Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Clinical Trial

Cytotoxicity and Target Modulation in Pediatric Solid Tumors by the Proteasome Inhibitor Carfilzomib

Author(s): Satbir Thakur, Yibing Ruan, Aarthi Jayanthan, Jessica Boklan and Aru Narendran*

Volume 21, Issue 9, 2021

Published on: 03 May, 2021

Page: [804 - 811] Pages: 8

DOI: 10.2174/1568009621666210504085527

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Most children with recurrent metastatic solid tumors have high mortality rates. Recent studies have shown that proteasome inhibition leads to effective tumor killing in cells that have acquired treatment resistance and metastatic properties.

Objective: The purpose of this study was to test the potential of Carfilzomib (CFZ), a proteasome inhibitor, in refractory pediatric solid tumors which is currently unknown.

Methods: A panel of pediatric solid tumor cell lines, including neuroblastoma, Ewing’s sarcoma, osteosarcoma, rhabdomyosarcoma and atypical teratoid rhabdoid tumor (ATRT), was used to evaluate the cytotoxic and proteasomal inhibitory effects of CFZ. A drug scheduling experiment was performed to determine the optimal dose and time to obtain effective cell killing. Combination studies of CFZ with chemotherapeutic drugs of different classes were performed to determine the extent of synergy.

Results: CFZ showed effective cytotoxicity against all cell lines tested (mean IC50 = 7nM, range = 1-20nM) and activity in a fluorophore-tagged cell-based proteasome assay. Drug scheduling experiments showed that the minimum exposure of 4-8 hours/day is needed for effective cumulative killing. CFZ, when combined with chemotherapeutic drugs of different classes, synergistically enhanced the extent of cell death.

Conclusion: CFZ showed cytotoxic activity against all the solid pediatric cancer cell lines tested. This study provides initial in vitro data on the potential of CFZ to treat pediatric solid tumors and supports further investigations into the components of drug scheduling, biological correlates and drug combinations for future early phase clinical trials in children.

Keywords: Pediatric tumors, solid tumors, carfilzomib, proteasome inhibition, neuroblastoma, ATRT, sarcoma.

« Previous
Graphical Abstract
[1]
Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(2), 83-103.
[http://dx.doi.org/10.3322/caac.21219] [PMID: 24488779]
[2]
Robison, L.L.; Hudson, M.M. Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat. Rev. Cancer, 2014, 14(1), 61-70.
[http://dx.doi.org/10.1038/nrc3634] [PMID: 24304873]
[3]
Orlowski, R.Z.; Kuhn, D.J. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin. Cancer Res., 2008, 14(6), 1649-1657.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-2218] [PMID: 18347166]
[4]
Manasanch, E.E.; Orlowski, R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol., 2017, 14(7), 417-433.
[http://dx.doi.org/10.1038/nrclinonc.2016.206] [PMID: 28117417]
[5]
Djebbari, F.; Srinivasan, A.; Vallance, G.; Moore, S.; Kothari, J.; Ramasamy, K. Clinical outcomes of bortezomib-based therapy in myeloma. PLoS One, 2018, 13(12), e0208920.
[http://dx.doi.org/10.1371/journal.pone.0208920] [PMID: 30540831]
[6]
Kouroukis, T.C.; Baldassarre, F.G.; Haynes, A.E.; Imrie, K.; Reece, D.E.; Cheung, M.C. Bortezomib in multiple myeloma: systematic review and clinical considerations. Curr. Oncol., 2014, 21(4), e573-e603.
[http://dx.doi.org/10.3747/co.21.1798] [PMID: 25089109]
[7]
Robak, P.; Robak, T. Bortezomib for the Treatment of Hematologic Malignancies: 15 Years Later. Drugs R D., 2019, 19(2), 73-92.
[http://dx.doi.org/10.1007/s40268-019-0269-9] [PMID: 30993606]
[8]
Argyriou, A.A.; Cavaletti, G.; Bruna, J.; Kyritsis, A.P.; Kalofonos, H.P. Bortezomib-induced peripheral neurotoxicity: an update. Arch. Toxicol., 2014, 88(9), 1669-1679.
[http://dx.doi.org/10.1007/s00204-014-1316-5] [PMID: 25069804]
[9]
Argyriou, A.A.; Iconomou, G.; Kalofonos, H.P. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood, 2008, 112(5), 1593-1599.
[http://dx.doi.org/10.1182/blood-2008-04-149385] [PMID: 18574024]
[10]
Velasco, R.; Alberti, P.; Bruna, J.; Psimaras, D.; Argyriou, A.A. Bortezomib and other proteosome inhibitors-induced peripheral neurotoxicity: From pathogenesis to treatment. J. Peripher. Nerv. Syst., 2019, 24(Suppl. 2), S52-S62.
[http://dx.doi.org/10.1111/jns.12338] [PMID: 31647153]
[11]
Bringhen, S.; Larocca, A.; Rossi, D.; Cavalli, M.; Genuardi, M.; Ria, R.; Gentili, S.; Patriarca, F.; Nozzoli, C.; Levi, A.; Guglielmelli, T.; Benevolo, G.; Callea, V.; Rizzo, V.; Cangialosi, C.; Musto, P.; De Rosa, L.; Liberati, A.M.; Grasso, M.; Falcone, A.P.; Evangelista, A.; Cavo, M.; Gaidano, G.; Boccadoro, M.; Palumbo, A. Efficacy and safety of once-weekly bortezomib in multiple myeloma patients. Blood, 2010, 116(23), 4745-4753.
[http://dx.doi.org/10.1182/blood-2010-07-294983] [PMID: 20807892]
[12]
Franken, B.; van de Donk, N.W.; Cloos, J.C.; Zweegman, S.; Lokhorst, H.M. A clinical update on the role of carfilzomib in the treatment of relapsed or refractory multiple myeloma. Ther. Adv. Hematol., 2016, 7(6), 330-344.
[http://dx.doi.org/10.1177/2040620716667275] [PMID: 27904737]
[13]
Nooka, A.; Gleason, C.; Casbourne, D.; Lonial, S. Relapsed and refractory lymphoid neoplasms and multiple myeloma with a focus on carfilzomib. Biologics, 2013, 7, 13-32.
[http://dx.doi.org/10.2147/BTT.S24580] [PMID: 23386784]
[14]
Perel, G.; Bliss, J.; Thomas, C.M. Carfilzomib (Kyprolis): A Novel Proteasome Inhibitor for Relapsed And/or Refractory Multiple Myeloma. P&T, 2016, 41(5), 303-307.
[PMID: 27162470]
[15]
Dasmahapatra, G.; Lembersky, D.; Son, M.P.; Attkisson, E.; Dent, P.; Fisher, R.I.; Friedberg, J.W.; Grant, S. Carfilzomib interacts synergistically with histone deacetylase inhibitors in mantle cell lymphoma cells in vitro and in vivo. Mol. Cancer Ther., 2011, 10(9), 1686-1697.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-1108] [PMID: 21750224]
[16]
Stapnes, C.; Døskeland, A.P.; Hatfield, K.; Ersvaer, E.; Ryningen, A.; Lorens, J.B.; Gjertsen, B.T.; Bruserud, O. The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br. J. Haematol., 2007, 136(6), 814-828.
[http://dx.doi.org/10.1111/j.1365-2141.2007.06504.x] [PMID: 17341267]
[17]
Dimopoulos, M.A.; Moreau, P.; Palumbo, A.; Joshua, D.; Pour, L.; Hájek, R.; Facon, T.; Ludwig, H.; Oriol, A.; Goldschmidt, H.; Rosiñol, L.; Straub, J.; Suvorov, A.; Araujo, C.; Rimashevskaya, E.; Pika, T.; Gaidano, G.; Weisel, K.; Goranova-Marinova, V.; Schwarer, A.; Minuk, L.; Masszi, T.; Karamanesht, I.; Offidani, M.; Hungria, V.; Spencer, A.; Orlowski, R.Z.; Gillenwater, H.H.; Mohamed, N.; Feng, S.; Chng, W.J. ENDEAVOR Investigators. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol., 2016, 17(1), 27-38.
[http://dx.doi.org/10.1016/S1470-2045(15)00464-7] [PMID: 26671818]
[18]
Vesole, D.H.; Bilotti, E.; Richter, J.R.; McNeill, A.; McBride, L.; Raucci, L.; Anand, P.; Bednarz, U.; Ivanovski, K.; Smith, J.; Batra, V.; Aleman, A.; Sims, T.; Guerrero, L.; Mato, A.; Siegel, D.S. Phase I study of carfilzomib, lenalidomide, vorinostat, and dexamethasone in patients with relapsed and/or refractory multiple myeloma. Br. J. Haematol., 2015, 171(1), 52-59.
[http://dx.doi.org/10.1111/bjh.13517] [PMID: 26018491]
[19]
Holkova, B.; Kmieciak, M.; Bose, P.; Yazbeck, V.Y.; Barr, P.M.; Tombes, M.B.; Shrader, E.; Weir-Wiggins, C.; Rollins, A.D.; Cebula, E.M.; Pierce, E.; Herr, M.; Sankala, H.; Hogan, K.T.; Wan, W.; Feng, C.; Peterson, D.R.; Fisher, R.I.; Grant, S.; Friedberg, J.W. Phase 1 trial of carfilzomib (PR-171) in combination with vorinostat (SAHA) in patients with relapsed or refractory B-cell lymphomas. Leuk. Lymphoma, 2016, 57(3), 635-643.
[http://dx.doi.org/10.3109/10428194.2015.1075019] [PMID: 26284612]
[20]
Zang, Y.; Thomas, S.M.; Chan, E.T.; Kirk, C.J.; Freilino, M.L.; DeLancey, H.M.; Grandis, J.R.; Li, C.; Johnson, D.E. Carfilzomib and ONX 0912 inhibit cell survival and tumor growth of head and neck cancer and their activities are enhanced by suppression of Mcl-1 or autophagy. Clin. Cancer Res., 2012, 18(20), 5639-5649.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1213] [PMID: 22929803]
[21]
Papadopoulos, K.P.; Burris, H.A., III; Gordon, M.; Lee, P.; Sausville, E.A.; Rosen, P.J.; Patnaik, A.; Cutler, R.E., Jr; Wang, Z.; Lee, S.; Jones, S.F.; Infante, J.R. A phase I/II study of carfilzomib 2-10-min infusion in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2013, 72(4), 861-868.
[http://dx.doi.org/10.1007/s00280-013-2267-x] [PMID: 23975329]
[22]
Swift, L.; Jayanthan, A.; Ruan, Y.; Anderson, R.; Boklan, J.; Trippett, T.; Narendran, A. Targeting the proteasome in refractory pediatric leukemia cells: characterization of effective cytotoxicity of carfilzomib. Target. Oncol., 2018, 13(6), 779-793.
[http://dx.doi.org/10.1007/s11523-018-0603-0] [PMID: 30446871]
[23]
Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1947] [PMID: 20068163]
[24]
Meng, L.; Mohan, R.; Kwok, B.H.; Elofsson, M.; Sin, N.; Crews, C.M. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci. USA, 1999, 96(18), 10403-10408.
[http://dx.doi.org/10.1073/pnas.96.18.10403] [PMID: 10468620]
[25]
Yang, J.; Wang, Z.; Fang, Y.; Jiang, J.; Zhao, F.; Wong, H.; Bennett, M.K.; Molineaux, C.J.; Kirk, C.J. Pharmacokinetics, pharmacodynamics, metabolism, distribution, and excretion of carfilzomib in rats. Drug Metab. Dispos., 2011, 39(10), 1873-1882.
[http://dx.doi.org/10.1124/dmd.111.039164] [PMID: 21752943]
[26]
Lamothe, B.; Wierda, W.G.; Keating, M.J.; Gandhi, V. Carfilzomib triggers cell death in chronic lymphocytic leukemia by inducing proapoptotic and endoplasmic reticulum stress responses. Clin. Cancer Res., 2016, 22(18), 4712-4726.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2522] [PMID: 27026200]
[27]
Yoshii, S.R.; Mizushima, N. Monitoring and Measuring Autophagy. Int. J. Mol. Sci., 2017, 18(9), E1865.
[http://dx.doi.org/10.3390/ijms18091865] [PMID: 28846632]
[28]
Bjørkøy, G.; Lamark, T.; Brech, A.; Outzen, H.; Perander, M.; Overvatn, A.; Stenmark, H.; Johansen, T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol., 2005, 171(4), 603-614.
[http://dx.doi.org/10.1083/jcb.200507002] [PMID: 16286508]
[29]
Pankiv, S.; Clausen, T.H.; Lamark, T.; Brech, A.; Bruun, J.A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem., 2007, 282(33), 24131-24145.
[http://dx.doi.org/10.1074/jbc.M702824200] [PMID: 17580304]
[30]
Sha, Z.; Schnell, H.M.; Ruoff, K.; Goldberg, A. Rapid induction of p62 and GABARAPL1 upon proteasome inhibition promotes survival before autophagy activation. J. Cell Biol., 2018, 217(5), 1757-1776.
[http://dx.doi.org/10.1083/jcb.201708168] [PMID: 29535191]
[31]
Dou, Q.P.; Zonder, J.A. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr. Cancer Drug Targets, 2014, 14(6), 517-536.
[http://dx.doi.org/10.2174/1568009614666140804154511] [PMID: 25092212]
[32]
Richardson, P.G.; Mitsiades, C.; Hideshima, T.; Anderson, K.C. Proteasome inhibition in the treatment of cancer. Cell Cycle, 2005, 4(2), 290-296.
[http://dx.doi.org/10.4161/cc.4.2.1414] [PMID: 15655370]
[33]
Tsakiri, E.N.; Terpos, E.; Papanagnou, E.D.; Kastritis, E.; Brieudes, V.; Halabalaki, M.; Bagratuni, T.; Florea, B.I.; Overkleeft, H.S.; Scorrano, L.; Skaltsounis, A.L.; Dimopoulos, M.A.; Trougakos, I.P. Milder degenerative effects of Carfilzomib vs. Bortezomib in the Drosophila model: a link to clinical adverse events. Sci. Rep., 2017, 7(1), 17802.
[http://dx.doi.org/10.1038/s41598-017-17596-4] [PMID: 29259189]
[34]
Levine, B.; Yuan, J. Autophagy in cell death: an innocent convict? J. Clin. Invest., 2005, 115(10), 2679-2688.
[http://dx.doi.org/10.1172/JCI26390] [PMID: 16200202]
[35]
Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer, 2007, 7(12), 961-967.
[http://dx.doi.org/10.1038/nrc2254] [PMID: 17972889]
[36]
Steele, J.M. Carfilzomib: A new proteasome inhibitor for relapsed or refractory multiple myeloma. J. Oncol. Pharm. Pract., 2013, 19(4), 348-354.
[http://dx.doi.org/10.1177/1078155212470388] [PMID: 23292972]
[37]
Meel, M.H.; Guillén Navarro, M.; de Gooijer, M.C.; Metselaar, D.S.; Waranecki, P.; Breur, M.; Lagerweij, T.; Wedekind, L.E.; Koster, J.; van de Wetering, M.D.; Schouten-van Meeteren, N.; Aronica, E.; van Tellingen, O.; Bugiani, M.; Phoenix, T.N.; Kaspers, G.J.L.; Hulleman, E. MEK/MELK inhibition and blood-brain barrier deficiencies in atypical teratoid/rhabdoid tumors. Neuro-oncol., 2020, 22(1), 58-69.
[http://dx.doi.org/10.1093/neuonc/noz151] [PMID: 31504799]
[38]
Bhowmik, A.; Khan, R.; Ghosh, M.K. Blood brain barrier: a challenge for effectual therapy of brain tumors. BioMed. Res. Int., 2015, 2015, 320941.
[http://dx.doi.org/10.1155/2015/320941] [PMID: 25866775]
[39]
Gao, L.; Gao, M.; Yang, G.; Tao, Y.; Kong, Y.; Yang, R.; Meng, X.; Ai, G.; Wei, R.; Wu, H.; Wu, X.; Shi, J. Synergistic activity of carfilzomib and panobinostat in multiple myeloma cells via modulation of ros generation and ERK1/2. BioMed. Res. Int., 2015, 2015, 459052.
[http://dx.doi.org/10.1155/2015/459052] [PMID: 26000292]
[40]
Nct02512926. carfilzomib in combination with cyclophosphamide and etoposide for children. 2020. Available at: https://ClinicalTrials.gov/show/NCT02512926Accessed 2020-04-24 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy