Title:Coronavirus-related Disease Pandemic: A Review on Machine Learning Approaches and Treatment Trials on Diagnosed Population for Future Clinical Decision Support
Volume: 18
Author(s): Reyana A.*Sandeep Kautish
Affiliation:
- Department of Computer Science and Engineering, Assistant Professor, Hindusthan College of Engineering and Technology,
Coimbatore, Tamilnadu, India
Keywords:
Corona virus-related disease, clinical, pandemic, prevention, complications, machine learning.
Abstract:
Objective: Coronavirus-related disease, a deadly illness, has raised public health issues
worldwide. The majority of individuals infected are multiplying. The government is taking aggressive
steps to quarantine people, people exposed to infection, and clinical trials for treatment. Subsequently
recommends critical care for the aged, children, and health-care personnel. While machine
learning methods have been previously used to augment clinical decisions, there is now a demand
for “Emergency ML.” With rapidly growing datasets, there also remain important considerations
when developing and validating ML models.
Methods: This paper reviews the recent study that applies machine-learning technology addressing
Corona virus-related disease issues' challenges in different perspectives. The report also discusses
various treatment trials and procedures on Corona virus-related disease infected patients providing
insights to physicians and the public on the current treatment challenges.
Results: The paper provides the individual with insights into certain precautions to prevent and control
the spread of this deadly disease.
Conclusion: This review highlights the utility of evidence-based machine learning prediction tools
in several clinical settings, and how similar models can be deployed during the Corona virus-related
disease pandemic to guide hospital frontlines and health-care administrators to make informed
decisions about patient care and managing hospital volume. Further, the clinical trials conducted so
far for infected patients with Corona virus-related disease addresses their results to improve community
alertness from the viewpoint of a well-known saying, “prevention is always better.”