Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

RNA Coronaviruses’ Outbreaks: Recent Progress on the SARS-CoV-2 Pandemic Diagnostic Tests, Vaccination and Therapeutics

Author(s): Ghadeer A.R.Y. Suaifan*, Bayan A. Alkhawaja and Aya A.M. Mohammed

Volume 22, Issue 4, 2022

Published on: 03 January, 2022

Page: [617 - 628] Pages: 12

DOI: 10.2174/1389557521666210422113915

Price: $65

conference banner
Abstract

Coronaviruses are RNA-infective viruses that could be considered principal players in universal high-profile outbreaks, namely the Severe Acute Respiratory Syndrome (SARS, 2002-2003), the Middle East Respiratory Syndrome (MERS, 2012) and the continuing novel coronavirus disease (COVID-19, 2019) pandemic. RNA coronaviruses infections raise public health concerns with infections’ severity ranging from serious pandemics and highly contagious infections to common influenza episodes. With a wide consensus concerning the seminal role of early detection of the infectious agent on the clinical prognosis, recent technological endeavors have facilitated the rapid, sensitive and specific diagnosis of viral infections.

Given that the burst of confirmed cases of the novel coronavirus disease 2019 (COVID-19) are climbing steeply, and we are amid this pandemic, this work will center at the respiratory RNA-viruses outbreaks, including the three coronaviruses-related pandemics, emphasizing on the approved diagnostic approaches, outlining therapeutic clinical trials as well as vaccine candidates. Based on the accumulated data and knowledge on the previous RNA-virus outbreaks, this review aspires to link the current intervention measures against SARS-CoV-2 infection with the previous interventions and to provide a roadmap for any possible future measures.

Keywords: Coronavirus, MERS, SARS, Antiviral, virus-detection, vaccines.

Graphical Abstract
[1]
Carrasco-Hernandez, R.; Jácome, R.; López Vidal, Y.; Ponce de León, S. Are RNA viruses candidate agents for the next global pandemic? A review. ILAR J., 2017, 58(3), 343-358.
[http://dx.doi.org/10.1093/ilar/ilx026] [PMID: 28985316]
[2]
Baltimore, D. Expression of animal virus genomes. Bacteriol. Rev., 1971, 35(3), 235-241.
[http://dx.doi.org/10.1128/BR.35.3.235-241.1971] [PMID: 4329869]
[3]
Dye, C. After 2015: infectious diseases in a new era of health and development. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1645), 20130426.
[http://dx.doi.org/10.1098/rstb.2013.0426] [PMID: 24821913]
[4]
Cheng, V.C.; Lau, S.K.; Woo, P.C.; Yuen, K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev., 2007, 20(4), 660-694.
[http://dx.doi.org/10.1128/CMR.00023-07] [PMID: 17934078]
[5]
WHO. Middle East respiratory syndrome coronavirus; (MERS-CoV), 2019.
[6]
WHO Coronavirus disease 2019. (COVID-19) situation report -158. 2019. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200626-covid-19-sitrep-158.pdf?sfvrsn=1d1aae8a_2
[7]
Kosack, C.S.; Page, A.L.; Klatser, P.R. A guide to aid the selection of diagnostic tests. Bull. World Health Organ., 2017, 95(9), 639-645.
[http://dx.doi.org/10.2471/BLT.16.187468] [PMID: 28867844]
[8]
Payne, S. Methods to study viruses. Viruses, 2017, 37.
[9]
R, R.; Dalal, A.; Mohan, H.; Prasad, M.; Pundir, C.S. Detection methods for influenza A H1N1 virus with special reference to biosensors: A review. Biosci. Rep., 2020, 40(2), BSR20193852.
[http://dx.doi.org/10.1042/BSR20193852] [PMID: 32016385]
[10]
Peaper, D.R.; Landry, M.L. Laboratory diagnosis of viral infection.Handbook of clinical neurology; Elsevier, 2014, Vol. 123, pp. 123-147.
[11]
Saylan, Y.; Erdem, Ö.; Ünal, S.; Denizli, A. An alternative medical diagnosis method: Biosensors for virus detection. Biosensors (Basel), 2019, 9(2), 65.
[http://dx.doi.org/10.3390/bios9020065] [PMID: 31117262]
[12]
Payne, S. Family Coronaviridae. Viruses, 2017, 149.
[13]
Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; Zhang, Q.; Wu, J. Coronavirus infections and immune responses. J. Med. Virol., 2020, 92(4), 424-432.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[14]
Weiss, S.R.; Leibowitz, J.L. Coronavirus pathogenesis.Advances in virus research; Elsevier, 2011, Vol. 81, pp. 85-164.
[15]
Seib, K.L.; Dougan, G.; Rappuoli, R. The key role of genomics in modern vaccine and drug design for emerging infectious diseases. PLoS Genet., 2009, 5(10), e1000612.
[http://dx.doi.org/10.1371/journal.pgen.1000612] [PMID: 19855822]
[16]
Mani Mishra, P.; Uversky, V.N.; Nandi, C.K. Serum albumin-mediated strategy for the effective targeting of SARS-CoV-2. Med. Hypotheses, 2020, 140, 109790.
[http://dx.doi.org/10.1016/j.mehy.2020.109790] [PMID: 32353740]
[17]
Finkel, Y.; Mizrahi, O.; Nachshon, A.; Weingarten-Gabbay, S.; Morgenstern, D.; Yahalom-Ronen, Y.; Tamir, H.; Achdout, H.; Stein, D.; Israeli, O.; Beth-Din, A.; Melamed, S.; Weiss, S.; Israely, T.; Paran, N.; Schwartz, M.; Stern-Ginossar, N. The coding capacity of SARS-CoV-2. Nature, 2021, 589(7840), 125-130.
[http://dx.doi.org/10.1038/s41586-020-2739-1] [PMID: 32906143]
[18]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[19]
Cui, J.; Li, F.; Shi, Z-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[20]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[21]
Zhu, Z.; Zhang, Z.; Chen, W.; Cai, Z.; Ge, X.; Zhu, H.; Jiang, T.; Tan, W.; Peng, Y. Predicting the receptor-binding domain usage of the coronavirus based on kmer frequency on spike protein. Infect. Genet. Evol., 2018, 61, 183-184.
[http://dx.doi.org/10.1016/j.meegid.2018.03.028] [PMID: 29625240]
[22]
Ahmed, S.F.; Quadeer, A.A.; McKay, M.R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 2020, 12(3), 254.
[http://dx.doi.org/10.3390/v12030254] [PMID: 32106567]
[23]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[24]
Pang, J.; Wang, M.X.; Ang, I.Y.H.; Tan, S.H.X.; Lewis, R.F.; Chen, J.I-P.; Gutierrez, R.A.; Gwee, S.X.W.; Chua, P.E.Y.; Yang, Q.; Ng, X.Y.; Yap, R.K.; Tan, H.Y.; Teo, Y.Y.; Tan, C.C.; Cook, A.R.; Yap, J.C.; Hsu, L.Y. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): a systematic review. J. Clin. Med., 2020, 9(3), 623.
[http://dx.doi.org/10.3390/jcm9030623] [PMID: 32110875]
[25]
Wang, N.; Shi, X.; Jiang, L.; Zhang, S.; Wang, D.; Tong, P.; Guo, D.; Fu, L.; Cui, Y.; Liu, X.; Arledge, K.C.; Chen, Y.H.; Zhang, L.; Wang, X. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res., 2013, 23(8), 986-993.
[http://dx.doi.org/10.1038/cr.2013.92] [PMID: 23835475]
[26]
Rota, P.A.; Oberste, M.S.; Monroe, S.S.; Nix, W.A.; Campagnoli, R.; Icenogle, J.P.; Peñaranda, S.; Bankamp, B.; Maher, K.; Chen, M.H.; Tong, S.; Tamin, A.; Lowe, L.; Frace, M.; DeRisi, J.L.; Chen, Q.; Wang, D.; Erdman, D.D.; Peret, T.C.; Burns, C.; Ksiazek, T.G.; Rollin, P.E.; Sanchez, A.; Liffick, S.; Holloway, B.; Limor, J.; McCaustland, K.; Olsen-Rasmussen, M.; Fouchier, R.; Günther, S.; Osterhaus, A.D.; Drosten, C.; Pallansch, M.A.; Anderson, L.J.; Bellini, W.J. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003, 300(5624), 1394-1399.
[http://dx.doi.org/10.1126/science.1085952] [PMID: 12730500]
[27]
Chan, J.F.; Sridhar, S.; Yip, C.C.; Lau, S.K.; Woo, P.C. The role of laboratory diagnostics in emerging viral infections: the example of the Middle East respiratory syndrome epidemic. J. Microbiol., 2017, 55(3), 172-182.
[http://dx.doi.org/10.1007/s12275-017-7026-y] [PMID: 28243939]
[28]
Dhama, K.; Sharun, K.; Tiwari, R.; Dadar, M.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum. Vaccin. Immunother., 2020, 16(6), 1232-1238.
[http://dx.doi.org/10.1080/21645515.2020.1735227] [PMID: 32186952]
[29]
Lee, C.Y-P.; Lin, R.T.P.; Renia, L.; Ng, L.F.P. Serological Approaches for COVID-19: Epidemiologic Perspective on Surveillance and Control. Front. Immunol., 2020, 11, 879.
[http://dx.doi.org/10.3389/fimmu.2020.00879] [PMID: 32391022]
[30]
Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B-J.; Jiang, S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat. Rev. Microbiol., 2009, 7(3), 226-236.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[31]
Wan, Y.; Graham, R.; Baric, R.; Li, F. An analysis based on decade-long structural studies of SARS 3, JVI Accepted Manuscript Posted Online 29 January 2020. J. Virol., 2020.
[32]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[33]
Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci., 2020, 11(7), 995-998.
[http://dx.doi.org/10.1021/acschemneuro.0c00122] [PMID: 32167747]
[34]
Walls, A.C.; Park, Y-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020.
[http://dx.doi.org/10.1016/j.cell.2020.02.058]
[35]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[36]
Wu, D.; Wu, T.; Liu, Q.; Yang, Z. The SARS-CoV-2 outbreak: what we know. Inter. J. Infect. Dis., 2020.
[37]
WHO Coronavirus disease (COVID-19) Weekly Epidemiological Update. . 2020. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200914-weekly-epi-update-5.pdf?sfvrsn=cf929d04_2
[38]
U.S. National Library of Medicine. Clinical Trials/ Ribavirin., 2020. Available at: https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=ribavirin&cntry=&state=&city=&dist=
[39]
U.S. National Library of Medicine. Clinical Trials/ Lopinavir/ritonavir, 2020. Available at: https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=Lopinavir%2Fritonavir&cntry=&state=&city=&dist=
[40]
U.S. National Library of Medicine. Clinical Trials/ Remdesivir,, 2020. Available at: https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=remdesivir&cntry=&state=&city=&dist=
[41]
U.S. National Library of Medicine. Clinical Trials/ Interferon,, 2020. Available at: https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=Interferon&cntry=&state=&city=&dist=
[42]
U.S. National Library of Medicine. Clinical Trials/ Chloroquine,, 2020. Available at: https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=chloroquine&cntry=&state=&city=&dist=
[43]
U.S. National Library of Medicine. Clinical Trials/ Anti-interleukin drugs,, 2020. Available at: https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=anti+-interleukin+drugs&cntry=&state=&city=&dist=
[44]
U.S. National Library of Medicine. Clinical Trials/ Convalescent plasma,, Available at: https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=convalescent+plasma+&cntry=&state=&city=&dist=
[45]
Williamson, B.N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D.P.; Schulz, J.; van Doremalen, N.; Leighton, I.; Kwe Yinda, C.; Pérez-Pérez, L.; Okumura, A.; Lovaglio, J.; Hanley, P.W.; Saturday, G.; Bosio, C.M.; Anzick, S.; Barbian, K.; Cihlar, T.; Martens, C.; Scott, D.P.; Munster, V.J.; de Wit, E. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. bioRxiv, 2020. 2020.04.15.043166.
[PMID: 32511319]
[46]
Wu, R.; Wang, L.; Kuo, H.D.; Shannar, A.; Peter, R.; Chou, P.J.; Li, S.; Hudlikar, R.; Liu, X.; Liu, Z.; Poiani, G.J.; Amorosa, L.; Brunetti, L.; Kong, A.N. An update on current therapeutic drugs treating COVID-19. Curr. Pharmacol. Rep., 2020, 1-15.
[PMID: 32395418]
[47]
Keyaerts, E.; Vijgen, L.; Maes, P.; Neyts, J.; Van Ranst, M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun., 2004, 323(1), 264-268.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.085] [PMID: 15351731]
[48]
Chen, C.; Zhang, X.R.; Ju, Z.Y.; He, W.F. [Advances in the research of mechanism and related immunotherapy on the cytokine storm induced by coronavirus disease 2019] Zhonghua Shao Shang Za Zhi, 2020, 36(6), 471-475.
[PMID: 32114747]
[49]
U.S. National Library of Medicine. Clinical Trials/ Tocilizumab,, 2020. Available at: https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=Tocilizumab+&cntry=&state=&city=&dist=
[50]
U.S. National Library of Medicine. Clinical Trials/ Clazakizumab,, 2020. Available at: https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=Clazakizumab&cntry=&state=&city=&dist=
[51]
Zhang, C.; Wu, Z.; Li, J.-W.; Zhao, H.; Wang, G.-Q. The cytokine release syndrome (CRS) of severe COVID-19 and interleukin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce the mortality. Inter. J. Antimicrob. Agents, 2020.
[52]
Casadevall, A.; Joyner, M.J.; Pirofski, L-A. A Randomized Trial of Convalescent Plasma for COVID-19-Potentially Hopeful Signals. JAMA, 2020, 324(5), 455-457.
[http://dx.doi.org/10.1001/jama.2020.10218] [PMID: 32492105]
[53]
Focosi, D.; Tang, J.; Anderson, A.; Tuccori, M. Convalescent plasma therapy for COVID-19: State of the Art; Preprints, 2020.
[54]
Lythgoe, M.P.; Middleton, P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol. Sci., 2020, 41(6), 363-382.
[http://dx.doi.org/10.1016/j.tips.2020.03.006] [PMID: 32291112]
[55]
ECDV. Vaccines and treatment of COVID-19, 2020. Available at: https://www.ecdc.europa.eu/en/covid-19/latest-evidence/vaccines-and-treatment
[56]
Diamond, M.S.; Pierson, T.C. The challenges of vaccine development against a new virus during a pandemic. Cell Host Microbe, 2020, 27(5), 699-703.
[http://dx.doi.org/10.1016/j.chom.2020.04.021] [PMID: 32407708]
[57]
WHO Draft landscape of COVID-19 candidate vaccines.. 2020. Available at: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
[58]
De Smet, K.; De Smet, D.; Ryckaert, T.; Laridon, E.; Heremans, B.; Vandenbulcke, R.; Demedts, I.; Bouckaert, B.; Gryspeerdt, S.; Martens, G.A. Diagnostic Performance of Chest CT for SARS-CoV-2 Infection in Individuals with or without COVID-19 Symptoms; Radiol, 2020, p. 202708.
[59]
Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; Mulders, D.G.; Haagmans, B.L.; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J.L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M.P.; Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 2020, 25(3), 2000045.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045] [PMID: 31992387]
[60]
Reusken, C.B.E.M.; Broberg, E.K.; Haagmans, B.; Meijer, A.; Corman, V.M.; Papa, A.; Charrel, R.; Drosten, C.; Koopmans, M.; Leitmeyer, K. Laboratory readiness and response for novel coronavirus (2019-nCoV) in expert laboratories in 30 EU/EEA countries, January 2020. Euro Surveill., 2020, 25(6), 2000082.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.6.2000082] [PMID: 32046815]
[61]
WHO. Country & Technical Guidance - Coronavirus disease (COVID-19) laboratories, Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance
[62]
WHO. Antigen-detection in the diagnosis of SARS-CoV-2 infection using rapid immunoassays, Available at: https:\\www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays
[63]
WHO. Laboratory testing of human suspected cases of novel coronavirus (nCoV) infection, Available at: https://www.who.int/publications/i/item/10665-330374
[64]
Centers for Disease Control and Prevention. CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel., 2019. Available at: https://www.fda.gov/media/134922/download
[65]
WC/DID/Laboratory of Viral Diseases. SARS-CoV-2 Real-time Reverse Transcriptase (RT)-PCR Diagnostic Panel.
[66]
Cobas® SARS-CoV-2, c. Qualitative assay for use on cobas® 6800/8800 Systems. Available at: https://www.fda.gov/media/136049/download
[67]
TaqPath™ Multiplex real-time RT-PCR test intended for the qualitative detection of nucleic acid from SARS-CoV-2. Available at: https://www.fda.gov/media/136112/download
[68]
LabCorp COVID-19 RT-PCR test EUA Summary ccelerated emergency use authorization (eua) summary covid-19 rt-pcr test (laboratory corporation of america) Available at: https://www.fda.gov/media/136151/download
[69]
FDA. FDA combating covid-19 with medical devices., Available at: https://www.fda.gov/media/136702/download
[70]
Chan, J.F-W.; Yip, C.C-Y.; To, K.K-W.; Tang, T.H-C.; Wong, S.C-Y.; Leung, K-H.; Fung, A.Y-F.; Ng, A.C-K.; Zou, Z.; Tsoi, H-W.; Choi, G.K.; Tam, A.R.; Cheng, V.C.; Chan, K.H.; Tsang, O.T.; Yuen, K.Y. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J. Clin. Microbiol., 2020, 58(5), e00310-e00320.
[http://dx.doi.org/10.1128/JCM.00310-20] [PMID: 32132196]
[71]
Abbott. ID NOW™ COVID-19 Molecular. In minutes. On the front line Available at: https://www.alere.com/en/home/product-details/id-now-covid-19.html
[72]
Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases; Radiol, 2020, p. 200642.
[73]
CDC Serology testing for COVID-19,. 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/lab/serology-testing.html
[74]
Cellex qSARS-CoV-2 IgG/IgM Rapid Test,. Available at: https://www.fda.gov/media/136625/download
[75]
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 2020, 14(5), 5268-5277.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[76]
Seo, G.; Lee, G.; Kim, M.J.; Baek, S-H.; Choi, M.; Ku, K.B.; Lee, C-S.; Jun, S.; Park, D.; Kim, H.G.; Kim, S.J.; Lee, J.O.; Kim, B.T.; Park, E.C.; Kim, S.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4), 5135-5142.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[77]
Zhu, X.; Wang, X.; Han, L.; Chen, T.; Wang, L.; Li, H.; Li, S.; He, L.; Fu, X.; Chen, S. Reverse transcription loop-mediated isothermal amplification combined with nanoparticles-based biosensor for diagnosis of COVID-19. In: MedRxiv; , 2020.
[78]
Li, Z.; Yi, Y.; Luo, X.; Xiong, N.; Liu, Y.; Li, S.; Sun, R.; Wang, Y.; Hu, B.; Chen, W. Development and clinical application of a rapid IgM™IgG combined antibody test for SARS™CoV™2 infection diagnosis. J. Med0 Virol., 2020, 1-7.
[79]
CDC H1N1 Pandemic (H1N1pdm09 virus). 2009. Available at: https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html
[80]
CDC H1N1 Pandemic (Summary of Progress since 2009). 2009. Available at: https://www.cdc.gov/flu/pandemic-resources/h1n1-summary.htm
[81]
Bell, B.P.; Damon, I.K.; Jernigan, D.B.; Kenyon, T.A.; Nichol, S.T.; O’Connor, J.P.; Tappero, J.W. Overview, control strategies, and lessons learned in the CDC response to the 2014–2016 Ebola epidemic. MMWR Suppl., 2016, 65(3), 4-11.
[http://dx.doi.org/10.15585/mmwr.su6503a2] [PMID: 27389903]
[82]
U.S. National Library of Medicine. Clinical trials, Available at: https://clinicaltrials.gov/ct2/show/NCT04368728?term=vaccine&cond=covid-19&draw=3
[83]
VAXART Oral Vaccines based on Proprietary VAAST™ Platform Offer Potential Key Advantages in Global Quest to Develop Coronavirus Vaccine. Available at: https://www.globenewswire.com/news-release/2020/03/18/2002462/0/en/VAXART-ANNOUNCES-IT-ENTERED-INTO-AN-AGREEMENT-WITH-EMERGENT-BIOSOLUTIONS-FOR-THE-DEVELOPMENT-AND-MANUFACTURING-OF-ORAL-CORONAVIRUS-COVID-19-VACCINE-CANDIDATE.html
[84]
Generex BiotechnologyTM, Generex Provides Coronavirus Update: Generex Receives Contract from Chinese Partners to Develop a COVID-19 Vaccine Using Ii-Key Peptide Vaccines, Available at: https://www.globenewswire.com/news-release/2020/02/27/1992098/0/en/Generex-Provides-Coronavirus-Update-Generex-Receives-Contract-from-Chinese-Partners-to-Develop-a-COVID-19-Vaccine-Using-Ii-Key-Peptide-Vaccines.html
[85]
Biospace Medicago Announces Production of a Viable Vaccine Candidate for COVID-19., Available at: https://www.biospace.com/article/releases/medicago-announces-production-of-a-viable-vaccine-candidate-for-covid-19/
[87]
Altimmune. Altimmune Completes First Development Milestone Toward a Single-Dose Intranasal COVID-19 Vaccine, Available at: https://www.globenewswire.com/news-release/2020/02/28/1992600/0/en/Altimmune-Completes-First-Development-Milestone-Toward-a-Single-Dose-Intranasal-COVID-19-Vaccine.html
[88]
ExpreS2ion. ExpreS2ion announces EU grant award for the COVID-19 vaccine development programme, Available at: https://news.cision.com/expres2ion-biotechnologies/r/expres2ion-announces-eu-grant-award-for-the-covid-19-vaccine-development-programme,c3054055
[89]
GeoVax. GeoVax Progresses in Coronavirus (COVID-19) Vaccine Development Program, Available at: https://www.globenewswire.com/news-release/2020/03/18/2002611/0/en/GeoVax-Progresses-in-Coronavirus-COVID-19-Vaccine-Development-Program.html
[90]
Greffex.. Greffex, Inc. Completes COVID-19 Vaccine and Prepares for Testing, Available at: https://www.greffex.com/news/greffex-inc-completes-covid-19-vaccine-and-prepares-for-testing/
[91]
SmartPharmTherapeutics Sorrento and Smartpharm to collaborate to develop novel gene-encoded antibody vaccine intended to protect against COVID-19, Available at: https://smartpharmtx.com/archives/7805
[92]
Kim, E.; Erdos, G.; Huang, S.; Kenniston, T.W.; Balmert, S.C.; Carey, C.D.; Raj, V.S.; Epperly, M.W.; Klimstra, W.B.; Haagmans, B.L.; Korkmaz, E.; Falo, L.D., Jr; Gambotto, A. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine, 2020, 55, 102743.
[http://dx.doi.org/10.1016/j.ebiom.2020.102743] [PMID: 32249203]
[93]
Endpoint News. , Covid-19 vaccine tracker updated to include GSK/Sanofi collaboration Available at: https://endpts.com/covid-19-vaccine-tracker-updated-to-include-gsk-sanofi-collaboration/
[94]
The University of Queensland. ‘Significant step’ in COVID-19 vaccine quest Available at: https://www.uq.edu.au/news/article/2020/02/significant-step%E2%80%99-covid-19-vaccine-quest
[95]
University of Bristol. New vaccine platform used to develop COVID-19 candidates., Available at: http://www.bristol.ac.uk/news/2020/april/covid-19-vaccine-platform.html
[96]
Huang, W.E.; Lim, B.; Hsu, C.C.; Xiong, D.; Wu, W.; Yu, Y.; Jia, H.; Wang, Y.; Zeng, Y.; Ji, M.; Chang, H.; Zhang, X.; Wang, H.; Cui, Z. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb. Biotechnol., 2020, 13(4), 950-961.
[http://dx.doi.org/10.1111/1751-7915.13586] [PMID: 32333644]
[97]
WHO. Coronavirus Disease (COVID-19) Dashboard, https://covid19.who.int/
[98]
Rathnayake, R.M.D.W.; Clarke, M.; Jayasinghe, V.I. Health system performance and health system preparedness for the post-pandemic impact of COVID-19: A review. Int. J. Healthc. Manag., 2020, 1-5.
[http://dx.doi.org/10.1080/20479700.2020.1836732]
[99]
Jin, Y.H.; Cai, L.; Cheng, Z.S.; Cheng, H.; Deng, T.; Fan, Y.P.; Fang, C.; Huang, D.; Huang, L.Q.; Huang, Q.; Han, Y.; Hu, B.; Hu, F.; Li, B.H.; Li, Y.R.; Liang, K.; Lin, L.K.; Luo, L.S.; Ma, J.; Ma, L.L.; Peng, Z.Y.; Pan, Y.B.; Pan, Z.Y.; Ren, X.Q.; Sun, H.M.; Wang, Y.; Wang, Y.Y.; Weng, H.; Wei, C.J.; Wu, D.F.; Xia, J.; Xiong, Y.; Xu, H.B.; Yao, X.M.; Yuan, Y.F.; Ye, T.S.; Zhang, X.C.; Zhang, Y.W.; Zhang, Y.G.; Zhang, H.M.; Zhao, Y.; Zhao, M.J.; Zi, H.; Zeng, X.T.; Wang, Y.Y.; Wang, X.H. for the Zhongnan Hospital of Wuhan University Novel Coronavirus Management and Research Team, Evidence-Based Medicine Chapter of China International Exchange and Promotive Association for Medical and Health Care (CPAM). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil. Med. Res., 2020, 7(1), 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6] [PMID: 32029004]
[100]
Mishra, N.P.; Das, S.S.; Yadav, S.; Khan, W.; Afzal, M.; Alarifi, A.; Ansari, M.T.; Hasnain, M.S.; Nayak, A.K. Global impacts of pre- and post-COVID-19 pandemic: Focus on socio-economic consequences. Sensors Int, 2020, 1, 100042.
[http://dx.doi.org/10.1016/j.sintl.2020.100042]
[101]
Biehl, M.; Sese, D. Post-intensive care syndrome and COVID-19 - Implications post pandemic. Cleve. Clin. J. Med., 2020.
[http://dx.doi.org/10.3949/ccjm.87a.ccc055] [PMID: 32759175]
[102]
Moldofsky, H.; Patcai, J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol., 2011, 11(1), 37.
[http://dx.doi.org/10.1186/1471-2377-11-37] [PMID: 21435231]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy