Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Structure, Biological Activities and Metabolism of Flavonoid Glucuronides

Author(s): Min Chen*, Xueyang Ren*, Siqi Sun, Xiuhuan Wang, Xiao Xu, Xiang Li, Xiaoping Wang, Xiao Li, Xin Yan, Ruiwen Li, Yu Wang, Xiaoyun Liu, Ying Dong, Xueyan Fu and Gaimei She*

Volume 22, Issue 2, 2022

Published on: 21 May, 2021

Page: [322 - 354] Pages: 33

DOI: 10.2174/1389557521666210521221352

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Flavonoid glucuronides are a kind of natural products presenting a flavone linked directly with one or several glucuronides through O-glycoside bond. They had become of interest in natural product research in the past decades for their antioxidant, anti-inflammatory, and antibacteria activities. In particular, the compound breviscapine has a notable effect on cardiocerebrovascular diseases. Several other compounds even have antitumor activity.

Methods: Through searching the database and reading a large number of documents, we summarized the related findings of flavonoid glucuronides.

Results: We summarized 211 naturally occurring flavonoid glucuronides in 119 references with their chemical structures, biological activities, and metabolism. A total of 220 references from 1953 to 2020 were cited in this paper according to literature databases such as CNKI, Weipu, Wanfang data, Elsevier, Springer, Wiley, NCBI, PubMed, EmBase, etc.

Conclusion: Flavonoid glucuronides are a class of compounds with various chemical structures and a diverse range of biological activities. They are thought to be potential candidates for drug discovery, but the specific study on their mechanisms is still limited until now. We hope this article can provide references for natural product researchers and draw more attention to flavonoid glucuronides’ biological activities and mechanisms.

Keywords: Flavonoid glucuronides, traditional chinese medicine, phytochemistry, chemical constituents, biological activity, metabolism.

Graphical Abstract
[1]
Yang, L.; Gu, J.; Lin, M.; Ge, Q.; Li, L. Advances in research on breviscapine. Tianjin Pharm., 2010, 22(1), 56-60.
[2]
Xin, W.; Song, J.; He, G.; Du, G. Progress in pharmacological study and the underlying mechanism of baicalein and baicalin.Chin J New Drugs, 2013, 22(6), 647-653+659,
[3]
Xing, J.; Chen, X.; Zhong, D. Absorption and enterohepatic circulation of baicalin in rats. Life Sci., 2005, 78(2), 140-146.
[http://dx.doi.org/10.1016/j.lfs.2005.04.072] [PMID: 16107266]
[4]
Kootstra, A. Protection from UV-B-induced DNA damage by flavonoids. Plant Mol. Biol., 1994, 26(2), 771-774.
[http://dx.doi.org/10.1007/BF00013762] [PMID: 7948931]
[5]
Jiang, W.; Hu, M. Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase II metabolic pathways. RSC Advances, 2012, 2(21), 7948-7963.
[http://dx.doi.org/10.1039/c2ra01369j] [PMID: 25400909]
[6]
Huang, W.H.; Lee, A.R.; Yang, C.H. Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis GEORGI. Biosci. Biotechnol. Biochem., 2006, 70(10), 2371-2380.
[http://dx.doi.org/10.1271/bbb.50698] [PMID: 17031041]
[7]
Li, C.; Zhou, L.; Lin, G.; Zuo, Z. Contents of major bioactive flavones in proprietary traditional Chinese medicine products and reference herb of radix Scutellariae. J. Pharm. Biomed. Anal., 2009, 50(3), 298-306.
[http://dx.doi.org/10.1016/j.jpba.2009.04.028] [PMID: 19481403]
[8]
Horvath, C.R.; Martos, P.A.; Saxena, P.K. Identification and quantification of eight flavones in root and shoot tissues of the medicinal plant huang-qin (Scutellaria baicalensis Georgi) using high-performance liquid chromatography with diode array and mass spectrometric detection. J. Chromatogr. A, 2005, 1062(2), 199-207.
[http://dx.doi.org/10.1016/j.chroma.2004.11.030] [PMID: 15679157]
[9]
Huang, S.; Chen, J.H.; Gong, M.; Huang, M.Q.; Li, J.; Wu, A.G.; Lai, X.P. Studies on the flavonoidls from the herb of Striga asiatica Zhong Yao Cai, 2010, 33(7), 1089-1091.
[PMID: 21137363]
[10]
Baris, O.; Karadayi, M.; Yanmis, D.; Guvenalp, Z.; Bal, T.; Gulluce, M. Isolation of 3 flavonoids from Mentha longifolia (L.) Hudson subsp. longifolia and determination of their genotoxic potentials by using the E. coli WP2 test system. J. Food Sci., 2011, 76(9), T212-T217.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02405.x] [PMID: 22416730]
[11]
Shukla, N.; Kumar, M. Akanksha; Ahmad, G.; Rahuja, N.; Singh, A.B.; Srivastava, A.K.; Rajendran, S.M.; Maurya, R. Tectone, a new antihyperglycemic anthraquinone from Tectona grandis leaves. Nat. Prod. Commun., 2010, 5(3), 427-430.
[http://dx.doi.org/10.1177/1934578X1000500318] [PMID: 20420322]
[12]
Zhang, Z.F.; Liu, Y.; Luo, P.; Zhang, H. Separation and purification of two flavone glucuronides from Erigeron multiradiatus (Lindl.) Benth with macroporous resins. J. Biomed. Biotechnol., 2009, 2009875629
[http://dx.doi.org/10.1155/2009/875629] [PMID: 19918373]
[13]
Galicka, A.; Nazaruk, J.; Bruczko, M. Differential effect of flavonoids on glycosaminoglycan content and distribution in skin fibroblasts of patients with type I osteogenesis imperfecta. Mol. Med. Rep., 2010, 3(3), 537-541.
[http://dx.doi.org/10.3892/mmr_00000294] [PMID: 21472276]
[14]
Kang, M.J.; Ko, G.S.; Oh, D.G.; Kim, J.S.; Noh, K.; Kang, W.; Yoon, W.K.; Kim, H.C.; Jeong, H.G.; Jeong, T.C. Role of metabolism by intestinal microbiota in pharmacokinetics of oral baicalin. Arch. Pharm. Res., 2014, 37(3), 371-378.
[http://dx.doi.org/10.1007/s12272-013-0179-2] [PMID: 23771520]
[15]
Wen, M.; Li, X.; Fu, S. New research progress in pharmacological activities of baicalin. J. Shenyang Pharm. Univ., 2008, 25(2), 158-162.
[16]
Fang, Q.; Qiao, Y. Advances Research in Callus Inducement and Cell Culture of Scutellaria baicalensis Georgi. Nat Prod Res Dev, 2008, 20(1), 187.
[17]
Gumbinger, H.G.; Winterhoff, H.; Wylde, R.; Sosa, A. On the influence of the sugar moiety on the antigonadotropic activity of luteoline glycosides. Planta Med., 1992, 58(1), 49-50.
[http://dx.doi.org/10.1055/s-2006-961388] [PMID: 1620743]
[18]
Williams, C.A.; Onyilagha, J.C.; Harborne, J.B. Flavonoid Profiles in Leaves, Flowers and Stems of Forty-nine Members of the Phaseolinae. Biochem. Syst. Ecol., 1995, 23(6), 655-667.
[http://dx.doi.org/10.1016/0305-1978(95)00040-2]
[19]
Mosharrafa, S.A.M.; Mansour, R.M.A.; Abou-Zaid, M.; Saleh, N.A.M. Some biologically active flavonoids from Egyptian members of the compositae. Bull. Chem. Soc. Ethiop., 1994, 8(1), 9-13.
[20]
Mansour, R.M.A.; Saleh, N.A.M.; Boulos, L. A chemosystematic study of the phenolics of Sonchus. Phytochemistry, 1983, 22(2), 489-492.
[http://dx.doi.org/10.1016/0031-9422(83)83031-3]
[21]
Yamazaki, K.; Iwashina, T.; Kitajima, J.; Gamou, Y.; Yoshida, A.; Tannowa, T. External and internal flavonoids from Madagascarian Uncarina species (Pedaliaceae). Biochem. Syst. Ecol., 2007, 35(11), 743-749.
[http://dx.doi.org/10.1016/j.bse.2007.04.013]
[22]
Shi, S.; Xu, L.; Mao, Z.; Li, W.; Ye, J.; Gao, M. Study on physicochemical properties and influence factors on stability of breviscapine Zhongguo Zhongyao Zazhi, 2009, 34(7), 843-847.
[PMID: 19623977]
[23]
Ren, X.; Deng, M.; Zhang, X. Graphical synthetic routes of Scutellarin-7-O-glucuronide. China Med Herald, 2008, 5(3), 23-24.
[24]
Shi, M.; Yang, W.; Liu, X. Research progress of scutellar in pharmaco logical Study. J Kunming Med Univ, 2013, 9, 151-154.
[25]
Xia, H.; Zhu, S.; Liang, J.; Chen, L.; Xin, D.; Qiu, F. Identification of metabolites in plasma, bile, urine, and faeces samples of rats after ig administered with breviscapine. Chin. Tradit. Herbal Drugs, 2009, 40(9), 1362-1366.
[26]
You, H.S.; Zhang, H.F.; Dong, Y.L.; Chen, S.Y.; Wang, M.Y.; Dong, W.H.; Xing, J.F. Absorption and transportation characteristics of scutellarin and scutellarein across Caco-2 monolayer model J. Chin. Integr. Med., 2010, 8(9), 863-869.
[http://dx.doi.org/10.3736/jcim20100910] [PMID: 20836977]
[27]
Falé, P.L.; Borges, C.; Madeira, P.J.A.; Ascensão, L.; Araújo, M.E.M.; Florêncio, M.H.; Serralheiro, M.L.M. Rosmarinic acid, scutellarein 4′-methyl ether 7-O-glucuronide and (16S)-coleon E are the main compounds responsible for the antiacetylcholinesterase and antioxidant activity in herbal tea of Plectranthus barbatus (“falso boldo”). Food Chem., 2009, 114(3), 798-805.
[http://dx.doi.org/10.1016/j.foodchem.2008.10.015]
[28]
Kawasaki, M.; Hayashi, T.; Arisawa, M.; Morita, N.; Berganza, L.H. 8-Hydroxytricetin 7-glucuronide, a β-glucuronidase inhibitor from Scoparia dulcis. Phytochemistry, 1988, 27(11), 3709-3711.
[http://dx.doi.org/10.1016/0031-9422(88)80811-2]
[29]
Wei, J.; Xi, Q.; Zeng, Y.; Li, B.; Li, Y.; Qian, X.; Lu, R. Flavonoids of Zhuang medicine Cardiospermum halicacabum. Chin. Herb. Med., 2018, 49(11), 2502-2507.
[30]
Kubínová, R.; Gazdová, M.; Hanáková, Z.; Jurkaninová, S.; Dall’Acqua, S.; Cvačka, J.; Humpa, O. New diterpenoid glucoside and flavonoids from Plectranthus scutellarioides (L.) R. Br. S. Afr. J. Bot., 2019, 120, 286-290.
[http://dx.doi.org/10.1016/j.sajb.2018.08.023]
[31]
Tronchet, J. Repartition of flavonoidic glycosides in Antirrhinum majus flowers; Annales Scientifiques De Luniversite De Besancon Botanique, 1976.
[32]
Aritomi, M.; Kawasaki, T. Three highly oxygenated flavone glucuronides in leaves of Spinacia oleracea. Phytochemistry, 1984, 23(9), 2043-2047.
[http://dx.doi.org/10.1016/S0031-9422(00)84967-5]
[33]
Aritomi, M.; Komori, T.; Kawasaki, T. Flavonol glycoside in leaves of Spinacia oleracea. Phytochemistry, 1985, 25(1), 231-234.
[http://dx.doi.org/10.1016/S0031-9422(00)94534-5]
[34]
Singh, J.; Jayaprakasha, G.K.; Patil, B.S. An optimized solvent extraction and characterization of unidentified flavonoid glucuronide derivatives from spinach by UHPLC-HR-QTOF-MS. Talanta, 2018, 188, 763-771.
[http://dx.doi.org/10.1016/j.talanta.2018.06.025] [PMID: 30029444]
[35]
Kera, K.; Fine, D.D.; Wherritt, D.J.; Nagashima, Y.; Shimada, N.; Ara, T.; Ogata, Y.; Sumner, L.W.; Suzuki, H. Pathway-specific metabolome analysis with 18O2-labeled Medicago truncatulavia a mass spectrometry-based approach. Metabolomics, 2018, 14(5), 71.
[http://dx.doi.org/10.1007/s11306-018-1364-6] [PMID: 29780292]
[36]
Grayer-Barkmeijer, R.J.; Tomás-Barberán, F.A. 8-Hydroxylated flavone O-glycosides and other flavonoids in chemotypes of Gratiola officinalis. Phytochemistry, 1993, 34(1), 205-210.
[http://dx.doi.org/10.1016/S0031-9422(00)90806-9]
[37]
Markham, K.R.; Porter, L.J. Flavonoids of the primitive liverwort Takakia and their taxonomic and phylogenetic significance. Phytochemistry, 1979, 18(4), 611-615.
[http://dx.doi.org/10.1016/S0031-9422(00)84270-3]
[38]
Ko, J.H.; Nam, Y.H.; Joo, S.W.; Kim, H.G.; Lee, Y.G.; Kang, T.H.; Baek, N.I. Flavonoid 8-O-Glucuronides from the Aerial Parts of Malva verticillata and Their Recovery Effects on Alloxan-Induced Pancreatic Islets in Zebrafish. Molecules, 2018, 23(4), 833.
[http://dx.doi.org/10.3390/molecules23040833] [PMID: 29617347]
[39]
Wang, P.; Ye, F. Chemical constituents and fingerprint analysis of compound Yuxingcao mistura by liquid chromatography coupled with mass spectrometry. Yaowu Fenxi Zazhi, 2015, 35(4), 659-665.
[40]
Liu, N.; Li, X.; Zhang, J.; Wang, L.; Sun, G.; Lin, Q.; Xu, Y. Flavonoid compounds in the petals of Hosta. Caoye Xuebao, 2013, 22(1), 234-244.
[41]
Williams, C.A.; Harborne, J.B.; Greenham, J.R.; Grayer, R.J.; Kite, G.C.; Eagles, J. Variations in lipophilic and vacuolar flavonoids among European Pulicaria species. Phytochemistry, 2003, 64(1), 275-283.
[http://dx.doi.org/10.1016/S0031-9422(03)00207-3] [PMID: 12946426]
[42]
Huang, M.J.; Zeng, G.Y.; Tan, J.B.; Li, Y.L.; Tan, G.S.; Zhou, Y.J. Studies on flavonoid glycosides of Sarcandra glabra Zhongguo Zhongyao Zazhi, 2008, 33(14), 1700-1702.
[PMID: 18841770]
[43]
Ohara, K.; Wakabayashi, H.; Taniguchi, Y.; Shindo, K.; Yajima, H.; Yoshida, A. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages. Biochem. Biophys. Res. Commun., 2013, 441(4), 929-934.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.168] [PMID: 24216107]
[44]
Balasuriya, N.; Rupasinghe, H.P.V. Antihypertensive properties of flavonoid-rich apple peel extract. Food Chem., 2012, 135(4), 2320-2325.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.023] [PMID: 22980808]
[45]
Nees, S.; Weiss, D.R.; Reichenbach-Klinke, E.; Rampp, F.; Heilmeier, B.; Kanbach, J.; Esperester, A. Protective effects of flavonoids contained in the red vine leaf on venular endothelium against the attack of activated blood components in vitro. Arzneimittelforschung, 2003, 53(5), 330-341.
[PMID: 12854360]
[46]
Ismaili, H.; Tortora, S.; Sosa, S.; Fkih-Tetouani, S.; Ilidrissi, A.; Della Loggia, R.; Tubaro, A.; Aquino, R. Topical anti-inflammatory activity of Thymus willdenowii. J. Pharm. Pharmacol., 2001, 53(12), 1645-1652.
[http://dx.doi.org/10.1211/0022357011778250] [PMID: 11804395]
[47]
Lu, Y.; Foo, L.Y. Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem., 2001, 75(2), 197-202.
[http://dx.doi.org/10.1016/S0308-8146(01)00198-4]
[48]
del Baño, M.J.; Lorente, J.; Castillo, J.; Benavente-García, O.; Marín, M.P.; Del Río, J.A.; Ortuño, A.; Ibarra, I. Flavonoid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. postulation of a biosynthetic pathway. J. Agric. Food Chem., 2004, 52(16), 4987-4992.
[http://dx.doi.org/10.1021/jf040078p] [PMID: 15291464]
[49]
Huang, J.; Wang, G.; Li, T.; Li, Y.; Ye, W. Chemical constituents from Vitex negundo. Chin. Tradit. Herbal Drugs, 2013, 44(10), 1237-1240.
[50]
Asen, S.; Horowitz, R.M. Apigenin 4′-O-β-d-glucoside 7-O-β-d)- glucuronide: The copigment in the blue pigment of Centaurea cyanus. Phytochemistry, 1974, 13(7), 1219-1223.
[http://dx.doi.org/10.1016/0031-9422(74)80104-4]
[51]
Budzianowski, J. Six flavonol glucuronides from Tulipa gesneriana. Phytochemistry, 1991, 30(5), 1679-1682.
[http://dx.doi.org/10.1016/0031-9422(91)84233-I]
[52]
Kawashty, S.A.; Gamal-El-Din, E.; Abdalla, M.F.; Saleh, N.A.M. Flavonoids of Plantago species in Egypt. Biochem. Syst. Ecol., 1994, 22(7), 729-733.
[http://dx.doi.org/10.1016/0305-1978(94)90058-2]
[53]
Abdalla, M.F.; Saleh, N.A.M.; Gabr, S.; Abu-Eyta, A.M.; El-Said, H. Flavone glycosides of Salvia triloba. Phytochemistry, 1983, 22(9), 2057-2060.
[http://dx.doi.org/10.1016/0031-9422(83)80044-2]
[54]
Williams, C.A.; Harborne, J.B. Flavonoid chemistry and plant geography in the Cyperaceae. Biochem. Syst. Ecol., 1977, 5(1), 45-51.
[http://dx.doi.org/10.1016/0305-1978(77)90017-5]
[55]
Qu, C.; Yue, S.; Lin, H.; Kai, J.; Shang, G.; Tang, Y.; Tao, W.; Duan, J. Chemical constituents of Carthamus tinctoriu. Chin. Tradit. Herbal Drugs, 2015, 46(13), 1872-1877.
[56]
Urushibara, S.; Kitayama, Y.; Watanabe, T.; Okuno, T.; Watarai, A.; Matsumoto, T. New flavonol glycosides, major determinants inducing the green fluorescence in the guard cells of Allium cepa. Tetrahedron Lett., 1992, 33(9), 1213-1216.
[http://dx.doi.org/10.1016/S0040-4039(00)91899-9]
[57]
Fan, L.; Zhao, H.; Pu, R.; Han, J.; Wang, B.; Guo, D. Study on flavonoids in the flower of Carthamus tinctorius L. J. Chin. Pharm. Sci., 2011, 46(5), 333-337.
[58]
Xie, X.; Zhou, J.; Sun, L.; Zhang, H.; Zhao, Y.; Song, Y.; Wang, X.; Ni, F.; Huang, W.; Wang, Z.; Xiao, W. A new flavonol glycoside from the florets of Carthamus tinctorius L. Nat. Prod. Res., 2016, 30(2), 150-156.
[http://dx.doi.org/10.1080/14786419.2015.1045905] [PMID: 26185946]
[59]
Yamada, K.; Murata, T.; Kobayashi, K.; Miyase, T.; Yoshizaki, F. A lipase inhibitor monoterpene and monoterpene glycosides from Monarda punctata. Phytochemistry, 2010, 71(16), 1884-1891.
[http://dx.doi.org/10.1016/j.phytochem.2010.08.009] [PMID: 20832830]
[60]
Seabra, R.M.; Alves, A.C. Quercetin 3-glucuronide-3′-sulphate from Hypericum elodes. Phytochemistry, 1988, 27(9), 3019-3020.
[http://dx.doi.org/10.1016/0031-9422(88)80720-9]
[61]
Kamiya, K.; Saiki, Y.; Hama, T.; Fujimoto, Y.; Endang, H.; Umar, M.; Satake, T. Flavonoid glucuronides from Helicteres isora. Phytochemistry, 2001, 57(2), 297-301.
[http://dx.doi.org/10.1016/S0031-9422(01)00005-X] [PMID: 11382247]
[62]
Phakeovilay, C.; Disadee, W.; Sahakitpichan, P.; Sitthimonchai, S.; Kittakoop, P.; Ruchirawat, S.; Kanchanapoom, T. Phenylethanoid and flavone glycosides from Ruellia tuberosa L. J. Nat. Med., 2013, 67(1), 228-233.
[http://dx.doi.org/10.1007/s11418-012-0658-7] [PMID: 22447282]
[63]
Lim, S.S.; Jung, Y.J.; Hyun, S.K.; Lee, Y.S.; Choi, J.S. Rat lens aldose reductase inhibitory constituents of Nelumbo nucifera stamens. Phytother. Res., 2006, 20(10), 825-830.
[http://dx.doi.org/10.1002/ptr.1847] [PMID: 16881021]
[64]
Yoshimura, M.; Ito, H.; Miyashita, K.; Hatano, T.; Taniguchi, S.; Amakura, Y.; Yoshida, T. Flavonol glucuronides and C-glucosidic ellagitannins from Melaleuca squarrosa. Phytochemistry, 2008, 69(18), 3062-3069.
[http://dx.doi.org/10.1016/j.phytochem.2008.04.004] [PMID: 18501392]
[65]
Nazaruk, J.; Jakoniuk, P. Flavonoid composition and antimicrobial activity of Cirsium rivulare (Jacq.) All. flowers. J. Ethnopharmacol., 2005, 102(2), 208-212.
[http://dx.doi.org/10.1016/j.jep.2005.06.012] [PMID: 16061337]
[66]
Meng, L.; Lozano, Y.F.; Gaydou, E.M.; Li, B. Antioxidant activities of polyphenols extracted from Perilla frutescens varieties. Molecules, 2008, 14(1), 133-140.
[http://dx.doi.org/10.3390/molecules14010133] [PMID: 19127243]
[67]
Carnat, A.; Carnat, A.P.; Chavignon, O.; Heitz, A.; Wylde, R.; Lamaison, J.L. Luteolin 7-diglucuronide, the major flavonoid compound from Aloysia triphylla and Verbena officinalis. Planta Med., 1995, 61(5), 490.
[http://dx.doi.org/10.1055/s-2006-958152] [PMID: 7480218]
[68]
Asif, M. Phytochemical study of polyphenols in Perilla Frutescens as an antioxidant. Avicenna J. Phytomed., 2012, 2(4), 169-178.
[PMID: 25050247]
[69]
Hu, J.; Chen, X.; Zhou, W. Study on Fingerprints of Paishi Granule. J Sichuan TCM, 2014, 8, 66-69.
[70]
Cai, H. The study on the quality standard and antioxidant bioactive constituents of CaIicarpa kwangtungensis Chun. Master's thesis, Guangzhou Univ Chin Med, 2014.12,
[71]
Nie, W.; Zhu, P.; Huang, L.; Ye, J. The research progress of guangdong purple beads medicine delta. Zhongguo Xiandai Zhongyao, 2011, 13(9), 37-39.
[72]
Averett, J.E.; Huang, S.; Wagner, W.L. Flavonoid survey of Oenothera (Onagraceae): Sects. gauropsis, hartmannia, kneiffia, paradoxus, and xylopleurum. Am. J. Bot., 1988, 75(4), 476-483.
[http://dx.doi.org/10.1002/j.1537-2197.1988.tb13465.x]
[73]
Harborne, J.B. Plant polyphenols—XIV: Characterization of flavonoid glycosides by acidic and enzymic hydrolyses. Phytochemistry, 1965, 4(1), 107-120.
[http://dx.doi.org/10.1016/S0031-9422(00)86152-X]
[74]
Mues, R.; Leidinger, G.; Lauck, V.; Zinsmeister, H.D.; Koponen, T.; Markham, K.R. Rhizomnium magnifolium and R. pseudopunctatum, the first mosses to yield flavone glucuronides. Z. Naturforsch. C, 1986, 41(11-12), 971-975.
[http://dx.doi.org/10.1515/znc-1986-11-1203]
[75]
Liu, G.; Rajesh, N.; Wang, X.; Zhang, M.; Wu, Q.; Li, S.; Chen, B.; Yao, S. Identification of flavonoids in the stems and leaves of Scutellaria baicalensis Georgi. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(13-14), 1023-1028.
[http://dx.doi.org/10.1016/j.jchromb.2011.02.050] [PMID: 21435957]
[76]
Miyaichi, Y.; Imoto, Y.; Saida, H.; Tomimori, T. Studies on the constituents of Scutellaria species. (X). On the flavonoid constituents of the leaves of Scutellaria baicalensis GEORGI. Shoyakugaku Zasshi, 1988, 42(3), 216-219.
[77]
Liu, G.; Ma, J.; Chen, Y.; Tian, Q.; Shen, Y.; Wang, X.; Chen, B.; Yao, S. Investigation of flavonoid profile of Scutellaria bacalensis Georgi by high performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J. Chromatogr. A, 2009, 1216(23), 4809-4814.
[http://dx.doi.org/10.1016/j.chroma.2009.04.021] [PMID: 19411078]
[78]
Cui, C.B.; Tezuka, Y.; Kikuchi, T.; Nakano, H.; Tamaoki, T.; Park, J.H. Constituents of a fern, Davallia mariesii Moore. I. Isolation and structures of davallialactone and a new flavanone glucuronide. Chem. Pharm. Bull. (Tokyo), 1990, 38(12), 3218-3225.
[http://dx.doi.org/10.1248/cpb.38.3218] [PMID: 2092929]
[79]
Beninger, C.W.; Abou-Zaid, M.M.; Kistner, A.L.E.; Hallett, R.H.; Iqbal, M.J.; Grodzinski, B.; Hall, J.C. A flavanone and two phenolic acids from Chrysanthemum morifolium with phytotoxic and insect growth regulating activity. J. Chem. Ecol., 2004, 30(3), 589-606.
[http://dx.doi.org/10.1023/B:JOEC.0000018631.67394.e5] [PMID: 15139310]
[80]
Slimestad, R.; Torskangerpoll, K.; Nateland, H.S.; Johannessen, T.; Giske, N.H. Flavonoids from black chokeberries, Aronia melanocarpa. J. Food Compos. Anal., 2005, 18(1), 61-68.
[http://dx.doi.org/10.1016/j.jfca.2003.12.003]
[81]
Miyaichi, Y.; Imoto, Y.; Tomimori, T.; Lin, C.C. Studies on the Constituents of Scutellaria Species. IX. On the Flavonoid Constituents of the Root of Scutellaria indica L. Chem. Pharm. Bull. (Tokyo), 1987, 35(9), 3720-3725.
[http://dx.doi.org/10.1248/cpb.35.3720]
[82]
Petrus, A.J.A. Polyphenolic components of Waltheria indica. Fitoterapia, 1990, 61(4), 371.
[83]
Xu, T.; Guo, H.; Wang, B.; Zhao, Y.; Zhang, Q. Metabolites in rat urine after orally administrating gossypetin-8-O-beta-D-glucuronide Zhongguo Zhongyao Zazhi, 2010, 35(19), 2585-2589.
[PMID: 21174770]
[84]
Markham, K.R.; Porter, L. Production of an aurone by bryophytes in the reproductive phase. Phytochemistry, 1978, 17(1), 159-160.
[http://dx.doi.org/10.1016/S0031-9422(00)89707-1]
[85]
Shang, X.; Tan, J.N.; Du, Y.; Liu, X.; Zhang, Z. Environmentally-Friendly Extraction of Flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja Leaves with Deep Eutectic Solvents and Evaluation of Their Antioxidant Activities. Molecules, 2018, 23(9), 2110.
[http://dx.doi.org/10.3390/molecules23092110] [PMID: 30131481]
[86]
Kwak, J.H.; Kim, H.J.; Lee, K.H.; Kang, S.C.; Zee, O.P. Antioxidative iridoid glycosides and phenolic compounds from Veronica peregrina. Arch. Pharm. Res., 2009, 32(2), 207-213.
[http://dx.doi.org/10.1007/s12272-009-1137-x] [PMID: 19280150]
[87]
Pereira, R.V.; Mecenas, A.S.; Malafaia, C.R.A.; Amaral, A.C.F.; Muzitano, M.F.; Simas, N.K.; Leal, I.C.R. Evaluation of the chemical composition and antioxidant activity of extracts and fractions of Ocotea notata (Ness) Mez (Lauraceae). Nat. Prod. Res., 2019, 34(20), 1-4.
[http://dx.doi.org/10.1080/14786419.2019.1624956] [PMID: 30990334]
[88]
Qin, M.; Jiang, J.; Zhang, X.; Wei, Z. Identification of luteolin 7-O-β-D-glucuronide from Cirsium japonicum and its anti-inflammatory mechanism. J. Funct. Foods, 2018, 46, 521-528.
[http://dx.doi.org/10.1016/j.jff.2018.05.014]
[89]
Matsumoto, T.; Kaneko, A.; Koseki, J.; Matsubara, Y.; Aiba, S.; Yamasaki, K. Pharmacokinetic Study of Bioactive Flavonoids in the Traditional Japanese Medicine Keigairengyoto Exerting Antibacterial Effects against Staphylococcus aureus. Int. J. Mol. Sci., 2018, 19(2), 328.
[http://dx.doi.org/10.3390/ijms19020328] [PMID: 29360768]
[90]
Kawai, Y. Understanding metabolic conversions and molecular actions of flavonoids in vivo:Toward new strategies for effective utilization of natural polyphenols in human health. J. Med. Invest., 2018, 65(3.4), 162-165..
[http://dx.doi.org/10.2152/jmi.65.162] [PMID: 30282854]
[91]
Luo, P.; Tan, Z.H.; Zhang, Z.F.; Zhang, H.; Liu, X.F.; Mo, Z.J. Scutellarin isolated from Erigeron multiradiatus inhibits high glucose-mediated vascular inflammation. Yakugaku Zasshi, 2008, 128(9), 1293-1299.
[http://dx.doi.org/10.1248/yakushi.128.1293] [PMID: 18758143]
[92]
Zhang, Q.; Cong, D.; An, D.; Fan, A.; Liu, Q.; Yi, Y.; Song, Z.; Chen, X.; Lu, Y.; Zhao, D.; He, L. Determination of oroxylin A and oroxylin A 7-O-d-glucuronide in HepG2 cell lysate and subcellular fractions with SPE-UPLC-MS/MS: Cellular pharmacokinetic study to indicate anti-cancer mechanisms. J. Pharm. Biomed. Anal., 2018, 154, 364-372.
[http://dx.doi.org/10.1016/j.jpba.2018.03.019] [PMID: 29571134]
[93]
Wu, Q.; Needs, P.W.; Lu, Y.; Kroon, P.A.; Ren, D.; Yang, X. Different antitumor effects of quercetin, quercetin-3′-sulfate and quercetin-3-glucuronide in human breast cancer MCF-7 cells. Food Funct., 2018, 9(3), 1736-1746.
[http://dx.doi.org/10.1039/C7FO01964E] [PMID: 29497723]
[94]
Singh, J.; Jayaprakasha, G.K.; Patil, B.S. Extraction, Identification, and Potential Health Benefits of Spinach Flavonoids: A Review. Chemistry to Human Health, 2018, 1286, 107-136.
[http://dx.doi.org/10.1021/bk-2018-1286.ch006]
[95]
Yoo, N.H. Phytochemical Constituents of the Roots of Erigeron annuus. J Korean Soc Appl Bi, 2008, 51(4), 305-308.
[http://dx.doi.org/10.3839/jksabc.2008.053]
[96]
Ben Hmidene, A.; Hanaki, M.; Murakami, K.; Irie, K.; Isoda, H.; Shigemori, H. Inhibitory Activities of Antioxidant Flavonoids from Tamarix gallica on Amyloid Aggregation Related to Alzheimer’s and Type 2 Diabetes Diseases. Biol. Pharm. Bull., 2017, 40(2), 238-241.
[http://dx.doi.org/10.1248/bpb.b16-00801] [PMID: 28154265]
[97]
Yuan, K.; Zhu, J.X.; Si, J.P.; Cai, H.K.; Ding, X.D.; Pan, Y.J. Studies on chemical constituents and antibacterial activity from n-butanol extract of Sarcandra glabra. Zhongguo Zhongyao Zazhi, 2008, 33(15), 1843-1846.
[PMID: 19007012]
[98]
Wu, X.; Zhi, F.; Lun, W.; Deng, Q.; Zhang, W. Baicalin inhibits PDGF-BB-induced hepatic stellate cell proliferation, apoptosis, invasion, migration and activation via the miR-3595/ACSL4 axis. Int. J. Mol. Med., 2018, 41(4), 1992-2002.
[http://dx.doi.org/10.3892/ijmm.2018.3427] [PMID: 29393361]
[99]
Kashiwada, Y.; Aoshima, A.; Ikeshiro, Y.; Chen, Y.P.; Furukawa, H.; Itoigawa, M.; Fujioka, T.; Mihashi, K.; Cosentino, L.M.; Morris-Natschke, S.L.; Lee, K.H. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg. Med. Chem., 2005, 13(2), 443-448.
[http://dx.doi.org/10.1016/j.bmc.2004.10.020] [PMID: 15598565]
[100]
Shelyuto, V.L.; Glyzin, V.I.; Bubon, N.T. Flavonoid glucuronides from Cirsium arvense. Chem. Nat. Compd., 1972, 8(2), 236-237.
[http://dx.doi.org/10.1007/BF00565311]
[101]
Chellaiyan, V.; Swaminathan, S. Anti-ulcer activity of baicalein-7-O-glucuronide isolated from Persicaria glabra flowers against pyloric ligation induced ulcer in albino rats. Int. J. Adv. Res. (Indore), 2017, 5(4), 2085-2092.
[http://dx.doi.org/10.21474/IJAR01/4055]
[102]
Tang, H.; Tang, L.; Xu, R.; Yang, J. Research progress on phase II metabolites and pharmacological activities of some flavonoids. China J New Drugs, 2012, 21(2), 144-150.
[103]
Dong, X.; Li, X.; Li, N.; Zhao, H. GuLa, A.; Zhang, X.; Zhang, P.; Bao, B. A target-group-change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile. J. Sep. Sci., 2019, 42(21), 3382-3389.
[http://dx.doi.org/10.1002/jssc.201900466] [PMID: 31503388]
[104]
Lin, P.; Qin, Z.; Yao, Z.; Wang, L.; Zhang, W.; Yu, Y.; Dai, Y.; Zhou, H.; Yao, X. Metabolites profile of Gualou Xiebai Baijiu decoction (a classical traditional Chinese medicine prescription) in rats by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1085, 72-88.
[http://dx.doi.org/10.1016/j.jchromb.2018.04.001] [PMID: 29635208]
[105]
Miners, J.O.; Mackenzie, P.I. Drug glucuronidation in humans. Pharmacol. Ther., 1991, 51(3), 347-369.
[http://dx.doi.org/10.1016/0163-7258(91)90065-T] [PMID: 1792239]
[106]
Kong, L. Studies on the metabolism and transport of flavonoids by UGTs and OATP. Doctoral dissertation, Soochow university,2018.12,
[107]
Dai, P.; Zhu, L.; Luo, F.; Lu, L.; Li, Q.; Wang, L.; Wang, Y.; Wang, X.; Hu, M.; Liu, Z. Triple Recycling Processes Impact Systemic and Local Bioavailability of Orally Administered Flavonoids. AAPS J., 2015, 17(3), 723-736.
[http://dx.doi.org/10.1208/s12248-015-9732-x] [PMID: 25762448]
[108]
Jia, X.; Chen, J.; Lin, H.; Hu, M. Disposition of flavonoids via enteric recycling: Enzyme-transporter coupling affects metabolism of biochanin A and formononetin and excretion of their phase II conjugates. J. Pharmacol. Exp. Ther., 2004, 310(3), 1103-1113.
[http://dx.doi.org/10.1124/jpet.104.068403] [PMID: 15128864]
[109]
Zhang, S.J.; Guo, J.R.; An, K.; Di, L.Q. Research progress of deglycosylation metabolism of glycosides in traditional Chinese medicine by intestinal flora. J. Tradit. Chin. Med., 2013, 38(10), 1459-1466.
[110]
Cai, Y.; Li, S.; Li, T.; Zhou, R.; Wai, A.T.S.; Yan, R. Oral pharmacokinetics of baicalin, wogonoside, oroxylin A 7-O-β-d-glucuronide and their aglycones from an aqueous extract of Scutellariae Radix in the rat. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1026(15), 124-133.
[http://dx.doi.org/10.1016/j.jchromb.2015.11.049] [PMID: 26809374]
[111]
O’Leary, K.A.; Day, A.J.; Needs, P.W.; Mellon, F.A.; O’Brien, N.M.; Williamson, G. Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: The role of human β-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem. Pharmacol., 2003, 65(3), 479-491.
[http://dx.doi.org/10.1016/S0006-2952(02)01510-1] [PMID: 12527341]
[112]
Bock, K.W.; Köhle, C. UDP-glucuronosyltransferase 1A6: Structural, functional, and regulatory aspects. Methods Enzymol., 2005, 400, 57-75.
[http://dx.doi.org/10.1016/S0076-6879(05)00004-2] [PMID: 16399343]
[113]
Ohno, S.; Nakajin, S. Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab. Dispos., 2009, 37(1), 32-40.
[http://dx.doi.org/10.1124/dmd.108.023598] [PMID: 18838504]
[114]
Liu, Z.; Ma, Y.; Wang, T.; Guo, X. Metabolism of baicalin and baicalin in isolated rat liver, kidney, small intestine and bladder. Chin J Parma, 2008, 6, 664-668.
[115]
Chen, J.; Lin, H.; Hu, M. Metabolism of flavonoids via enteric recycling: Role of intestinal disposition. J. Pharmacol. Exp. Ther., 2003, 304(3), 1228-1235.
[http://dx.doi.org/10.1124/jpet.102.046409] [PMID: 12604700]
[116]
Dai, P. Coupling of UGTs and transporters affects the disposition of tilianin and acacetin in the intestinal recycling.Doctoral dissertation,Southern medical university, 2016.
[117]
Xia, B. A novel local recycling responsible for the disposition of wogonoside and wogonin in the intestinal epithelium.Doctoral dissertation, Southern medical university, 2010.
[118]
Shi, J. Pharmacokinetic and enterohepatic disposition of isoflavonoids of astragali radix.Doctoral dissertation, Southern medical university, 2017.
[119]
Xia, B.; Zhou, Q.; Zheng, Z.; Ye, L.; Hu, M.; Liu, Z. A novel local recycling mechanism that enhances enteric bioavailability of flavonoids and prolongs their residence time in the gut. Mol. Pharm., 2012, 9(11), 3246-3258.
[http://dx.doi.org/10.1021/mp300315d] [PMID: 23033922]
[120]
Cui, X.; Tao, J.; Wei, X.; Jiang, S.; Xu, J.; Qian, D.; Duan, J. Study on the metabolism of hbaicalin by intestinal flora. Chin. Herb. Med., 2017, 48(19), 4024-4028.
[121]
Wang, S.; Cai, T.; Liu, H.; Yang, A.; Xing, J. Liquid chromatography-tandem mass spectrometry assay for the simultaneous determination of three major flavonoids and their glucuronidated metabolites in rats after oral administration of Artemisia annua L. extract at a therapeutic ultra-low dose. J. Sep. Sci., 2019, 42(21), 3330-3339.
[http://dx.doi.org/10.1002/jssc.201900668] [PMID: 31483950]
[122]
Wu, X.L.; Wu, M.J.; Chen, X.Z.; Zhang, H.M.; Ding, L.Q.; Tian, F.Y.; Fu, X.M.; Qiu, F.; Zhang, D.Q. Rapid characterization of the absorbed chemical constituents of Tangzhiqing formula following oral administration using UHPLC-Q-TOF-MS. J. Sep. Sci., 2018, 41(5), 1025-1038.
[http://dx.doi.org/10.1002/jssc.201700777] [PMID: 29227021]
[123]
Chalet, C.; Rubbens, J.; Tack, J.; Duchateau, G.S.; Augustijns, P. Intestinal disposition of quercetin and its phase-II metabolites after oral administration in healthy volunteers. J. Pharm. Pharmacol., 2018, 70(8), 1002-1008.
[http://dx.doi.org/10.1111/jphp.12929] [PMID: 29761870]
[124]
Chalet, C.; Hollebrands, B.; Duchateau, G.S.; Augustijns, P. Intestinal phase-II metabolism of quercetin in HT29 cells, 3D human intestinal tissues and in healthy volunteers: A qualitative comparison using LC-IMS-MS and LC-HRMS. Xenobiotica, 2019, 49(8), 945-952.
[http://dx.doi.org/10.1080/00498254.2018.1509246] [PMID: 30085847]
[125]
Chledzik, S.; Strawa, J.; Matuszek, K.; Nazaruk, J. Pharmacological Effects of Scutellarin, An Active Component of Genus Scutellaria and Erigeron: A Systematic Review. Am. J. Chin. Med., 2018, 46(2), 319-337.
[http://dx.doi.org/10.1142/S0192415X18500167] [PMID: 29433387]
[126]
Zhang, Q.; Zhang, S.; Meng, X.X.; Zhang, M.; Gao, X.L. Effects of intestinal flora imbalance on pharmacokinetic parameters of baicalin and baicalein in rats. Chin. Herb. Med., 2017, 48, 3783-3788.
[127]
Liang, Z; Zheng, T; Gao, X Study on the enzymatic reaction kinetics of baicalin in liver and intestinal microsomes of rats with ulcerative colitis. Zhongnan pharmacy, 2016, 14(12), 1302-1307.,
[128]
Zhang, X.; Han, L.; Liu, J.; Xu, Q.; Guo, Y.; Zheng, W.; Wang, J.; Huang, X.; Ren, P. Pharmacokinetic Study of 7 Compounds Following Oral Administration of Fructus Aurantii to Depressive Rats. Front. Pharmacol., 2018, 9, 131.
[http://dx.doi.org/10.3389/fphar.2018.00131] [PMID: 29556193]
[129]
Liu, T.; Tian, X.; Li, Z.; Han, F.; Ji, B.; Zhao, Y.; Yu, Z. Metabolic profiling of Gegenqinlian decoction in rat plasma, urine, bile and feces after oral administration by ultra high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1079, 69-84.
[http://dx.doi.org/10.1016/j.jchromb.2018.02.001] [PMID: 29453016]
[130]
Imai, K.; Mayama, T. Chemical constituents of Erigeron species (Compositae). II. Erigeron annuus. Yakugaku Zasshi, 1953, 73(2), 131-134.
[http://dx.doi.org/10.1248/yakushi1947.73.2_131]
[131]
Popova, T.P. Flavonol glycosides of Scutellaria baicalensis roots. Farm Zh (Kiev), 1974, 29(2), 91-92.
[PMID: 4463072]
[132]
Levvy, G.A. Baicalinase, a plant β-glucuronidase. Biochem. J., 1954, 58(3), 462-469.
[http://dx.doi.org/10.1042/bj0580462] [PMID: 13208637]
[133]
Harborne, J.B. Plant polyphenols. X. Flavone and aurone glycosides of Antirrhinum. Phytochemistry, 1963, 2(4), 327-334.
[http://dx.doi.org/10.1016/S0031-9422(00)84856-6]
[134]
Murata, T.; Arai, Y.; Miyase, T.; Yoshizaki, F. An alkaloidal glycoside and other constituents from Leucosceptrum japonicum. J. Nat. Med., 2009, 63(4), 402-407.
[http://dx.doi.org/10.1007/s11418-009-0342-8] [PMID: 19495928]
[135]
Subramanian, S.S.; Nair, A.G.R. Flavonoids of the leaves of Pedalium murex. Phytochemistry, 1972, 11(1), 464-465.
[http://dx.doi.org/10.1016/S0031-9422(00)90057-8]
[136]
Ramesh, P.; Nair, A.G.R.; Subramanian, S.S. Flavonoids of Scoparia dulcis and Stemodia viscosa. Curr. Sci., 1979, 48(2), 67.
[137]
Gafner, S.; Bergeron, C.; Batcha, L.L.; Reich, J.; Arnason, J.T.; Burdette, J.E.; Pezzuto, J.M.; Angerhofer, C.K. Inhibition of [3H]-LSD binding to 5-HT7 receptors by flavonoids from Scutellaria lateriflora. J. Nat. Prod., 2003, 66(4), 535-537.
[http://dx.doi.org/10.1021/np0205102] [PMID: 12713409]
[138]
Tomimori, T.; Jin, H.; Miyaichi, Y.; Toyofuku, S.; Namba, T. Studies on the constituents of Scutellaria species. VI. On the flavonoid constituents of the root of Scutellaria baicalensis Georgi (5). Quantitative analysis of flavonoids in Scutellaria roots by high-performance liquid chromatography Yakugaku Zasshi, 1985, 105(2), 148-155.
[http://dx.doi.org/10.1248/yakushi1947.105.2_148] [PMID: 4009423]
[139]
Rao, M.A.; Rao, E.V. Flavonoids of the flowers of Adenocalymma alliaceum. Curr. Sci., 1980, 49(12), 468-469.
[140]
Grayer, R.J.; Veitch, N.C.; Kite, G.C.; Paton, A.J.; Garnock-Jones, P.J. Scutellarein 4′-methyl ether glycosides as taxonomic markers in Teucridium and Tripora (Lamiaceae, Ajugoideae). Phytochemistry, 2002, 60(7), 727-731.
[http://dx.doi.org/10.1016/S0031-9422(02)00192-9] [PMID: 12127590]
[141]
Harborne, J.B.; Hall, E. Plant polyphenols—XII.: The occurrence of tricin and of glycoflavones in grasses. Phytochemistry, 1964, 3(3), 421-428.
[http://dx.doi.org/10.1016/S0031-9422(00)83627-4]
[142]
Wang, Y.Q.; Matsuzaki, K.; Takahashi, K.; Okuyama, T.; Shibata, S. Studies on the constituents of Scutellaria species. IV. High performance liquid chromatography of glucuronylflavonoids in Scutellaria ikonnikovii juz. Yao Xue Xue Bao, 1991, 26(5), 358-361.
[PMID: 1957685]
[143]
Wang, Y.Q.; Matsuzaki, K.; Takahashi, K.; Okuyama, T.; Shibata, S. Studies of the constituents of Scutellaria species. I. The flavonoid glucuronides of “Bo Ye Huang Chin”. Scutellaria ikonnikovii. Chem. Pharm. Bull. (Tokyo), 1988, 36(8), 3206-3209.
[http://dx.doi.org/10.1248/cpb.36.3206]
[144]
Wang, Q.H.; Ao, W.L.J.; Wang, X.L.; Bao, X.H.; Wang, J.H. Two new flavonoid glycosides from Artemisia frigida Willd. J. Asian Nat. Prod. Res., 2010, 12(11), 950-954.
[http://dx.doi.org/10.1080/10286020.2010.510469] [PMID: 21061216]
[145]
Yukinori, M.; Yoshitaka, I.; Tsuyoshi, T.; Lin, C.C. Studies on the Constituents of Scutellaria Species. IX.: On the Flavonoid Constituents of the Root of Scutellaria indica L. (Pharmacognosy, Chemical). Chem. Pharm. Bull. (Tokyo), 1987, 35, 3720-3725.
[http://dx.doi.org/10.1248/cpb.35.3720]
[146]
Li, J.R.; Wang, Y.Q.; Deng, Z.Z. Two new compounds from Glycyrrhiza glabra. J. Asian Nat. Prod. Res., 2005, 7(4), 677-680.
[http://dx.doi.org/10.1080/10286020310001625067] [PMID: 16087644]
[147]
Markham, K.R.; Mues, R. Taxonomically significant 8-hydroxyflavone glucuronides from the marchantialean liverwort, bucegia romanica. Phytochemistry, 1983, 22(1), 143-146.
[http://dx.doi.org/10.1016/S0031-9422(00)80075-8]
[148]
Watkin, J.E. Flavonoids of Scutellaria.Aspects Plant Phenolic Chem., Proc. Symp., (3rd Ed.. ) Univ. Toronto1964, pp. 39-51.
[149]
Matsuura, Y.; Miyaichi, Y.; Tomimori, T. Studies on the Nepalese crude drugs. XIX. On the flavonoid and phenylethanoid constituents of the root of Scutellaria repens Buch.-Ham. ex D. Don Yakugaku Zasshi, 1994, 114(10), 775-788.
[http://dx.doi.org/10.1248/yakushi1947.114.10_775] [PMID: 7528799]
[150]
Saleh, N.A.M.; Boulos, L.; El-Negoumy, S.I.; Abdalla, M.F. A comparative study of the flavonoids of Medicago radiata with other Medicago and related Trigonella species. Biochem. Syst. Ecol., 1982, 10(1), 33-36.
[http://dx.doi.org/10.1016/0305-1978(82)90048-5]
[151]
Miyaichi, Y.; Hanamitsu, E.; Kizu, H.; Tomimori, T. Studies on the constituents of Scutellaria species (XXII). Constituents of the roots of Scutellaria amabilis HARA. Chem. Pharm. Bull. (Tokyo), 2006, 54(4), 435-441.
[http://dx.doi.org/10.1248/cpb.54.435] [PMID: 16595941]
[152]
Williams, C.A.; Fronczyk, J.H.; Harborne, J.B. Leaf flavonoid and other phenolic glycosides as indicators of parentage in six ornamental Fuchsia species and their hybrids. Phytochemistry, 1983, 22(9), 1953-1957.
[http://dx.doi.org/10.1016/0031-9422(83)80021-1]
[153]
Stochmal, A.; Simonet, A.M.; Macias, F.A.; Oleszek, W. Alfalfa (Medicago sativa L.) flavonoids. 2. Tricin and chrysoeriol glycosides from aerial parts. J. Agric. Food Chem., 2001, 49(11), 5310-5314.
[http://dx.doi.org/10.1021/jf010600x] [PMID: 11714321]
[154]
Han, J.; Ye, M.; Xu, M.; Sun, J.; Wang, B.; Guo, D. Characterization of flavonoids in the traditional Chinese herbal medicine-Huangqin by liquid chromatography coupled with electrospray ionization mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 848(2), 355-362.
[http://dx.doi.org/10.1016/j.jchromb.2006.10.061] [PMID: 17118721]
[155]
Flamini, G.; Antognoli, E.; Morelli, I. Two flavonoids and other compounds from the aerial parts of Centaurea bracteata from Italy. Phytochemistry, 2001, 57(4), 559-564.
[http://dx.doi.org/10.1016/S0031-9422(01)00066-8] [PMID: 11394857]
[156]
Yan, M.M.; Zhao, D.Q.; Shao, S.; Liu, W.H.; Bi, S.N.; Wang, H.J. Studies on the constituents from the herba of Erigeron acer Zhong Yao Cai, 2008, 31(9), 1334-1336.
[PMID: 19180951]
[157]
Popova, T.P.; Pakaln, D.A.; Litvinenko, V.I. Chemistry and taxonomy of species from section Stachymacris A.Hamilt of genus Scutellaria L; FAO, 1980, pp. 80-82.
[158]
Cho, Y-J.; Ju, I-S.; Yun, D-H.; Chun, S-S.; An, B-J.; Kim, J-H.; Kim, M-U. Biological Activity of Extracts from Garden Sage (Salvia officinalis L.). J. Appl. Biol. Chem., 2008, 51(6), 296-301.
[http://dx.doi.org/10.3839/jabc.2008.046]
[159]
Sinha, N.K.; Seth, K.K.; Pandey, V.B.; Dasgupta, B.; Shah, A.H. Flavonoids from the flowers of Clerodendron infortunatum. Planta Med., 1981, 42(7), 296-298.
[http://dx.doi.org/10.1055/s-2007-971645] [PMID: 17401979]
[160]
Cañigueral, S.; Iglesias, J.; Hamburger, M.; Hostettmann, K. Phenolic Constituents of Salvia lavandulifolia ssp. Lavandulifolia. Planta Med., 1989, 55(1), 92-92.
[http://dx.doi.org/10.1055/s-2006-961840]
[161]
Rao, P.R.; Seshadri, T.R.; Sharma, P. Polyphenolic Constituents of Pyrethrum flowers (Chrysanthemum Cinerarifolium). Curr. Sci., 1973, 42(23), 811-812.
[162]
Pauli, G.F.; Junior, P. Phenolic glycosides from Adonis aleppica. Phytochemistry, 1995, 38(5), 1245-1250.
[http://dx.doi.org/10.1016/0031-9422(94)00635-7]
[163]
Metawally, M.A.; Dawidar, A. Constituents of Conyza linifolia. Pharmazie, 1987, 42(5), 335.
[164]
Feng, J.; Yang, X-W.; Wang, R-F. Bio-assay guided isolation and identification of α-glucosidase inhibitors from the leaves of Aquilaria sinensis. Phytochemistry, 2011, 72(2-3), 242-247.
[http://dx.doi.org/10.1016/j.phytochem.2010.11.025] [PMID: 21215978]
[165]
Billeter, M.; Meier, B.; Sticher, O. 8-Hydroxyflavonoid glucuronides from Malva sylvestris. Phytochemistry, 1991, 30(3), 987-990.
[http://dx.doi.org/10.1016/0031-9422(91)85292-8]
[166]
Tang, W.; Sun, X.; Fang, J.S.; Zhang, M.; Sucher, N.J. Flavonoids from Radix Scutellariae as potential stroke therapeutic agents by targeting the second postsynaptic density 95 (PSD-95)/disc large/zonula occludens-1 (PDZ) domain of PSD-95. Phytomedicine, 2004, 11(4), 277-284.
[http://dx.doi.org/10.1078/0944711041495173] [PMID: 15185839]
[167]
Porter, L.J. Geographic races of Conocephalum (Marchantiales) as defined by flavonoid chemistry. Taxon, 1981, 30(4), 739-748.
[http://dx.doi.org/10.2307/1220075]
[168]
Bandyukova, V.; Khalmatov, K.; Alimov, K. Flavonoids of Centaurea depressa. Chem. Nat. Compd., 1969, 5(4), 274-275.
[http://dx.doi.org/10.1007/BF00683861]
[169]
Subramanian, S.S.; Nair, A.G.R.; Vedantham, T.N.C. Terpenoids and flavones of Callicarpa macrophylla and C. longifolia. Phytochemistry, 1974, 13(1), 306-307.
[http://dx.doi.org/10.1016/S0031-9422(00)91331-1]
[170]
Lim, T.K. Edible medicinal and non-medicinal plants; Springer: Netherlands, 2012.
[171]
Subramanian, S.S. Flavanoids of the leaves of Oroxylum indicum and Pajanelia longifolia. Phytochemistry, 1972, 11(1), 439-440.
[http://dx.doi.org/10.1016/S0031-9422(00)90042-6]
[172]
Harborne, J.B.; Williams, C.A. Flavonoid patterns in the fruits of the Umbelliferae. Phytochemistry, 1972, 11(5), 1741-1750.
[http://dx.doi.org/10.1016/0031-9422(72)85030-1]
[173]
Sankara, S.S.; Joseph, K.J.; Nair, A.G.R. Flavonoids of Nelumbium speciosum. Phytochemistry, 1969, 8(3), 674.
[http://dx.doi.org/10.1016/S0031-9422(00)85422-9]
[174]
El-Mousallamy, A.M.D.; Ahmed, S.A. Constitutive flavonoids of the flowers of Tamarix tetragyna. Nat. Prod. Sci., 2000, 6(2), 91-95.
[175]
Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Gómez, M.V.; Velders, A.H.; Hermosín-Gutiérrez, I. Flavonol 3-O-glycosides series of Vitis vinifera Cv. Petit Verdot red wine grapes. J. Agric. Food Chem., 2009, 57(1), 209-219.
[http://dx.doi.org/10.1021/jf802863g] [PMID: 19061313]
[176]
Furusawa, M.; Ito, T.; Nakaya, K-i. Flavonol glycosides in two Diospyros plants and their radical scavenging activity. Heterocycles, 2003, 60(11), 2557-2563.
[http://dx.doi.org/10.3987/COM-03-9882]
[177]
Merfort, I.; Wendisch, D. Flavonolglucuronide aus den Blüten von Arnica montana1. Planta Med., 1988, 54(3), 247-250.
[http://dx.doi.org/10.1055/s-2006-962419] [PMID: 17265264]
[178]
Wang, Q.; Xu, D-R.; Shi, X-H.; Qin, M. Flavones from Potentilla discolor Bunge. Chin. J. Nat. Med., 2010, 7(5), 361-364.
[http://dx.doi.org/10.3724/SP.J.1009.2009.00361]
[179]
Wagner, H.; Iyengar, M.A.; Seligmann, O.; Herz, W. Rhamnocitrin-3-glucuronid in Verbesina myricephala. Phytochemistry, 1974, 13(2), 493-494.
[http://dx.doi.org/10.1016/S0031-9422(00)91241-X]
[180]
el-Toumy, S.A.; Marzouk, M.S.; Moharram, F.A.; Aboutabl, E.A. Flavonoids of Melaleuca quinquenervia. Pharmazie, 2001, 56(1), 94-95.
[PMID: 11210680]
[181]
Lu, Y.; Foo, L.Y. Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry, 2000, 55(3), 263-267.
[http://dx.doi.org/10.1016/S0031-9422(00)00309-5] [PMID: 11142853]
[182]
Matsubara, Y.; Kumamoto, H.; Iizuka, Y.; Murakami, T.; Okamoto, K.; Miyake, H.; Yokoi, K. Structure and hypotensive effect of flavonoid glycosides in Citrus unshiu peelings. Agric. Biol. Chem., 1985, 49(4), 909-914.
[183]
Recio, M.; Terencio, M.; Arenas, J.A.; Giner, R.; Sanz, M-J.; Máñez, S.; Canavate, J.L. Luteolin-7-O-galactosylglucuronide, a new flavonoid from Andryala ragusina. Pharmazie, 1993, 48(3), 228-229.
[184]
Williams, C.A.; Harborne, J.B.; Geiger, H.; Hoult, J.R.S. The flavonoids of Tanacetum parthenium and T. vulgare and their anti-inflammatory properties. Phytochemistry, 1999, 51(3), 417-423.
[http://dx.doi.org/10.1016/S0031-9422(99)00021-7] [PMID: 10382317]
[185]
Kraut, L.; Klein, R.; Mues, R. Flavonoid diversity in the liverwort genus Monoclea Hooker. Z. Naturforsch. C, 1992, 47(11-12), 794-799.
[http://dx.doi.org/10.1515/znc-1992-11-1203]
[186]
Harborne, J.B.; Heywood, V.H.; Saleh, N.A.M. Chemosystematics of the composiate: Flavonoid patterns in the Chrysanthemum complex of the tribe Anthemideae. Phytochemistry, 1970, 9(9), 2011-2017.
[http://dx.doi.org/10.1016/S0031-9422(00)85354-6]
[187]
Kraut, L.; Scherer, B.; Mues, R.; Sim-Sim, M. Flavonoids from some Frullania species (Hepaticae). Z. Naturforsch. C, 1995, 50(5-6), 345-352.
[http://dx.doi.org/10.1515/znc-1995-5-603]
[188]
Kraut, L.; Mues, R.; Speicher, A.; Wagmann, M.; Eicher, T. Carboxylated α-pyrone derivatives and flavonoids from the liverwort Dumortiera hirsuta. Phytochemistry, 1996, 42(6), 1693-1698.
[http://dx.doi.org/10.1016/0031-9422(96)00242-7]
[189]
Wang, M-H.; Li, L-Z.; Sun, J-B.; Wu, F-H.; Liang, J-Y. A new antioxidant flavone glycoside from Scutellaria baicalensis Georgi. Nat. Prod. Res., 2014, 28(20), 1772-1776.
[http://dx.doi.org/10.1080/14786419.2014.931391] [PMID: 24995563]
[190]
Al-Qudah, M.A.; Al-Jaber, H.I.; Abu Zarga, M.H.; Abu Orabi, S.T. Flavonoid and phenolic compounds from Salvia palaestina L. growing wild in Jordan and their antioxidant activities. Phytochemistry, 2014, 99(3), 115-120.
[http://dx.doi.org/10.1016/j.phytochem.2014.01.001] [PMID: 24472393]
[191]
Zhou, X.; Yu, S.; Cheng, M.; Zou, H.; Liu, B.; Zhang, Y.; Zhou, G. Chemical constituents from Tetracera asiatica. Chin. Tradit. Herbal Drugs, 2015, 46(2), 185-188.
[192]
Zapesochnaya, G.; Ben’kovskii, A. A flavonoid from Achillea cartilaginea. Chem. Nat. Compd., 1976, 12(6), 733-734.
[http://dx.doi.org/10.1007/BF00564979]
[193]
Shi, H.; Mi, C.; Qiao, B.; Li, F.; Wang, C.; Liu, Z.; Takeshima, J. Studies on the chemical constituents of the root of Pimpinella thellungiana. Zhong Yao Cai, 1998, 21(5), 236-237.
[PMID: 12567955]
[194]
Rehecho, S.; Hidalgo, O.; de Cirano, M.G-I.; Navarro, I.; Astiasarán, I.; Ansorena, D.; Cavero, R.Y.; Calvo, M.I. Chemical composition, mineral content and antioxidant activity of Verbena officinalis L. Food Sci Technol, 2011, 44(4), 875-882.
[http://dx.doi.org/10.1016/j.lwt.2010.11.035]
[195]
Stochmal, A.; Simonet, A.M.; Macias, F.A.; Oliveira, M.A.; Abreu, J.M.; Nash, R.; Oleszek, W. Acylated apigenin glycosides from alfalfa (Medicago sativa L.) var. Artal. Phytochemistry, 2001, 57(8), 1223-1226.
[http://dx.doi.org/10.1016/S0031-9422(01)00204-7] [PMID: 11454348]
[196]
Johnson, E.L.; Schmidt, W.F.; Norman, H.A. Leaf flavonoids as chemotaxonomic markers for two Erythroxylum taxa. Z. Naturforsch. C, 1997, 52(10), 577-585.
[http://dx.doi.org/10.1515/znc-1997-9-1004]
[197]
Xu, G.; Zhang, L.; Shen, H.; Hu, C. Inhibition of protein kinase C by scutellarein and its analogues. Biol. Pharm. Bull., 1993, 39(2), 187-191.
[198]
Meng, L.; Lozano, Y.; Bombarda, I.; Gaydou, E.; Li, B. Anthocyanin and flavonoid production from Perilla frutescens: Pilot plant scale processing including cross-flow microfiltration and reverse osmosis. J. Agric. Food Chem., 2006, 54(12), 4297-4303.
[http://dx.doi.org/10.1021/jf0604079] [PMID: 16756359]
[199]
Saleh, N.A.M.; El-Negoumy, S.I.; Abou-zaid, M.M. Flavonoids of Artemisia judaica, A. monosperma and A. herba-alba. Phytochemistry, 1987, 26(11), 3059-3064.
[http://dx.doi.org/10.1016/S0031-9422(00)84593-8]
[200]
Mues, R. Species specific flavone glucuronides in Elodea species. Biochem. Syst. Ecol., 1983, 11(3), 261-265.
[http://dx.doi.org/10.1016/0305-1978(83)90063-7]
[201]
Quirantes-Piné, R.; Funes, L.; Micol, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A. High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a lemon verbena extract. J. Chromatogr. A, 2009, 1216(28), 5391-5397.
[http://dx.doi.org/10.1016/j.chroma.2009.05.038] [PMID: 19500792]
[202]
Markham, K.R.; Porter, I.J. Flavonoids of the liverwort Marchantia polymorpha. Phytochemistry, 1974, 13(9), 1937-1942.
[http://dx.doi.org/10.1016/0031-9422(74)85120-4]
[203]
Markham, K.R.; Porter, L.J. Flavone glucuronides of the New Zealand liverwort Marchantia Macropora. Phytochemistry, 1975, 14(7), 1641.
[http://dx.doi.org/10.1016/0031-9422(75)85367-2]
[204]
Klaiklay, S.; Sukpondma, Y.; Rukachaisirikul, V.; Hutadilok-Towatana, N.; Chareonrat, K. Flavanone glucuronides from the leaves of Garcinia prainiana. Can. J. Chem., 2011, 89(4), 461-464.
[http://dx.doi.org/10.1139/V10-168]
[205]
Matsuda, H.; Morikawa, T.; Toguchida, I.; Harima, S.; Yoshikawa, M. Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: Their inhibitory activities for rat lens aldose reductase. Chem. Pharm. Bull. (Tokyo), 2002, 50(7), 972-975.
[http://dx.doi.org/10.1248/cpb.50.972] [PMID: 12130858]
[206]
Zhou, Z.; Zhang, Y.; Yang, C. New flavonoid glycosides from Scutellaria amoena. Studies in Plant Science, 1999, 6, 305-310.
[http://dx.doi.org/10.1016/S0928-3420(99)80040-8]
[207]
Hasan, A.; Tahir, M.N.; Malik, A.; Sharif, C.A.; Khan, M.A. A new flavanone glycoside from leaves of Impatiens balsamina. J. Chem. Soc. Pak., 2004, 26(2), 167-170.
[208]
Zhang, Y.; Zhao, Q.; Ma, J.; Wu, B.; Zeng, X. Chemical characterization of phenolic compounds in erigeron injection by rapid-resolution LC coupled with multi-stage and quadrupole-TOF-MS. Chromatographia, 2010, 72(7-8), 651-658.
[http://dx.doi.org/10.1365/s10337-010-1703-x]
[209]
Kandil, F.E.; El-Sayed, N.H.; Micheal, H.N.; Ishak, M.S.; Mabry, T.J. Flavonoids from Psidium guaijava. Asian J. Chem., 1997, 9(4), 871.
[210]
Pangarova, T.T.; Zapesochnaya, G.G.; Nukhimovskii, E.L. Flavonoids of Rhodiola algida. Chem. Nat. Compd., 1974, 10(5), 685-686.
[http://dx.doi.org/10.1007/BF00567883]
[211]
Williams, C.A.; Greenham, J.; Harborne, J.B. The role of lipophilic and polar flavonoids in the classification of temperate members of the Anthemideae. Biochem. Syst. Ecol., 2001, 29(9), 929-945.
[http://dx.doi.org/10.1016/S0305-1978(01)00039-4] [PMID: 11445294]
[212]
Zhang, N.; Jin, W.; Sun, Y.; Wang, G.; Yu, Y.; Zhou, Z.; Wang, G.; Liu, J. Indole and flavonoid from the herbs of Kalimeris shimadai. Phytochem. Lett., 2018, 28, 135-138.
[http://dx.doi.org/10.1016/j.phytol.2018.10.002]
[213]
Tomimori, T.; Imoto, Y.; Miyaichi, Y. Studies on the constituents of Scutellaria species. XIII. On the flavonoid constituents of the root of Scutellaria rivularis Wall. Chem. Pharm. Bull. (Tokyo), 1990, 38(12), 3488-3490.
[http://dx.doi.org/10.1248/cpb.38.3488]
[214]
Lee, Y.J.; Beak, S.Y.; Choi, I.; Sung, J.S. Quercetin and its metabolites protect hepatocytes against ethanol-induced oxidative stress by activation of Nrf2 and AP-1. Food Sci. Biotechnol., 2017, 27(3), 809-817.
[http://dx.doi.org/10.1007/s10068-017-0287-8] [PMID: 30263806]
[215]
Liu, F.; Li, L.; Lu, W.; Ding, Z.; Huang, W.; Li, Y.T.; Cheng, C.; Shan, W.S.; Xu, J.; He, W. Zhanghui; Yin, Z. Scutellarin ameliorates cartilage degeneration in osteoarthritis by inhibiting the Wnt/β-catenin and MAPK signaling pathways. Int. Immunopharmacol., 2020, 78, 105954-105954.
[http://dx.doi.org/10.1016/j.intimp.2019.105954] [PMID: 31757676]
[216]
Iida, K.; Naiki, T.; Naiki-Ito, A.; Suzuki, S.; Kato, H.; Nozaki, S.; Nagai, T.; Etani, T.; Nagayasu, Y.; Ando, R.; Kawai, N.; Yasui, T.; Takahashi, S. Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci., 2020, 111(4), 1165-1179.
[http://dx.doi.org/10.1111/cas.14334] [PMID: 31994822]
[217]
McCarty, M.F.; Assanga, S.I.; Lujan, L.L. Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med. Hypotheses, 2020, 141109723
[http://dx.doi.org/10.1016/j.mehy.2020.109723] [PMID: 32305811]
[218]
Benvenutti, R.C.; Dalla Vecchia, C.A.; Locateli, G.; Serpa, P.Z.; Lutinski, J.A.; Rodrigues, Junior S.A; Corralo, V.; Gutiérrez, M.V.; Vilegas, W.; Somensi, L.B.; Longo, B.; Knihs, J.F.; Mota da Silva, L.; de Andrade, S.F.; Roman, Junior W.A, Gastroprotective activity of hydroalcoholic extract of the leaves of Urera baccifera in rodents. J. Ethnopharmacol., 2020, 250112473
[http://dx.doi.org/10.1016/j.jep.2019.112473] [PMID: 31836518]
[219]
Zhi, H.; Yuan, Y.; Zhang, C.; Jiang, Y.; Zhang, H.; Wang, C.; Ruan, J. Importance of OATP1B1 and 1B3 in the Liver Uptake of Luteolin and Its Consequent Glucuronidation Metabolites. J. Agric. Food Chem., 2020, 68(7), 2063-2070.
[http://dx.doi.org/10.1021/acs.jafc.9b06954] [PMID: 32009392]
[220]
Hanioka, N.; Isobe, T.; Tanaka-Kagawa, T.; Ohkawara, S. Wogonin glucuronidation in liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice. Xenobiotica, 2020, 50(8), 906-912.
[http://dx.doi.org/10.1080/00498254.2020.1725180] [PMID: 32005083]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy