[5]
Chatagner, A.; Hüppi, P.S.; Ha-Vinh Leuchter, R.; Sizonenko, S. Erythropoietin and neuroprotection. Archives de Pediatrie, 2010, 17, 78-84.
[7]
Jantzie, L.; Robinson, S. Neonatal erythropoietin reverses cognitive deficits in a preclinical model of encephalopathy of prematurity. FASEB J., 2017, 31(1)
[8]
Hierro-Bujalance, C.; Sánchez-Sotano, D.; Mengual-González, C.; Segado-Arenas, A.; Casado-Revuelta, A.; Del Marco, A.; Benavente-Ferndández, I.; Lubián-Lopez, S.; García-Alloza, M. Erythropoietin reduces central pathology and cognitive impairment in a murine model of intraventricular hemorrhage in the preterm newborn. J. Physiol. Biochem., 2018, 74, S80.
[21]
Perrone, S.; Tataranno, L.M.; Stazzoni, G.; Ramenghi, L.; Buonocore, G. Brain susceptibility to oxidative stress in the perinatal period. J. Maternal. Neonatal Med., 2015, 28, 2291-2295.
[40]
Rezaie, P.; Dean, A.; Male, D.; Ulfig, N. Microglia in the cerebral wall of the human telencephalon at second trimester.In: Cerebral cortex; New York, N.Y; , 2005, 15, pp. (7)938-949.
[54]
Lombardero, M.; Kovacs, K.; Scheithauer, B.W. Erythropoietin: A hormone with multiple functions. Pathobiology, 2011, 78(1), 41-53.
[61]
Simon, C.; Lickert, H.; Götz, M.; Dimou, L. Sox10-iCreERT2: A mouse line to inducibly trace the neural crest and oligodendrocyte lineage.Genesis (New York, N.Y. : 2000), 2012, 50(6), 506-515.
[62]
Pardridge, W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2005, 2(1), 3-14.
[65]
Shen, Y.; Yu, H.M.; Yuan, T.M.; Gu, W.Z.; Wu, Y.D. Erythropoietin attenuates white matter damage, proinflammatory cytokine and chemokine induction in developing rat brain after intra-uterine infection. Neuropathology, 2009.
[89]
Wang, H.; Fan, J.; Chen, M.; Yao, Q.; Gao, Z.; Zhang, G.; Wu, H.; Yu, X. rhEPO Enhances cellular anti-oxidant capacity to protect
long-term cultured aging primary nerve cells. Journal of molecular
neuroscience : MN, 2017, 62(3-4), 291-303.
[106]
Wu, H.; Zhao, J.; Chen, M.; Wang, H.; Yao, Q.; Fan, J.; Zhang, M. The anti-aging effect of erythropoietin via the erk/nrf2-are pathway in aging rats. J. Mol. Neurosci., 2017, 61(3), 449-458.
[107]
Zhang, D.X.; Zhang, L.M.; Zhao, X.C.; Sun, W. Neuroprotective effects of erythropoietin against sevoflurane-induced neuronal apoptosis in primary rat cortical neurons involving the EPOR-Erk1/2-Nrf2/Bach1 signal pathway. Biomed. Pharmacother., 2017, 87, 332-341.
[113]
Zolnourian, A. A.-O. X.; Galea, I.; Bulters, D. A.-O. Neuroprotective role of the nrf2 pathway in subarachnoid haemorrhage and its therapeutic potential., 1942, 994
[120]
Lopez, E.; Beuchée, A.; Truffert, P.; Pouvreau, N.; Patkai, J.; Baud, O.; Boubred, F.; Flamant, C.; Jarreau, P.H. Recombinant human erythropoietin in neonates: Guidelines for clinical practice from the French Society of Neonatology.Arch. Pediatr. 2015, 22(10), 1092-1097.
[121]
Juul, S. E. Erytropoietin concentrations in cerebrospinal fluid of nonhuman primates and fetal sheep following high-dose recombinant erythropoietin.,
[137]
Bretz, C.A.; Wang, H.; Becker, S.; Divoky, V.; Hartnett, M.E. Erythropoietin receptor signaling contributes to the development of pathologic retinal angiogenesis. Invest. Ophthalmol. Vis. Sci., 2016, 57(12), 3641.
[138]
Bretz, C.A.; Kunz, E.; Divoky, V.; Hartnett, M.E. EPOR signaling is important in neural retinal function following OIR. Invest. Ophthalmol. Vis. Sci., 2019, 60(9)
[142]
LaRosa, D.A.; Barton, S.K.; Valerie Zahra, V.; Tolcos, M.; Melville, J.M.; Inocencio, I.M.; Barbuto, J.; Gill, A.W.; Kluckow, M.; Bennet, L.; Moss, T.J.M.; Polglase, G.R. Optimising erythropoietin dose to reduce ventilator-induced lung injury. J. Paediatr. Child Health, 2016, 52, 117.
[143]
Allison, B. J.; LaRosa, D. A.; Barton, S. K.; Hooper, S.; Zahra, V.; Tolcos, M.; Chan, K. Y. Y.; Barbuto, J.; Inocencio, I. M.; Moss, T. J.; Polglase, G. R. Dose-dependent exacerbation of ventilation-induced lung injury by erythropoietin in preterm newborn lambs., Journal of applied physiology (Bethesda, Md.: 1985),, 2019, 126(1), 44-50.
[154]
Fauchere, J.C.; Leuchter, R.H.; Natalucci, G.; Dame, C.; Koller, B.M.; Ruegger, C.M.; Hagmann, C.; Huppi, P.S.; Bucher, H.U. Results of the swiss epo neuroprotection trial in very preterm infants. Am. J. Hematol., 2015, 90(8) ,E161
[156]
Yang, S.S.; Xu, F.L.; Cheng, H.Q.; Xu, H.R.; Yang, L.; Xing, J.Y.; Cheng, L. Effect of early application of recombinant human erythropoietin on white matter development in preterm infants Zhongguo dang dai er ke za zhi = Chinese J. Contemporary Pediatr., 2018, 20(5), 346-351.
[158]
Ohls, R.; Kamath-Rayne, B.D.; Christensen, R.; Wiedmeier, S.; Rosenberg, A.; Lowe, J. Neurocognitive outcomes at 18-22 months are improved in former preterm infants administered darbepoetin or erythropoietin. J. Investig. Med., 2013, 61(1), 166-167.
[161]
Van Meter, J.; Ohls, R.K.; Phillips, J.; Caprihan, A.; Peceny, S.; Cannon, D.C.; Lowe, J.; Gasparovic, C. Erythrocyte stimulating agent effects on magnetic resonance spectroscopy in children born prematurely. J. Investig. Med., 2014, 62(1), 210-211.
[187]
Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of hidrox(®) in rotenone-induced parkinson’s disease in mice. Antioxidants (Basel, Switzerland), 2020, 9(9), 824.