[25]
Mir, R.H.; Sawhney, G.; Verma, R.; Ahmad, B.; Kumar, P.; Ranjana, S.; Bhagat, A.; Madishetti, S.; Ahmed, Z.; Jachak, S.M. Oreganum Vulgare: In-vitro assessment of cytotoxicity, Molecular docking studies, Antioxidant, and evaluation of anti-inflammatory activity in LPS stimulated RAW 264.7 cells. Medicinal Chemistry: Shariqah, United Arab Emirates,, 2020.
[39]
Chico, L.; Ienco, E.C.; Bisordi, C.; Lo Gerfo, A.; Petrozzi, L.; Petrucci, A.; Mancuso, M.; Siciliano, G. Amyotrophic Lateral Sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 767-779.
[40]
Bai, J-R.; Liu, Y-J.; Song, Y. The mechanism of interfere effects of madecassoside (MC) on neurodegeneration in mice. Zhongguo Laonianxue Zazhi, 2008, 28, 2297-2300.
[41]
Kobayashi, Y.; Liu, Y.; Tobinaga, S.; Tsunematsu, T.; Nakamura, M. In journal of pharmacological sciences.Japanese pharmacological
soc editorial off, kantohya bldg gokomachi, 2007, 103, 136.,
[42]
Liu, Y. Therapeutic potential of madecassoside in transgenic mice of amyotrophic lateral sclerosis. Chinese Traditional Herbal Drugs, 1994, 5.
[44]
Kumar, V.; Preeti, G.; Md Imtaiyaz, H. Mechanism and implications of traditional Chinese medicine in amyotrophic lateral sclerosis therapy. J. Proteins Proteom., 2019, 10(2), 131-147.
[45]
Kambara, T.; Zhou, Y.; Oda, M.; Tamura, Y.; Miyakoshi, M.; Mizutani, K.; Ikeda, T.; Tanaka, O.; Chou, W. 120th Annual Meeting of Pharmaceutical Society of Japan, Gifu2000.
[66]
Wang, Shi-bo.; Jing-fu, Qiu.; Qun-hua, B.; Jia-Jia, Li.; Jin-yu, He.;
Yan-jun G.; and Chao Y. A study on protection of astragaioside IV
about oxidative stress on PC12 cells induced by H2O2. Chinese
Pharmacol. Bull.,, 2011, 11
[78]
Weydt, P.; Weiss, M.D.; Möller, T.; Carter, G.T. Neuro-inflammation as a therapeutic target in amyotrophic lateral sclerosis. Curr. Opin. Investig. Drugs, 2002, 3(12), 1720-1724.
[80]
Ong, W.Y.; Farooqui, T.; Ho, C.F.Y.; Ng, Y.K.; Farooqui, A.A. Use of Phytochemicals against neuroinflammation; Neuroprotective Effects of Phytochemicals in Neurological Disorders, 2017, p. 648.
[95]
Kaiyan, Y.; Jianlan, G.; Dongmei, Y.; Qin, S. Effect of curcumin on iNOS expression in LPS-activated microglia cells and anti-oxidation., 2010.
[96]
Yin, W.; Shi, X.; Zhang, X.; Yu, L. Curcumins upregulate expression
of HO-1 via inducing Nrf-2 in SH-SY5Y cells. Chinese Pharmacol.
Bulletin,, 2003.
[99]
Chico, L.; Ienco, E.C.; Bisordi, C.; Gerfo, A.L.; Schirinzi, E.; Siciliano, G. Curcumin as an ROS scavenger in amyotrophic lateral sclerosis. React. Oxygen Species, 2016, 2(5), 339-354.
[102]
Song, Y.; Liu, J.; Shi, F.; Lan, Z.; Li, L.; Ma, S. Inhibitory effect of isorhynchophylline on lipopolysaccharide stimulated release of inflammatory mediators in primary rat astrocytes. Pharmacol Clin Res, 2011, 19(2), 311-314.
[111]
Piao, H.; Cui, H.; Piao, R.; Yingjun, L. Effects of wogonin on LPS-induced production of proinflammatory cytokines. J. Xi’an Jiaotong University; Medical Sciences, 1981, p. 2.
[113]
Li, Y.; Liu, S.; Zhang, H.; Zhou, F.; Liu, Y.; Lu, Q.; Yang, L. Antioxidant effects of celastrol against hydrogen peroxide-induced oxidative stress in the cell model of amyotrophic lateral sclerosis. Sheng Li Xue Bao, 2017, 69(6), 751.
[122]
Wang, Y-H.; Zeng, K-W. Natural products as a crucial source of anti-inflammatory drugs: Recent trends and advancements. Trad. Med. Res., 2019, 4(5), 257-268.
[131]
Yang, J.; He, L.N.; He, S.B. Effect of paeoniflorin on calcium overloading injury in cultured PC12 cells. Zhongguo Xin Yao Zazhi, 2001, 6, 413-416.
[133]
da S Hage-Melim, L.I.; Ferreira, J.V.; de Oliveira, N.K.; Correia, L.C.; Almeida, M.R.; Poiani, J.G.; Taft, C.A.; de Paula da Silva, C.H. The impact of natural compounds on the treatment of neurodegenerative diseases. Curr. Org. Chem., 2019, 23(3), 335-360.
[134]
Zhang, L-C. Paeoniflorin reduces the spinal cord injury in rats through TLR4 inflammatory pathway and Nrf2 oxidative stress pathway: The experimental study. Hainan Yixueyuan Xuebao, 2017, 23(8), 26-30.
[135]
Yifeng, D.; Zhaolin, S.; Yang, L.; Zhongyan, H.; Shuli, S. Effects of ligustrazine on L-type calcium current in SH-SY5Y human neuroblastoma. Chinese J. Neuroimmunol. Neurol., 2004, 11(1), 43-45.
[136]
Masoomzadeh, S.; Aminroaia, P.; Darchin Tabrizi, F.; Rashvand, S.; Rostamizadeh, K. Lipid based nanoparticles for treatment of CNS diseases. Nanomed. Res. J., 2020, 5(2), 101-113.
[137]
Li, Y-M.; Chen, F-P.; Liu, G-Q. Studies on inhibitive effect of gastrodin on PC12 cell damage induced by glutamate and H~ 2O~ 2. Zhongguo Yaoke Daxue Xuebao, 2003, 34(5), 456-460.
[145]
Chen, Y.; Fang, Y.; Liang, Y.; Wang, Q.; He, Y. Protective effects of β-asarone on PC12 cells damage induced by glutamate. Zhongguo Zhongyiyao Xinxi Zazhi, 2007, 14, 22-23.
[146]
Zheng, M.; Fan, D. Different distribution of NMDA receptor subunits in cortex contributes to selective vulnerability of motor neurons in amyotrophic lateral sclerosis. Beijing Da Xue Xue Bao, 2011, 43(2), 228-233.
[150]
Kumar, S.S. Application of phytochemicals for the treatment of neurodegenerative diseases.Drug Invention Today,, 2018, 10(3)
[152]
Wang, J.; Kang, B.; Hu, Y. XIA, Z.-q. Catalpol attenuates PC12 cells injury induced by L-glutamate. Zhongguo Yaolixue Tongbao, 2008, 24, 1258-1259.
[153]
Zheng, X-w.; Yang, W-t.; Chen, S.; Xu, Q-q.; Shan, C-s.; Zheng, G-q.; Ruan, J-c. Neuroprotection of catalpol for experimental acute focal ischemic stroke: Preclinical evidence and possible mechanisms of antioxidation, anti-inflammation, and antiapoptosis. Oxid. Med. Cell. Longev., 2017, 20175058609
[154]
Liu, R.; Liu, J-f.; Xu, K-p. ZOU, H.; SONG, L.-y.; DANG, R.-L.; ZOU, Z.-x.; LI, G.; TAN, G.-s. Chemical constituents in Selaginella tamariscina. Cent. South Pharm., 2011, 9(8), 564-566.
[156]
Pérez-Hernández, J.; Zaldívar-Machorro, V.J.; Villanueva-Porras, D.; Vega-Ávila, E.; Chavarría, A. A potential alternative against neurodegenerative diseases. Phytodrugs. Oxid. Med. Cell. Longev., 2016, 20168378613
[157]
Yi, D.; Ning, W.; Quan, Z. Neuroprotective effects of ferulic acid against glutamate-induced neurotoxicity in PC12 cells; Pharmacol. Clin. Chinese Materia Medica, 2008, p. 6.
[164]
Chandran, G. Insights on the neuromodulatory propensity of Selaginella (Sanjeevani) and its potential pharmacological applications. CNS Neurol. Disord. Drug Targets, 2014, 13(1), 82-95.