, 7, 8.
[http://dx.doi.org/10.1186/s40643-020-0295-z]
[119]
Teng, Y.; Zhao, W.; Qian, C.; Li, O.; Zhu, L.; Wu, X. Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by Paenibacillus elgii B69. BMC Microbiol., 2012, 12, 45.
[http://dx.doi.org/10.1186/1471-2180-12-45] [PMID: 22443157]
[120]
Lee, K-H.; Jun, K-D.; Kim, W-S.; Paik, H-D. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol., 2001, 32(3), 146-151.
[http://dx.doi.org/10.1046/j.1472-765x.2001.00876.x] [PMID: 11264742]
[121]
Kurata, A.; Yamaguchi, T.; Kira, M.; Kishimoto, N. Characterization and heterologous expression of an antimicrobial peptide from Bacillus amyloliquefaciens CMW1. Biotechnol. Biotechnol. Equip., 2019, 33, 886-893.
[http://dx.doi.org/10.1080/13102818.2019.1627246]
[122]
Gaona-Mendoza, A.S.; Barboza-Corona, J.E.; Casados-Vázquez, L.E. Improving the yields of thurincin H in a native producer strain. Antonie van Leeuwenhoek, 2020, 113(7), 1061-1066.
[http://dx.doi.org/10.1007/s10482-020-01408-3] [PMID: 32314103]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy