Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

A Link Between Chemical Structure and Biological Activity in Triterpenoids

Author(s): Li Zang, Hao Xu, Chao Huang, Cunqin Wang*, Rongbin Wang*, Ying Chen, Lei Wang and Hongting Wang*

Volume 17, Issue 2, 2022

Published on: 15 February, 2022

Page: [145 - 161] Pages: 17

DOI: 10.2174/1574892816666210512031635

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Plants that are rich in triterpenoid compounds possess various biological activities and are reported in many scientific works. Triterpenoids, because of their broad sources, wide variety, high medicinal value, and anti-tumor properties, have drawn great attention from scientists. However, the lack of approach to understand the link between their chemical structures and biological activities has limited the fundamental comprehension of these compounds in cancer therapy.

Objective: The aim of the study is to summarize the list of plants with triterpenoids and their derivatives that are a source of potential novel therapeutic anti-cancer agents by interpreting the network of anti-cancer activity and the structures of triterpenoids and their derivatives.

Methods: This work focuses on analyzing relevant patents and references that detail the structure of triterpenoids and their derivatives for the treatment of tumors.

Results: Pentacyclic triterpenoid plays a more important role in improving the autophagic signaling pathways of cancer cells compared to tetracyclic triterpenoid.

Conclusion: The heterogenous skeleton structure of triterpenoids impairs programmed cell death signaling pathways in various cancers.

Keywords: Triterpenoids, classification, chemical structure, programmed cell death, autoghagy, apoptosis.

[1]
Gao T, Xie A, Liu X, et al. Toosendanin induces the apoptosis of human Ewing’s sarcoma cells via the mitochondrial apoptotic pathway. Mol Med Rep 2019; 20(1): 135-40.
[http://dx.doi.org/10.3892/mmr.2019.10224] [PMID: 31115517]
[2]
Islam MS, Wang C, Zheng J, Paudyal N, Zhu Y, Sun H. The potential role of tubeimosides in cancer prevention and treatment. Eur J Med Chem 2019; 162: 109-21.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.001] [PMID: 30439592]
[3]
Komarova TV, Sheshukova EV, Kosobokova EN, et al. The biological activity of bispecific trastuzumab/pertuzumab plant biosimilars may be drastically boosted by disulfiram increasing formaldehyde accumulation in cancer cells. Sci Rep 2019; 9(1): 16168.
[http://dx.doi.org/10.1038/s41598-019-52507-9] [PMID: 31700025]
[4]
Antapli Christopher M, Emerson Christopher R, Senn Flip. Activated cannabinoid controlled release compound tablet and method of forming the same US2020375907A1, 2020.
[5]
Al-asmary fatmah ali, Alah menatallah mouamed, Awaad amani shafeek, El-meligy reham mostafa, El-sawaf lara ayman. Anticancer extracts of Alpinia officinarum hance. US10098924B1, 2018.
[6]
Chen WQ, Cheng JX, Gan DH, et al. Application of oleanane typetriterpenoidin preparation of anti-tumor medicament, and rhodomyrtus tomentosa extract containingtriterpenoid. CN111184 727A, 2020.
[7]
Kuo mao-Tien, Liu sheng-yun, Wen wu-che. Inhibition of the survival of bladder cancer by cyclohexenone compounds from Antrodia camphorata. US2013005827A1, 2013.
[8]
Yan XJ, Gong LH, Zheng FY, Cheng KJ, Chen ZS, Shi Z. Triterpenoids as reversal agents for anticancer drug resistance treatment. Drug Discov Today 2014; 19(4): 482-8.
[http://dx.doi.org/10.1016/j.drudis.2013.07.018] [PMID: 23954181]
[9]
Liu L, Xu FR, Wang YZ. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. J Ethnopharmacol 2020; 263: 112792.
[http://dx.doi.org/10.1016/j.jep.2020.112792] [PMID: 32311488]
[10]
Zengin G, Ferrante C, Senkardes I, et al. Multidirectional biological investigation and phytochemical profile of Rubus sanctus and Rubus ibericus. Food Chem Toxicol 2019; 127: 237-50.
[http://dx.doi.org/10.1016/j.fct.2019.03.041] [PMID: 30914354]
[11]
Lishko Polina V, Mannowetz Nadja. Contraceptive use of triterpenoids. US2019300565A1, 2019.
[12]
Law YK, Liu L, Wong KW, Wu AG, Wu Z. Triterpenoidobtainable from hedera helix for treatment of neurodegenerative diseases. US10493118B2, 2019.
[13]
Han JY, Chun JH, Oh SA, et al. Transcriptomic analysis of kalopanax septemlobus and characterization of KsBAS, CYP716A94 and CYP72A397 genes involved in hederagenin saponin biosynthesis. Plant Cell Physiol 2018; 59(2): 319-30.
[http://dx.doi.org/10.1093/pcp/pcx188] [PMID: 29186583]
[14]
Cao FR, Xiao BX, Wang LS, et al. Plasma and brain pharmacokinetics of ganoderic acid A in rats determined by a developed UFLC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1052: 19-26.
[http://dx.doi.org/10.1016/j.jchromb.2017.03.009] [PMID: 28346885]
[15]
Kobayashi E, Ito J, Kato S, et al. Presence of orally administered rice bran oil γ-oryzanol in its intact form in mouse plasma. Food Funct 2016; 7(12): 4816-22.
[http://dx.doi.org/10.1039/C6FO01552B] [PMID: 27878202]
[16]
Petit B, Mitaine-Offer AC, Fernández FR, et al. Triterpene glycosides from Blighia welwitschii and evaluation of their antibody recognition capacity in multiple sclerosis. Phytochemistry 2020; 176: 112392.
[http://dx.doi.org/10.1016/j.phytochem.2020.112392] [PMID: 32512361]
[17]
Xu W, Yan QX, Liu YY, Chang BJ, Liu X, Qiu ZD. Three new triterpenoid saponins from notoginseng medicinal fungal substance. Chem Biodivers 2017; 14(12): e1700195.
[http://dx.doi.org/10.1002/cbdv.201700195] [PMID: 28944607]
[18]
Wang X, Peng XR, Lu J, Hu GL, Qiu MH. New dammarane triterpenoids, caffruones A-D, from the cherries of Coffea Arabica. Nat Prod Bioprospect 2018; 8(6): 413-8.
[http://dx.doi.org/10.1007/s13659-018-0181-y] [PMID: 30128843]
[19]
Yang XW, Ma LY, Zhou QL, Xu W, Zhang YB. SIRT1 activator isolated from artificial gastric juice incubate of total saponins in stems and leaves of Panax ginseng. Bioorg Med Chem Lett 2018; 28(3): 240-3.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.067] [PMID: 29317167]
[20]
Satria D, Amen Y, Niwa Y, et al. Lucidumol D, a new lanostane- type triterpene from fruiting bodies of Reishi (Ganoderma lingzhi). Nat Prod Res 2019; 33(2): 189-95.
[http://dx.doi.org/10.1080/14786419.2018.1440229] [PMID: 29457741]
[21]
Sagayama K, Tanaka N, Fukumoto T, Kashiwada Y. Lanostane- type triterpenes from the sclerotium of Inonotus obliquus (Chaga mushrooms) as proproliferative agents on human follicle dermal papilla cells. J Nat Med 2019; 73(3): 597-601.
[http://dx.doi.org/10.1007/s11418-019-01280-0] [PMID: 30706371]
[22]
Ngo TN, Vo CT, Pham NKT, et al. Markhacanasin C, cycloartane triterpenoid from the leaves of Markhamia stipulata var. canaense V.S. Dang. Nat Prod Res 2019; 33(2): 174-9.
[http://dx.doi.org/10.1080/14786419.2018.1440227] [PMID: 29468899]
[23]
V. IJC, E.R. Figueiredo, V. MGC, et al. Two novel cycloartane- type triterpenes from Trichilia casaretti C. DC. (Meliaceae) Molecules 2018; 23: 949-56.
[24]
Hernandez V, De Leo M, Cotugno R, Braca A, De Tommasi N, Severino L. New tirucallane-type triterpenoids from guarea guidonia. Planta Med 2018; 84(9-10): 716-20.
[PMID: 29341030]
[25]
Duong TH, Beniddir MA, Genta-Jouve G, et al. Further terpenoids from Euphorbia tirucalli. Fitoterapia 2019; 135: 44-51.
[http://dx.doi.org/10.1016/j.fitote.2019.04.001] [PMID: 30995563]
[26]
Yue J, Sun Y, Xu J, Zhang X, Zhao Y. Four new cucurbitane-type triterpenes from Momordica charantia L. with their cytotoxic activities and protective effects on H2O2-damaged pancreatic cells. J Nat Med 2020; 74(1): 34-40.
[PMID: 31256310]
[27]
Zhu N, Sun Z, Hu M, et al. Cucurbitane-type triterpenes from the tubers of Hemsleya penxianensis and their bioactive activity. Phytochemistry 2018; 147: 49-56.
[http://dx.doi.org/10.1016/j.phytochem.2017.12.014] [PMID: 29287258]
[28]
Shaheen U, Ragab EA, Abdalla AN, Bader A. Triterpenoidal saponins from the fruits of Gleditsia caspica with proapoptotic properties. Phytochemistry 2018; 145: 168-78.
[http://dx.doi.org/10.1016/j.phytochem.2017.11.007] [PMID: 29156366]
[29]
Pérez AJ, Pecio Ł, Kowalczyk M, et al. Cytotoxic triterpenoids isolated from sweet chestnut heartwood (Castanea sativa) and their health benefits implication. Food Chem Toxicol 2017; 109(Pt 2): 863-70.
[http://dx.doi.org/10.1016/j.fct.2017.03.049] [PMID: 28363853]
[30]
Zhang XY, Li W, Wang J, Li N, Cheng MS, Koike K. Protein tyrosine phosphatase 1B inhibitory activities of ursane-type triterpenes from Chinese raspberry, fruits of Rubus chingii. Chin J Nat Med 2019; 17(1): 15-21.
[http://dx.doi.org/10.1016/S1875-5364(19)30004-4] [PMID: 30704618]
[31]
Beladjila KA, Cotugno R, Berrehal D, et al. Cytotoxic triterpenes from Salvia buchananii roots. Nat Prod Res 2018; 32(17): 2025-30.
[http://dx.doi.org/10.1080/14786419.2017.1365072] [PMID: 28823202]
[32]
Aguilar MG, Sousa GF. E. FCG, A.P. Sabino, F.S.A. Vieira, L.P. Duarte, Imines and lactones derived from friedelanes and their cytotoxic activity. Nat Prod Res 2020; 34(6): 6.
[33]
Akter S, Huq MA. Biological synthesis of ginsenoside Rd using paenibacillus horti sp. nov. isolated from vegetable garden. Curr Microbiol 2018; 75(12): 1566-73.
[http://dx.doi.org/10.1007/s00284-018-1561-6] [PMID: 30167766]
[34]
Sun Y, Jiang X, Pan R, et al. Escins isolated from Aesculus chinensis Bge. promote the autophagic degradation of mutant huntingtin and inhibit its induced apoptosis in HT22 cells. Front Pharmacol 2020; 11: 116-36.
[http://dx.doi.org/10.3389/fphar.2020.00116] [PMID: 32158393]
[35]
Imjeti NS, Menck K, Egea-Jimenez AL, et al. Syntenin mediates SRC function in exosomal cell-to-cell communication. Proc Natl Acad Sci USA 2017; 114(47): 12495-500.
[http://dx.doi.org/10.1073/pnas.1713433114] [PMID: 29109268]
[36]
Ebner P, Poetsch I, Deszcz L, Hoffmann T, Zuber J, Ikeda F. The IAP family member BRUCE regulates autophagosome-lysosome fusion. Nat Commun 2018; 9(1): 599.
[http://dx.doi.org/10.1038/s41467-018-02823-x] [PMID: 29426817]
[37]
Ikeda F. The anti-apoptotic ubiquitin conjugating enzyme BIRC6/BRUCE regulates autophagosome-lysosome fusion. Autophagy 2018; 14(7): 1283-4.
[http://dx.doi.org/10.1080/15548627.2018.1471311] [PMID: 29929453]
[38]
Bloom MJ, Saksena SD, Swain GP, Behar MS, Yankeelov TE, Sorace AG. The effects of IKK-beta inhibition on early NF-kappa-B activation and transcription of downstream genes. Cell Signal 2019; 55: 17-25.
[http://dx.doi.org/10.1016/j.cellsig.2018.12.004] [PMID: 30543861]
[39]
Wang Q, Wang Y, Ding J, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 2020; 579(7799): 421-6.
[http://dx.doi.org/10.1038/s41586-020-2079-1] [PMID: 32188939]
[40]
Bi J, Areecheewakul S, Li Y, et al. MTDH/AEG-1 downregulation using pristimerin-loaded nanoparticles inhibits Fanconi anemia proteins and increases sensitivity to platinum-based chemotherapy. Gynecol Oncol 2019; 155(2): 349-58.
[http://dx.doi.org/10.1016/j.ygyno.2019.08.014] [PMID: 31477281]
[41]
Wu J, Lei H, Zhang J, et al. Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation. Oncotarget 2016; 7(37): 58995-9005.
[http://dx.doi.org/10.18632/oncotarget.10636] [PMID: 27449295]
[42]
Zhang J, Song Y, Liang Y, et al. Cucurbitacin IIa interferes with EGFR-MAPK signaling pathway leads to proliferation inhibition in A549 cells. Food Chem Toxicol 2019; 132: 1-8.
[http://dx.doi.org/10.1016/j.fct.2019.110654]
[43]
Yan F, Liao R, Silva M, et al. Pristimerin-induced uveal melanoma cell death via inhibiting PI3K/Akt/FoxO3a signalling pathway. J Cell Mol Med 2020; 24(11): 6208-19.
[http://dx.doi.org/10.1111/jcmm.15249] [PMID: 32347651]
[44]
Ma B, Zhang H, Wang Y, et al. Corosolic acid, a natural triterpenoid, induces ER stress-dependent apoptosis in human castration resistant prostate cancer cells via activation of IRE-1/JNK, PERK/CHOP and TRIB3. J Exp Clin Cancer Res 2018; 37(1): 210.
[http://dx.doi.org/10.1186/s13046-018-0889-x] [PMID: 30176898]
[45]
Cai Y, Zheng Y, Gu J, et al. Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78. Cell Death Dis 2018; 9(6): 636.
[http://dx.doi.org/10.1038/s41419-018-0669-8] [PMID: 29802332]
[46]
Mendes VIS, Bartholomeusz GA, Ayres M, Gandhi V, Salvador JAR. Synthesis and cytotoxic activity of novel A-ring cleaved ursolic acid derivatives in human non-small cell lung cancer cells. Eur J Med Chem 2016; 123: 317-31.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.045] [PMID: 27484517]
[47]
Liu F, Chen JF, Wang Y, et al. Cytotoxicity of lanostane-type triterpenoids and ergosteroids isolated from Omphalia lapidescens on MDA-MB-231 and HGC-27 cells. Biomed Pharmacother 2019; 118: 109273.
[http://dx.doi.org/10.1016/j.biopha.2019.109273] [PMID: 31374354]
[48]
Zhang J, Liu F, Zhang X. Inhibition of proliferation of SGC7901 and BGC823 human gastric cancer cells by ursolic acid occurs through a caspase-dependent apoptotic pathway. Med Sci Monit 2019; 25: 6846-54.
[http://dx.doi.org/10.12659/MSM.916740] [PMID: 31545303]
[49]
Adrian Thomas E, Collin Peter D, Newman Robert A. Compositions of matter and methoods to treat cancer. US2020054657A1, 2020.
[50]
Akhtar N, Syed DN, Khan MI, Adhami VM, Mirza B, Mukhtar H. The pentacyclic triterpenoid, plectranthoic acid, a novel activator of AMPK induces apoptotic death in prostate cancer cells. Oncotarget 2016; 7(4): 3819-31.
[http://dx.doi.org/10.18632/oncotarget.6625] [PMID: 26683363]
[51]
Kwon J, Ko K, Zhang L, Zhao D, Yang HO, Kwon HC. An autophagy inducing triterpene saponin derived from Aster koraiensis. Molecules 2019; 24(24): 1-8.
[http://dx.doi.org/10.3390/molecules24244489] [PMID: 31817934]
[52]
Nedopekina DA, Gubaidullin RR, Odinokov VN, et al. Mitochondria-targeted betulinic and ursolic acid derivatives: synthesis and anticancer activity. MedChemComm 2017; 8(10): 1934-45.
[http://dx.doi.org/10.1039/C7MD00248C] [PMID: 30108714]
[53]
Ma G, Luo W, Lu J, et al. Cucurbitacin E induces caspase-dependent apoptosis and protective autophagy mediated by ROS in lung cancer cells. Chem Biol Interact 2016; 253: 1-9.
[http://dx.doi.org/10.1016/j.cbi.2016.04.028] [PMID: 27106530]
[54]
Zhao Y, Li ETS, Wang M. Alisol B 23-acetate induces autophagic-dependent apoptosis in human colon cancer cells via ROS generation and JNK activation. Oncotarget 2017; 8(41): 70239-49.
[http://dx.doi.org/10.18632/oncotarget.19605] [PMID: 29050275]
[55]
Wu C, Jing M, Yang L, et al. Alisol A 24-acetate ameliorates nonalcoholic steatohepatitis by inhibiting oxidative stress and stimulating autophagy through the AMPK/mTOR pathway. Chem Biol Interact 2018; 291: 111-9.
[http://dx.doi.org/10.1016/j.cbi.2018.06.005] [PMID: 29883724]
[56]
Tien AJ, Chien CY, Chen YH, Lin LC, Chien CT. Fruiting bodies of antrodia cinnamomea and its active triterpenoid, antcin K, ameliorates N-Nitrosodiethylamine-induced hepatic inflammation, fibrosis and carcinogenesis in rats. Am J Chin Med 2017; 45(1): 173-98.
[http://dx.doi.org/10.1142/S0192415X17500124] [PMID: 28081627]
[57]
Zhang S, Cao L, Wang ZR, Li Z, Ma J. Anti-cancer effect of toosendanin and its underlying mechanisms. J Asian Nat Prod Res 2019; 21(3): 270-83.
[http://dx.doi.org/10.1080/10286020.2018.1451516] [PMID: 29629572]
[58]
Li X, You M, Liu YJ, et al. Reversal of the apoptotic resistance of non-small-cell lung carcinoma towards TRAIL by natural product toosendanin. Sci Rep 2017; 7: 42748.
[http://dx.doi.org/10.1038/srep42748] [PMID: 28209994]
[59]
Xiao Y, Yang Z, Wu QQ, et al. Cucurbitacin B protects against pressure overload induced cardiac hypertrophy. J Cell Biochem 2017; 118(11): 3899-910.
[http://dx.doi.org/10.1002/jcb.26041] [PMID: 28390176]
[60]
Khan N, Jajeh F, Khan MI, Mukhtar E, Shabana SM, Mukhtar H. Sestrin-3 modulation is essential for therapeutic efficacy of cucurbitacin B in lung cancer cells. Carcinogenesis 2017; 38(2): 184-95.
[PMID: 27881463]
[61]
Sun H, Huang M, Yao N, et al. The cycloartane triterpenoid ADCX impairs autophagic degradation through Akt overactivation and promotes apoptotic cell death in multidrug-resistant HepG2/ADM cells. Biochem Pharmacol 2017; 146: 87-100.
[http://dx.doi.org/10.1016/j.bcp.2017.10.012] [PMID: 29074104]
[62]
Dai X, Liu J, Nian Y, Qiu MH, Luo Y, Zhang J. A novel cycloartane triterpenoid from Cimicifuga induces apoptotic and autophagic cell death in human colon cancer HT-29 cells. Oncol Rep 2017; 37(4): 2079-86.
[http://dx.doi.org/10.3892/or.2017.5444] [PMID: 28260002]
[63]
Lee D, Kang KB, Kim HW, et al. Unique triterpenoid of jujube root protects cisplatin-induced damage in kidney epithelial LLC-PK1 cells via autophagy regulation. Nutrients 2020; 12(3): 1-14.
[http://dx.doi.org/10.3390/nu12030677] [PMID: 32131519]
[64]
Gong C, Hu X, Xu Y, et al. Berberine inhibits proliferation and migration of colorectal cancer cells by downregulation of GRP78. Anticancer Drugs 2020; 31(2): 141-9.
[http://dx.doi.org/10.1097/CAD.0000000000000835] [PMID: 31743135]
[65]
Bai LY, Chiu CF, Chu PC, Lin WY, Chiu SJ, Weng JR. A triterpenoid from wild bitter gourd inhibits breast cancer cells. Sci Rep 2016; 6: 22419.
[http://dx.doi.org/10.1038/srep22419] [PMID: 26926586]
[66]
Divya T, Sureshkumar A, Sudhandiran G. Autophagy induction by celastrol augments protection against bleomycin-induced experimental pulmonary fibrosis in rats: Role of adaptor protein p62/ SQSTM1. Pulm Pharmacol Ther 2017; 45: 47-61.
[http://dx.doi.org/10.1016/j.pupt.2017.04.003] [PMID: 28389259]
[67]
Xu XJ, Zhao WB, Feng SB, et al. Celastrol alleviates angiotensin II-mediated vascular smooth muscle cell senescence via induction of autophagy. Mol Med Rep 2017; 16(5): 7657-64.
[http://dx.doi.org/10.3892/mmr.2017.7533] [PMID: 28944849]
[68]
Wang R, Li Y, Huai XD, et al. Design and preparation of derivatives of oleanolic and glycyrrhetinic acids with cytotoxic properties. Drug Des Devel Ther 2018; 12: 1321-36.
[http://dx.doi.org/10.2147/DDDT.S166051] [PMID: 29861624]
[69]
Potočnjak I, Šimić L, Vukelić I, Domitrović R. Oleanolic acid attenuates cisplatin-induced nephrotoxicity in mice and chemosensitizes human cervical cancer cells to cisplatin cytotoxicity. Food Chem Toxicol 2019; 132: 110676.
[http://dx.doi.org/10.1016/j.fct.2019.110676] [PMID: 31306688]
[70]
Caunii A, Oprean C, Cristea M, et al. Effects of ursolic and oleanolic on SK-MEL-2 melanoma cells: in vitro and in vivo assays. Int J Oncol 2017; 51(6): 1651-60.
[http://dx.doi.org/10.3892/ijo.2017.4160] [PMID: 29039461]
[71]
Chen DL, Utgikar Neelima, Xu S P. Oral care composition. US2020375859A1, 2020.
[72]
Lange M, Abhari BA, Hinrichs TM, Fulda S, Liese J. Identification of a novel oxidative stress induced cell death by Sorafenib and oleanolic acid in human hepatocellular carcinoma cells. Biochem Pharmacol 2016; 118: 9-17.
[http://dx.doi.org/10.1016/j.bcp.2016.08.011] [PMID: 27544320]
[73]
Qin D, Wang W, Lei H, et al. CDDO-Me reveals USP7 as a novel target in ovarian cancer cells. Oncotarget 2016; 7(47): 77096-109.
[http://dx.doi.org/10.18632/oncotarget.12801] [PMID: 27780924]
[74]
Xu D, Chen L, Chen X, et al. The triterpenoid CDDO-imidazolide ameliorates mouse liver ischemia-reperfusion injury through activating the Nrf2/HO-1 pathway enhanced autophagy. Cell Death Dis 2017; 8(8): e2983.
[http://dx.doi.org/10.1038/cddis.2017.386] [PMID: 28796242]
[75]
Chen Y, Wu X, Liu C, Zhou Y. Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochem Funct 2020; 38(6): 702-9.
[http://dx.doi.org/10.1002/cbf.3537] [PMID: 32283563]
[76]
Plantier Laurent. Method and compositions for treating fibrotic interstitial lung disease. US2020237864A1, 2019.
[77]
Liu W, Li S, Qu Z, et al. Betulinic acid induces autophagy-mediated apoptosis through suppression of the PI3K/AKT/mTOR signaling pathway and inhibits hepatocellular carcinoma. Am J Transl Res 2019; 11(11): 6952-64.
[PMID: 31814899]
[78]
Ko JL, Lin CH, Chen HC, et al. Effects and mechanisms of betulinic acid on improving EGFR TKI-resistance of lung cancer cells. Environ Toxicol 2018; 33(11): 1153-9.
[http://dx.doi.org/10.1002/tox.22621] [PMID: 30136359]
[79]
Lin YC, Chen HY, Hsieh CP, Huang YF, Chang IL. Betulin inhibits mTOR and induces autophagy to promote apoptosis in human osteosarcoma cell lines. Environ Toxicol 2020; 35(8): 879-87.
[http://dx.doi.org/10.1002/tox.22924] [PMID: 32190974]
[80]
Yan X, Yang L, Feng G, et al. Lup-20(29)-en-3β,28-di-yl-nitrooxy acetate affects MCF-7 proliferation through the crosstalk between apoptosis and autophagy in mitochondria. Cell Death Dis 2018; 9: 1-16.
[http://dx.doi.org/10.1038/s41419-017-0255-5]
[81]
Liu YM, Cong S, Cheng Z, et al. Platycodin D alleviates liver fibrosis and activation of hepatic stellate cells by regulating JNK/c-JUN signal pathway. Eur J Pharmacol 2020; 876: 172946.
[http://dx.doi.org/10.1016/j.ejphar.2020.172946] [PMID: 31996320]
[82]
Feng S, Zha Z, Wang Z, et al. Anticancer activity of oleiferoside B involving autophagy and apoptosis through increasing ROS release in MCF-7 cells and SMMC-7721 cells. Nat Prod Res 2020; 35(22): 4865-69.
[http://dx.doi.org/10.1080/14786419.2020.1739039] [PMID: 32186200]
[83]
Wang F, Tian X, Zhang Z, et al. Demethylzeylasteral (ZST93) inhibits cell growth and enhances cell chemosensitivity to gemcitabine in human pancreatic cancer cells via apoptotic and autophagic pathways. Int J Cancer 2018; 142(9): 1938-51.
[http://dx.doi.org/10.1002/ijc.31211] [PMID: 29238973]
[84]
Lin CW, Chin HK, Lee SL, et al. Ursolic acid induces apoptosis and autophagy in oral cancer cells. Environ Toxicol 2019; 34(9): 983-91.
[http://dx.doi.org/10.1002/tox.22769] [PMID: 31062913]
[85]
Allegra A, Tonacci A, Pioggia G, Musolino C, Gangemi S. Anticancer Activity of Rosmarinus officinalis L.: Mechanisms of Action and Therapeutic Potentials. Nutrients 2020; 12(6): 1-24.
[http://dx.doi.org/10.3390/nu12061739] [PMID: 32532056]
[86]
Won G, Jung JH, Sohn EJ, et al. Misaponin B induces G2/M arrest, cytokinesis failure and impairs autophagy. BioMed Res Int 2020; 2020: 5925094.
[http://dx.doi.org/10.1155/2020/5925094] [PMID: 32090100]
[87]
Fu R, Zhang L, Li Y, et al. Saikosaponin D inhibits autophagosome-lysosome fusion and induces autophagy-independent apoptosis in MDA-MB-231 breast cancer cells. Mol Med Rep 2020; 22(2): 1026-34.
[http://dx.doi.org/10.3892/mmr.2020.11155] [PMID: 32468000]
[88]
Lv M, Shao S, Zhang Q, Zhuang X, Qiao T. Acetyl-11-Keto-β- boswellic acid exerts the anti-cancer effects via cell cycle arrest, apoptosis induction and autophagy suppression in non-small cell lung cancer cells. OncoTargets Ther 2020; 13: 733-44.
[http://dx.doi.org/10.2147/OTT.S236346] [PMID: 32158225]
[89]
Tang Q, Cao Y, Xiong W, et al. Glycyrrhizic acid exerts protective effects against hypoxia/reoxygenation-induced human coronary artery endothelial cell damage by regulating mitochondria. Exp Ther Med 2020; 20(1): 335-42.
[PMID: 32509013]
[90]
Jiang SL, Guan YD, Chen XS, et al. Tubeimoside-1, a triterpenoid saponin, induces cytoprotective autophagy in human breast cancer cells in vitro via Akt-mediated pathway. Acta Pharmacol Sin 2019; 40(7): 919-28.
[http://dx.doi.org/10.1038/s41401-018-0165-9] [PMID: 30315250]
[91]
Sun J, Feng Y, Wang Y, et al. α-hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation. Int J Oncol 2019; 54(5): 1601-12.
[http://dx.doi.org/10.3892/ijo.2019.4757] [PMID: 30896843]
[92]
Cevatemre B, Erkısa M, Aztopal N, et al. A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer. Pharmacol Res 2018; 129: 500-14.
[http://dx.doi.org/10.1016/j.phrs.2017.11.027] [PMID: 29197639]
[93]
Sun JM, Xu HT, Zhao L, et al. Induction of cell-cycle arrest and apoptosis in human cholangiocarcinoma cells by pristimerin. J Cell Biochem 2019; 2019: 1-8.
[http://dx.doi.org/10.1002/jcb.28485] [PMID: 30825242]
[94]
Zhang Y, Wang J, Hui B, et al. Pristimerin enhances the effect of cisplatin by inhibiting the miR-23a/Akt/GSK3β signaling pathway and suppressing autophagy in lung cancer cells. Int J Mol Med 2019; 43(3): 1382-94.
[http://dx.doi.org/10.3892/ijmm.2019.4057] [PMID: 30664149]
[95]
Liu Y, Ren Z, Li X, et al. Pristimerin induces autophagy-mediated cell death in K562 cells through the ROS/JNK signaling pathway. Chem Biodivers 2019; 16(8): e1900325.
[http://dx.doi.org/10.1002/cbdv.201900325] [PMID: 31290253]
[96]
Huang P, Sun LY, Zhang YQ. A hopeful natural product, pristimerin, induces apoptosis, cell cycle arrest, and autophagy in esophageal cancer cells. Anal Cell Pathol (Amst) 2019; 2019: 6127169.
[http://dx.doi.org/10.1155/2019/6127169] [PMID: 31218209]
[97]
Lee Y, Na J, Lee MS, et al. Combination of pristimerin and paclitaxel additively induces autophagy in human breast cancer cells via ERK1/2 regulation. Mol Med Rep 2018; 18(5): 4281-8.
[http://dx.doi.org/10.3892/mmr.2018.9488] [PMID: 30221728]
[98]
Guan YD, Jiang SL, Yu P, et al. Suppression of eEF-2K-mediated autophagy enhances the cytotoxicity of raddeanin A against human breast cancer cells in vitro. Acta Pharmacol Sin 2018; 39(4): 642-8.
[http://dx.doi.org/10.1038/aps.2017.139] [PMID: 29239350]
[99]
Zhao F, Gao Y, Chu X, et al. ROS attenuates the antitumor effect of Raddeanin on ovarian cancer cells Skov3. Int J Clin Exp Pathol 2017; 10(8): 8292-302.
[PMID: 31966680]
[100]
Khan M, Maryam A, Zhang H, Mehmood T, Ma T. Killing cancer with platycodin D through multiple mechanisms. J Cell Mol Med 2016; 20(3): 389-402.
[http://dx.doi.org/10.1111/jcmm.12749] [PMID: 26648178]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy