Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Coumarin-1,2,3-triazole Hybrid Molecules: An Emerging Scaffold for Combating Drug Resistance

Author(s): Harish C. Upadhyay*

Volume 21, Issue 8, 2021

Published on: 03 March, 2021

Page: [737 - 752] Pages: 16

DOI: 10.2174/1568026621666210303145759

Price: $65

Open Access Journals Promotions 2
Abstract

Undoubtedly, antibiotics have saved billions of lives, but lack of novel antibiotics, development of resistance mechanisms in almost all clinical isolates of bacteria, and recurrent infections caused by persistent bacteria hamper the successful treatment of the infections. Due to the widespread emergence of resistance, even the new families of anti-microbial agents have a short life expectancy. Drugs acting on a single target often lead to drug resistance and are associated with various side effects. For overcoming this problem, either multidrug therapy, or a single drug acting on multiple targets may be used. The latter is called ‘hybrid molecules,’ which are formed by clubbing two biologically active pharmacophores together, with or without an appropriate linker. In this rapidly evolving era, the development of natural product-based hybrid molecules may be a super-alternative to multidrug therapy, for combating drug resistance caused by various bacterial and fungal strains. Coumarins (benzopyran-2-one) are one of the earliest reported plant secondary metabolites having a clinically proven diverse range of pharmacological properties. On the other hand, 1,2,3-triazole is a common pharmacophore in many drugs responsible for polar interactions, improving the solubility and binding affinity to biomolecular targets. In this review, we discuss recent advances in Coumarin-1,2,3-triazole hybrids as potential anti-bacterial agents, aiming to provide a useful platform for the exploration of new leads with a broader spectrum, more effectiveness and less toxicity with multiple modes of action for the development of cost-effective and safer drugs in the future.

Keywords: Drug-resistance, Coumarin, 1, 2, 3-Triazole, Hybrid molecules, Antibacterial, Antitubercular.

Graphical Abstract
[1]
Parasuraman, S. Herbal drug discovery: Challenges and perspectives. Curr. Pharmacogenomics Person. Med., 2018, 16, 63-68.
[http://dx.doi.org/10.2174/1875692116666180419153313]
[2]
Samuelsson, G. Drugs of Natural Origin: A Textbook of Pharmacognosy, 5th ed; Swedish Pharmaceutical Press: Stockholm, 2004.
[3]
Cragg, G.M.; Newman, D.J.; Snader, K.M. Natural products in drug discovery and development. J. Nat. Prod., 1997, 60(1), 52-60.
[http://dx.doi.org/10.1021/np9604893] [PMID: 9014353]
[4]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[5]
Sheng-Ji, P. Ethnobotanical approaches of traditional medicine studies: some experiences from Asia. Pharm. Biol., 2001, 39(Suppl. 1), 74-79.
[PMID: 21554174]
[6]
Bent, S. Herbal medicine in the United States: review of efficacy, safety, and regulation: grand rounds at University of California, San Francisco Medical Center. J. Gen. Intern. Med., 2008, 23(6), 854-859.
[http://dx.doi.org/10.1007/s11606-008-0632-y] [PMID: 18415652]
[7]
Fitzgerald, M.; Heinrich, M.; Booker, A. Medicinal plant analysis: A historical and regional discussion of emergent complex techniques. Front. Pharmacol., 2020, 10, 1480.
[http://dx.doi.org/10.3389/fphar.2019.01480] [PMID: 31998121]
[8]
Verma, N. Herbal medicines: Regulation and practice in Europe, United States and India. Int. J. Herb. Med., 2013, 1(4), 1-5.
[9]
WHO. Traditional medicine. 2020. Available from: https://www.afro.who.int/health-topics/traditional-medicine (Accessed on June 10, 2020)
[10]
Che, C.T.; George, V.; Ijinu, T.P.; Pushpangadan, P.; Andrae-Marobela, K. Traditional medicine. In: Pharmacognosy: Fundamentals, Applications and Strategies; Badal, S.; Delgoda, R., Eds.; Elsevier Science: Amsterdam, 2017; pp. 15-30.
[http://dx.doi.org/10.1016/B978-0-12-802104-0.00002-0]
[11]
Kapoor, L.D. Handbook of Ayurvedic Medicinal Plants; Routledge: New York, 2017.
[http://dx.doi.org/10.1201/9780203719473]
[12]
Sahoo, N.; Manchikanti, P. Herbal drug regulation and commercialization: an Indian industry perspective. J. Altern. Complement. Med., 2013, 19(12), 957-963.
[http://dx.doi.org/10.1089/acm.2012.0275] [PMID: 23829812]
[13]
Sen, S.; Chakraborty, R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J. Tradit. Complement. Med., 2016, 7(2), 234-244.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.006] [PMID: 28417092]
[14]
Bent, S.; Ko, R. Commonly used herbal medicines in the United States: a review. Am. J. Med., 2004, 116(7), 478-485.
[http://dx.doi.org/10.1016/j.amjmed.2003.10.036] [PMID: 15047038]
[15]
Hasani-Ranjbar, S.; Nayebi, N.; Moradi, L.; Mehri, A.; Larijani, B.; Abdollahi, M. The efficacy and safety of herbal medicines used in the treatment of hyperlipidemia; a systematic review. Curr. Pharm. Des., 2010, 16(26), 2935-2947.
[http://dx.doi.org/10.2174/138161210793176464] [PMID: 20858178]
[16]
Ravishankar, B.; Shukla, V.J. Indian systems of medicine: a brief profile. Afr. J. Tradit. Complement. Altern. Med., 2007, 4(3), 319-337.
[http://dx.doi.org/10.4314/ajtcam.v4i3.31226] [PMID: 20161896]
[17]
Bernardini, S.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E. Natural products for human health: an historical overview of the drug discovery approaches. Nat. Prod. Res., 2018, 32(16), 1926-1950.
[http://dx.doi.org/10.1080/14786419.2017.1356838] [PMID: 28748726]
[18]
Hamilton, G.R.; Baskett, T.F. In the arms of Morpheus the development of morphine for postoperative pain relief. Can. J. Anaesth., 2000, 47(4), 367-374.
[http://dx.doi.org/10.1007/BF03020955] [PMID: 10764185]
[19]
Krishnamurti, C.; Rao, S.C. The isolation of morphine by Serturner. Indian J. Anaesth., 2016, 60(11), 861-862.
[http://dx.doi.org/10.4103/0019-5049.193696] [PMID: 27942064]
[20]
Tan, S.Y.; Tatsumura, Y. Alexander Fleming (1881-1955): Discoverer of penicillin. Singapore Med. J., 2015, 56(7), 366-367.
[http://dx.doi.org/10.11622/smedj.2015105] [PMID: 26243971]
[21]
Kardos, N.; Demain, A.L. Penicillin: the medicine with the greatest impact on therapeutic outcomes. Appl. Microbiol. Biotechnol., 2011, 92(4), 677-687.
[http://dx.doi.org/10.1007/s00253-011-3587-6] [PMID: 21964640]
[22]
Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[23]
Butler, M.S.; Buss, A.D. Natural products--the future scaffolds for novel antibiotics? Biochem. Pharmacol., 2006, 71(7), 919-929.
[http://dx.doi.org/10.1016/j.bcp.2005.10.012] [PMID: 16289393]
[24]
Powers, J.H. Antimicrobial drug development--the past, the present, and the future. Clin. Microbiol. Infect., 2004, 10(4)(Suppl. 4), 23-31.
[http://dx.doi.org/10.1111/j.1465-0691.2004.1007.x] [PMID: 15522037]
[25]
Coates, A.; Hu, Y.; Bax, R.; Page, C. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov., 2002, 1(11), 895-910.
[http://dx.doi.org/10.1038/nrd940] [PMID: 12415249]
[26]
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci., 2005, 78(5), 431-441.
[http://dx.doi.org/10.1016/j.lfs.2005.09.012] [PMID: 16198377]
[27]
Upadhyay, H.C. Medicinal chemistry of alternative therapeutics: Novelty and hopes with genus Ammannia. Curr. Top. Med. Chem., 2019, 19(10), 784-794.
[http://dx.doi.org/10.2174/1568026619666190412101047] [PMID: 30977452]
[28]
Khan, F.; Yadav, D.K.; Maurya, A. Sonia; Srivastava, S.K. Modern methods and web resources in drug design & discovery. Lett. Drug Des. Discov., 2011, 8, 469-490.
[http://dx.doi.org/10.2174/157018011795514249]
[29]
Maurya, A.; Khan, F.; Bawankule, D.U.; Yadav, D.K.; Srivastava, S.K. QSAR, docking and in vivo studies for immunomodulatory activity of isolated triterpenoids from Eucalyptus tereticornis and Gentiana kurroo. Eur. J. Pharm. Sci., 2012, 47(1), 152-161.
[http://dx.doi.org/10.1016/j.ejps.2012.05.009] [PMID: 22659375]
[30]
Upadhyay, H.C.; Verma, R.K.; Srivastava, S.K. Quantitative determination of bioactive 4-hydroxy-α-tetralone, tetralone-4-O-β-D-glucopyranoside and ellagic acid in Ammannia baccifera (Linn.) by reversed-phase high-performance liquid chromatography. J. Chromatogr. Sci., 2013, 51(1), 21-25.
[http://dx.doi.org/10.1093/chromsci/bms099] [PMID: 22700790]
[31]
Varela, M.T.; Fernandes, J.P.S. Natural Products: Key prototypes to drug discovery against neglected diseases caused by Trypanosomatids. Curr. Med. Chem., 2020, 27(13), 2133-2146.
[http://dx.doi.org/10.2174/0929867325666180501102450] [PMID: 29714138]
[32]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Khan, F.; Gupta, M.K.; Gupta, P.; Darokar, M.P.; Srivastava, S.K. Comparative drug resistance reversal potential of natural glycosides synergy potential of niaziridin & niazirin. Curr. Top. Med. Chem., 2019, 19(10), 847-860.
[http://dx.doi.org/10.2174/1568026619666190412120008] [PMID: 30977451]
[33]
Upadhyay, H.C.; Jaiswal, N.; Tamrakar, A.K.; Srivastava, A.K.; Gupta, N.; Srivastava, S.K. Antihyperglycemic agents from Ammannia multiflora. Nat. Prod. Commun., 2012, 7(7), 899-900.
[http://dx.doi.org/10.1177/1934578X1200700724] [PMID: 22908576]
[34]
Dwivedi, G.R.; Upadhyay, H.C.; Yadav, D.K.; Singh, V.; Srivastava, S.K.; Khan, F.; Darmwal, N.S.; Darokar, M.P. 4-Hydroxy-α-tetralone and its derivative as drug resistance reversal agents in multi drug resistant Escherichia coli. Chem. Biol. Drug Des., 2014, 83(4), 482-492.
[http://dx.doi.org/10.1111/cbdd.12263] [PMID: 24267788]
[35]
Upadhyay, H.C.; Dwivedi, G.R.; Roy, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Phytol derivatives as drug resistance reversal agents. ChemMedChem, 2014, 9(8), 1860-1868.
[http://dx.doi.org/10.1002/cmdc.201402027] [PMID: 24891085]
[36]
Saxena, A.; Upadhyay, H.C.; Cheema, H.S.; Srivastava, S.K.; Darokar, M.P.; Bawankule, D.U. Antimalarial activity of phytol derivatives: in vitro and in vivo study. Med. Chem. Res., 2018, 27(5), 1345-1354.
[http://dx.doi.org/10.1007/s00044-017-2132-2]
[37]
Das, B.; Satyalakshmi, G. Natural products based anticancer agents. Mini Rev. Org. Chem., 2012, 9(2), 169-177.
[http://dx.doi.org/10.2174/157019312800604706]
[38]
Kalani, K.; Yadav, D.K.; Khan, F.; Srivastava, S.K.; Suri, N. Pharmacophore, QSAR, and ADME based semisynthesis and in vitro evaluation of ursolic acid analogs for anticancer activity. J. Mol. Model., 2012, 18(7), 3389-3413.
[http://dx.doi.org/10.1007/s00894-011-1327-6] [PMID: 22271093]
[39]
Yadav, D.K.; Kalani, K.; Singh, A.K.; Khan, F.; Srivastava, S.K.; Pant, A.B. Design, synthesis and in vitro evaluation of 18β-glycyrrhetinic acid derivatives for anticancer activity against human breast cancer cell line MCF-7. Curr. Med. Chem., 2014, 21(9), 1160-1170.
[http://dx.doi.org/10.2174/09298673113206660330] [PMID: 24180274]
[40]
Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7), 1022-1037.
[http://dx.doi.org/10.1021/np030096l] [PMID: 12880330]
[41]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[42]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[43]
Vuorelaa, P.; Leinonenb, M.; Saikkuc, P.; Tammelaa, P.; Rauhad, J.P.; Wennberge, T.; Vuorela, H. Natural products in the process of finding new drug candidates. Curr. Med. Chem., 2004, 11(11), 1375-1389.
[http://dx.doi.org/10.2174/0929867043365116] [PMID: 15180572]
[44]
Panda, S.S.; Jhanji, N. Natural products as potential anti-Alzheimer agents. Curr. Med. Chem., 2019, 27(35), 5887-5917.
[http://dx.doi.org/10.2174/0929867326666190618113613]
[45]
Manayi, A.; Nabavi, S.M.; Setzer, W.N.; Jafari, S. Piperine as a potential anti-cancer agent: A review on preclinical studies. Curr. Med. Chem., 2018, 25(37), 4918-4928.
[http://dx.doi.org/10.2174/0929867324666170523120656] [PMID: 28545378]
[46]
Silver, L.L. Are natural products still the best source for antibacterial discovery? The bacterial entry factor. Expert Opin. Drug Discov., 2008, 3(5), 487-500.
[http://dx.doi.org/10.1517/17460441.3.5.487] [PMID: 23484922]
[47]
Alekshun, M.N.; Levy, S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell, 2007, 128(6), 1037-1050.
[http://dx.doi.org/10.1016/j.cell.2007.03.004] [PMID: 17382878]
[48]
Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C.; So, A.D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A.Q.; Qamar, F.N.; Mir, F.; Kariuki, S.; Bhutta, Z.A.; Coates, A.; Bergstrom, R.; Wright, G.D.; Brown, E.D.; Cars, O. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098.
[http://dx.doi.org/10.1016/S1473-3099(13)70318-9] [PMID: 24252483]
[49]
Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on antibiotic resistance: Alarm bells are ringing. Cureus, 2017, 9(6), e1403.
[http://dx.doi.org/10.7759/cureus.1403] [PMID: 28852600]
[50]
Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA, 2018, 115(15), E3463-E3470.
[http://dx.doi.org/10.1073/pnas.1717295115] [PMID: 29581252]
[51]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2)
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[52]
Udaondo, Z.; Huertas, M.J. Fighting the enemy: one health approach against microbial resistance. Microb. Biotechnol., 2020, 13(4), 888-891.
[http://dx.doi.org/10.1111/1751-7915.13587] [PMID: 32483942]
[53]
Dwivedi, G.R.; Singh, A.; Upadhyay, H.C.; Pati, S.; Singh, D.P.; Prasad, K.N.; Darokar, M.P.; Srivastava, S.K. Determination of drug resistance mechanism (s) of clinical isolates of P. aeruginosa and phytoextract as drug resistance reversal agent. EC Microbiol, 2017, 13(1), 35-41.
[54]
WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2020. Available from: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1 (Accessed on June 10, 2020)
[55]
Vogel, G. Meet WHO’s dirty dozen: The 12 bacteria for which new drugs are most urgently needed. Science, 2017.
[http://dx.doi.org/10.1126/science.aal0829]
[56]
Jasovský, D.; Littmann, J.; Zorzet, A.; Cars, O. Antimicrobial resistance-a threat to the world’s sustainable development. Ups. J. Med. Sci., 2016, 121(3), 159-164.
[http://dx.doi.org/10.1080/03009734.2016.1195900] [PMID: 27416324]
[57]
de Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med., 2016, 13(11), e1002184.
[http://dx.doi.org/10.1371/journal.pmed.1002184] [PMID: 27898664]
[58]
Simpkin, V.L.; Renwick, M.J.; Kelly, R.; Mossialos, E. Incentivising innovation in antibiotic drug discovery and development: progress, challenges and next steps. J. Antibiot. (Tokyo), 2017, 70(12), 1087-1096.
[http://dx.doi.org/10.1038/ja.2017.124] [PMID: 29089600]
[59]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[60]
Theuretzbacher, U. Global antimicrobial resistance in Gram-negative pathogens and clinical need. Curr. Opin. Microbiol., 2017, 39, 106-112.
[http://dx.doi.org/10.1016/j.mib.2017.10.028] [PMID: 29154024]
[61]
Miccoli, R.; Penno, G.; Del Prato, S. Multidrug treatment of type 2 diabetes: a challenge for compliance. Diabetes Care, 2011, 34(2 Suppl. 2), S231-S235.
[http://dx.doi.org/10.2337/dc11-s235] [PMID: 21525461]
[62]
Derosa, G.; Sibilla, S. Optimizing combination treatment in the management of type 2 diabetes. Vasc. Health Risk Manag., 2007, 3(5), 665-671.
[PMID: 18078018]
[63]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[64]
Morphy, R.; Rankovic, Z. Designed multiple ligands: An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543..
[http://dx.doi.org/10.1021/jm058225d]
[65]
Mehndiratta, S.; Sharma, S.; Kumar, K.; Nepali, K. Molecular hybrids with anticancer activity. In: Topics in Anti-Cancer Research; Atta-ur-, Rahman; Zaman, K., Eds.; Bentham Science Publishers: Sharjah, 2015; Vol. 14, pp. 383-454.
[http://dx.doi.org/10.2174/9781681080765115040008]
[66]
Younis, W.; Thangamani, S.; Seleem, M.N. Repurposing non-antimicrobial drugs and clinical molecules to treat bacterial infections. Curr. Pharm. Des., 2015, 21(28), 4106-4111.
[http://dx.doi.org/10.2174/1381612821666150506154434] [PMID: 25961308]
[67]
Ahmed, A.; Azim, A.; Gurjar, M.; Baronia, A.K. Current concepts in combination antibiotic therapy for critically ill patients. Indian J. Crit. Care Med., 2014, 18(5), 310-314.
[http://dx.doi.org/10.4103/0972-5229.132495] [PMID: 24914260]
[68]
Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev., 2012, 25(3), 450-470.
[http://dx.doi.org/10.1128/CMR.05041-11] [PMID: 22763634]
[69]
Shaveta, ; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[70]
Meunier, B. Hybrid molecules with a dual mode of action: dream or reality? Acc. Chem. Res., 2008, 41(1), 69-77.
[http://dx.doi.org/10.1021/ar7000843] [PMID: 17665872]
[71]
Pokrovskaya, V.; Baasov, T. Dual-acting hybrid antibiotics: a promising strategy to combat bacterial resistance. Expert Opin. Drug Discov., 2010, 5(9), 883-902.
[http://dx.doi.org/10.1517/17460441.2010.508069] [PMID: 22823262]
[72]
Parkes, A.L.; Yule, I.A. Hybrid antibiotics - clinical progress and novel designs. Expert Opin. Drug Discov., 2016, 11(7), 665-680.
[http://dx.doi.org/10.1080/17460441.2016.1187597] [PMID: 27169483]
[73]
Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 281-305.
[http://dx.doi.org/10.1517/17460441.2016.1135125] [PMID: 26727036]
[74]
Choudhary, S.; Singh, P.K.; Verma, H.; Singh, H.; Silakari, O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur. J. Med. Chem., 2018, 151, 62-97.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.057] [PMID: 29605809]
[75]
Decker, M. Hybrid molecules incorporating natural products: applications in cancer therapy, neurodegenerative disorders and beyond. Curr. Med. Chem., 2011, 18(10), 1464-1475.
[http://dx.doi.org/10.2174/092986711795328355] [PMID: 21428895]
[76]
Tietze, L.F.; Bell, H.P.; Chandrasekhar, S. Natural product hybrids as new leads for drug discovery. Angew. Chem. Int. Ed. Engl., 2003, 42(34), 3996-4028.
[http://dx.doi.org/10.1002/anie.200200553] [PMID: 12973759]
[77]
Jameel, E.; Umar, T.; Kumar, J.; Hoda, N. Coumarin: A privileged scaffold for the design and development of antineurodegenerative agents. Chem. Biol. Drug Des., 2016, 87(1), 21-38.
[http://dx.doi.org/10.1111/cbdd.12629] [PMID: 26242562]
[78]
Gnonlonfin, G.B.; Sanni, A.; Brimer, L. Review scopoletin–a coumarin phytoalexin with medicinal properties. Crit. Rev. Plant Sci., 2012, 31, 47-53.
[http://dx.doi.org/10.1080/07352689.2011.616039]
[79]
Upadhyay, H.C.; Saini, D.C.; Srivastava, S.K. Phytochemical analysis of Ammannia multiflora. Res. J. Phytochem., 2011, 5, 170-176.
[http://dx.doi.org/10.3923/rjphyto.2011.170.176]
[80]
Upadhyay, H.C.; Dwivedi, G.R.; Darokar, M.P.; Chaturvedi, V.; Srivastava, S.K. Bioenhancing and antimycobacterial agents from Ammannia multiflora. Planta Med., 2012, 78(1), 79-81.
[http://dx.doi.org/10.1055/s-0031-1280256] [PMID: 21969115]
[81]
Bubols, G.B.; Vianna, Dda.R.; Medina-Remon, A.; von Poser, G.; Lamuela-Raventos, R.M.; Eifler-Lima, V.L.; Garcia, S.C. The antioxidant activity of coumarins and flavonoids. Mini Rev. Med. Chem., 2013, 13(3), 318-334.
[PMID: 22876957]
[82]
Upadhyay, H.C.; Sisodia, B.S.; Cheema, H.S.; Agrawal, J.; Pal, A.; Darokar, M.P.; Srivastava, S.K. Novel antiplasmodial agents from Christia vespertilionis. Nat. Prod. Commun., 2013, 8(11), 1591-1594.
[http://dx.doi.org/10.1177/1934578X1300801123] [PMID: 24427949]
[83]
Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem., 2012, 20(3), 1175-1180.
[http://dx.doi.org/10.1016/j.bmc.2011.12.042] [PMID: 22257528]
[84]
Vazquez-Rodriguez, S.; Matos, M.J.; Borges, F.; Uriarte, E.; Santana, L. Bioactive coumarins from marine sources: Origin, structural features and pharmacological properties. Curr. Top. Med. Chem., 2015, 15(17), 1755-1766.
[http://dx.doi.org/10.2174/1568026615666150427125916] [PMID: 25915605]
[85]
Rosselli, S.; Maggio, A.M.; Faraone, N.; Spadaro, V.; Morris-Natschke, S.L.; Bastow, K.F.; Lee, K-H.; Bruno, M. The cytotoxic properties of natural coumarins isolated from roots of Ferulago campestris (Apiaceae) and of synthetic ester derivatives of aegelinol. Nat. Prod. Commun., 2009, 4(12), 1701-1706.
[http://dx.doi.org/10.1177/1934578X0900401219] [PMID: 20120111]
[86]
Khaw, K.Y.; Choi, S.B.; Tan, S.C.; Wahab, H.A.; Chan, K.L.; Murugaiyah, V. Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies. Phytomedicine, 2014, 21(11), 1303-1309.
[http://dx.doi.org/10.1016/j.phymed.2014.06.017] [PMID: 25172794]
[87]
Upadhyay, H.C.; Sisodia, B.S.; Agrawal, J.; Pal, A.; Darokar, M.P.; Srivastava, S.K. Antimalarial potential of extracts and isolated compounds from four species of genus Ammannia. Med. Chem. Res., 2014, 23, 870-876.
[http://dx.doi.org/10.1007/s00044-013-0682-5]
[88]
Upadhyay, H.C.; Sisodia, B.S.; Verma, R.K.; Darokar, M.P.; Srivastava, S.K. Antiplasmodial potential of extracts from two species of genus Blumea. Pharm. Biol., 2013, 51(10), 1326-1330.
[http://dx.doi.org/10.3109/13880209.2013.790453] [PMID: 23767769]
[89]
Ali, M.Y.; Jannat, S.; Jung, H.A.; Choi, R.J.; Roy, A.; Choi, J.S. Anti-Alzheimer’s disease potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis. Asian Pac. J. Trop. Med., 2016, 9(2), 103-111.
[http://dx.doi.org/10.1016/j.apjtm.2016.01.014] [PMID: 26919937]
[90]
Pereira, T.M.; Franco, D.P.; Vitorio, F.; Kummerle, A.E. Coumarin compounds in medicinal chemistry: some important examples from the last years. Curr. Top. Med. Chem., 2018, 18(2), 124-148.
[http://dx.doi.org/10.2174/1568026618666180329115523] [PMID: 29595110]
[91]
Upadhyay, H.C.; Thakur, J.P.; Saikia, D.; Srivastava, S.K. Anti-tubercular agents from Ammannia baccifera (Linn.). Med. Chem. Res., 2013, 22, 16-21.
[http://dx.doi.org/10.1007/s00044-012-9998-9]
[92]
Rudrapal, M.; Chetia, D. Plant flavonoids as potential source of future antimalarial leads. Sys. Rev. Pharm., 2017, 8(1), 13-18.
[http://dx.doi.org/10.5530/srp.2017.1.4]
[93]
Patil, A.D.; Freyer, A.J.; Eggleston, D.S.; Haltiwanger, R.C.; Bean, M.F.; Taylor, P.B.; Caranfa, M.J.; Breen, A.L.; Bartus, H.R.; Johnson, R.K. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem., 1993, 36(26), 4131-4138.
[http://dx.doi.org/10.1021/jm00078a001] [PMID: 7506311]
[94]
Spino, C.; Dodier, M.; Sotheeswaran, S. Anti-HIV coumarins from Calophyllum seed oil. Bioorg. Med. Chem. Lett., 1998, 8(24), 3475-3478.
[http://dx.doi.org/10.1016/S0960-894X(98)00628-3] [PMID: 9934455]
[95]
Whang, W.K.; Park, H.S.; Ham, I.; Oh, M.; Namkoong, H.; Kim, H.K.; Hwang, D.W.; Hur, S.Y.; Kim, T.E.; Park, Y.G.; Kim, J.R.; Kim, J.W. Natural compounds,fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Exp. Mol. Med., 2005, 37(5), 436-446.
[http://dx.doi.org/10.1038/emm.2005.54] [PMID: 16264268]
[96]
Shin, E.; Choi, K.M.; Yoo, H.S.; Lee, C.K.; Hwang, B.Y.; Lee, M.K. Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biol. Pharm. Bull., 2010, 33(9), 1610-1614.
[http://dx.doi.org/10.1248/bpb.33.1610] [PMID: 20823583]
[97]
Fort, D.M.; Rao, K.; Jolad, S.D.; Luo, J.; Carlson, T.J.; King, S.R. Antihyperglycemic activity of Teramnus labialis (Fabaceae). Phytomedicine, 2000, 6(6), 465-467.
[http://dx.doi.org/10.1016/S0944-7113(00)80075-6] [PMID: 10715850]
[98]
Piller, N.B. A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema. Br. J. Exp. Pathol., 1975, 56(6), 554-560.
[PMID: 1222119]
[99]
Meena, A.; Yadav, D.K.; Srivastava, A.; Khan, F.; Chanda, D.; Chattopadhyay, S.K. In silico exploration of anti-inflammatory activity of natural coumarinolignoids. Chem. Biol. Drug Des., 2011, 78(4), 567-579.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01173.x] [PMID: 21736704]
[100]
Yadav, D.K.; Meena, A.; Srivastava, A.; Chanda, D.; Khan, F.; Chattopadhyay, S.K. Development of QSAR model for immunomodulatory activity of natural coumarinolignoids. Drug Des. Devel. Ther., 2010, 4, 173-186.
[PMID: 20856844]
[101]
Srikrishna, D.; Godugu, C.; Dubey, P.K. A review on pharmacological properties of coumarins. Mini Rev. Med. Chem., 2018, 18(2), 113-141.
[http://dx.doi.org/10.2174/1389557516666160801094919] [PMID: 27488585]
[102]
Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101, 476-495.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.010] [PMID: 26188907]
[103]
Ren, Q-C.; Gao, C.; Xu, Z.; Feng, L-S.; Liu, M-L.; Wu, X.; Zhao, F. Bis-coumarin derivatives and their biological activities. Curr. Top. Med. Chem., 2018, 18(2), 101-113.
[http://dx.doi.org/10.2174/1568026618666180221114515] [PMID: 29473509]
[104]
Zhang, S.; Xu, Z.; Gao, C.; Ren, Q-C.; Chang, L.; Lv, Z-S.; Feng, L-S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 138, 501-513.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.051] [PMID: 28692915]
[105]
Costa, M.S.; Boechat, N.; Rangel, E.A.; da Silva, Fde.C.; de Souza, A.M.; Rodrigues, C.R.; Castro, H.C.; Junior, I.N.; Lourenço, M.C.; Wardell, S.M.; Ferreira, V.F. Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives. Bioorg. Med. Chem., 2006, 14(24), 8644-8653.
[http://dx.doi.org/10.1016/j.bmc.2006.08.019] [PMID: 16949290]
[106]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[107]
Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 2019, 168, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.055] [PMID: 30826511]
[108]
Labadie, G.R.; de la Iglesia, A.; Morbidoni, H.R. Targeting tuberculosis through a small focused library of 1,2,3-triazoles. Mol. Divers., 2011, 15(4), 1017-1024.
[http://dx.doi.org/10.1007/s11030-011-9319-0] [PMID: 21633789]
[109]
Jain, A.; Piplani, P. Exploring the chemistry and therapeutic potential of triazoles: A comprehensive literature review. Mini Rev. Med. Chem., 2019, 19(16), 1298-1368.
[http://dx.doi.org/10.2174/1389557519666190312162601] [PMID: 30864516]
[110]
Zhou, C.H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem., 2012, 19(2), 239-280.
[http://dx.doi.org/10.2174/092986712803414213] [PMID: 22320301]
[111]
Weinstein, A.J. The cephalosporins: activity and clinical use. Drugs, 1980, 20(2), 137-154.
[http://dx.doi.org/10.2165/00003495-198020020-00007] [PMID: 6995096]
[112]
Perucca, E.; Cloyd, J.; Critchley, D.; Fuseau, E. Rufinamide: clinical pharmacokinetics and concentration-response relationships in patients with epilepsy. Epilepsia, 2008, 49(7), 1123-1141.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01665.x] [PMID: 18503564]
[113]
Soltis, M.J.; Yeh, H.J.; Cole, K.A.; Whittaker, N.; Wersto, R.P.; Kohn, E.C. Identification and characterization of human metabolites of CAI [5-amino-1-1(4′-chlorobenzoyl-3,5-dichlorobenzyl)-1,2,3-triazole- 4-carboxamide). Drug Metab. Dispos., 1996, 24(7), 799-806.
[PMID: 8818579]
[114]
Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem., 2019, 181, 111587.
[http://dx.doi.org/10.1016/j.ejmech.2019.111587] [PMID: 31404864]
[115]
Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem., 2014, 22(15), 3806-3814.
[http://dx.doi.org/10.1016/j.bmc.2014.05.032] [PMID: 24934993]
[116]
Feng, D.; Zhang, A.; Yang, Y.; Yang, P. Coumarin-containing hybrids and their antibacterial activities. Arch. Pharm. (Weinheim), 2020, 353(6), e1900380.
[http://dx.doi.org/10.1002/ardp.201900380] [PMID: 32253782]
[117]
Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem., 2015, 102, 611-630.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033] [PMID: 26318068]
[118]
Bhatia, R.; Rawal, R.K. Coumarin hybrids: Promising scaffolds in the treatment of breast cancer. Mini Rev. Med. Chem., 2019, 19(17), 1443-1458.
[http://dx.doi.org/10.2174/1389557519666190308122509] [PMID: 30854961]
[119]
Barbachyn, M.R. Recent advances in the discovery of hybrid antibacterial agents. Annu. Rep. Med. Chem., 2008, 43, 281-290.
[http://dx.doi.org/10.1016/S0065-7743(08)00017-1]
[120]
Brötz-Oesterhelt, H.; Brunner, N.A. How many modes of action should an antibiotic have? Curr. Opin. Pharmacol., 2008, 8(5), 564-573.
[http://dx.doi.org/10.1016/j.coph.2008.06.008] [PMID: 18621146]
[121]
Tevyashova, A.N.; Olsufyeva, E.N.; Preobrazhenskaya, M.N. Design of dual action antibiotics as an approach to search for new promising drugs. Russ. Chem. Rev., 2015, 84, 61.
[http://dx.doi.org/10.1070/RCR4448]
[122]
Pawełczyk, A.; Sowa-Kasprzak, K.; Olender, D.; Zaprutko, L. Molecular consortia-various structural and synthetic concepts for more effective therapeutics synthesis. Int. J. Mol. Sci., 2018, 19(4), 1104.
[http://dx.doi.org/10.3390/ijms19041104] [PMID: 29642417]
[123]
Muregi, F.W.; Ishih, A. Next-generation antimalarial drugs: hybrid molecules as a new strategy in drug design. Drug Dev. Res., 2010, 71(1), 20-32.
[PMID: 21399701]
[124]
Elshemy, H.A.H.; Zaki, M.A. Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorg. Med. Chem., 2017, 25(3), 1066-1075.
[http://dx.doi.org/10.1016/j.bmc.2016.12.019] [PMID: 28038941]
[125]
Singh, H.; Singh, J.V.; Bhagat, K.; Gulati, H.K.; Sanduja, M.; Kumar, N.; Kinarivala, N.; Sharma, S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg. Med. Chem., 2019, 27(16), 3477-3510.
[http://dx.doi.org/10.1016/j.bmc.2019.06.033] [PMID: 31255497]
[126]
Singh, H.; Singh, J.V.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Nepali, K.; Bedi, P.M.S. Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Lett., 2017, 27(17), 3974-3979.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.069] [PMID: 28797799]
[127]
Gaudino, E.C.; Tagliapietra, S.; Martina, K.; Palmisano, G.; Cravotto, G. Recent advances and perspectives in the synthesis of bioactive coumarins. RSC Advances, 2016, 6, 46394-46405.
[http://dx.doi.org/10.1039/C6RA07071J]
[128]
Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem., 2016, 119, 141-168.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.087] [PMID: 27155469]
[129]
Hu, X.L.; Xu, Z.; Liu, M.L.; Feng, L.S.; Zhang, G.D. Recent developments of coumarin hybrids as anti-fungal agents. Curr. Top. Med. Chem., 2017, 17(29), 3219-3231.
[PMID: 29243577]
[130]
Hiremathad, A.; Chand, K.; Keri, R.S. Development of coumarin-benzofuran hybrids as versatile multitargeted compounds for the treatment of Alzheimer’s Disease. Chem. Biol. Drug Des., 2018, 92(2), 1497-1503.
[http://dx.doi.org/10.1111/cbdd.13316] [PMID: 29679445]
[131]
Sanand, S.M.H.; Mekky, A.E.M. Synthesis, in-vitro antibacterial and anticancer screening of novel nicotinonitrile-coumarin hybrids utilizing piperazine citrate. Synth. Commun., 2020, 51(4), 1468-1485.
[http://dx.doi.org/10.1080/00397911.2020.1743318]
[132]
Khanna, L.; Singhal, S.; Jain, S.C.; Khanna, P. Spiro-Indole-Coumarin Hybrids: Synthesis, ADME, DFT, NBO studies and in silico screening through molecular docking on DNA G-quadruplex. ChemistrySelect, 2020, 5(11), 3420-3433.
[http://dx.doi.org/10.1002/slct.201904783] [PMID: 32328514]
[133]
Ibrar, A.; Tehseen, Y.; Khan, I.; Hameed, A.; Saeed, A.; Furtmann, N.; Bajorath, J.; Iqbal, J. Coumarin-thiazole and -oxadiazole derivatives: Synthesis, bioactivity and docking studies for aldose/aldehyde reductase inhibitors. Bioorg. Chem., 2016, 68, 177-186.
[http://dx.doi.org/10.1016/j.bioorg.2016.08.005] [PMID: 27544072]
[134]
Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today, 2017, 22(10), 1572-1581.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 28676407]
[135]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[136]
Chitasombat, M.N.; Kontoyiannis, D.P. The ‘cephalosporin era’ of triazole therapy: isavuconazole, a welcomed newcomer for the treatment of invasive fungal infections. Expert Opin. Pharmacother., 2015, 16(10), 1543-1558.
[http://dx.doi.org/10.1517/14656566.2015.1057500] [PMID: 26100603]
[137]
Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[138]
Kusanur, R.A.; Kulkarni, M.V. New 1,3-dipolar cycloadducts of 3-azidoacetylcoumarins with DMAD and their antimicrobial activity. Indian J. Chem., 2005, 44B, 591-594.
[http://dx.doi.org/10.1002/chin.200528145]
[139]
Kushwaha, K.; Kaushik, N.; Lata, ; Jain, S.C. Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials. Bioorg. Med. Chem. Lett., 2014, 24(7), 1795-1801.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.027] [PMID: 24594353]
[140]
Dongamanti, A.; Bommidi, V.L.; Arram, G.; Sidda, R. Microwave-assisted synthesis of (E)-7-[(1-benzyl-1H-1,2,3-triazol-4-yl)methoxy]-8-(3-arylacryloyl)-4-methyl-2Hchromen-2-ones and their antimicrobial activity. Heterocycl. Commun., 2014, 20, 293-298.
[http://dx.doi.org/10.1515/hc-2014-0102]
[141]
Shaikh, M.H.; Subhedar, D.D.; Shingate, B.B.; Khan, F.A.K.; Sangshetti, J.N.; Khedkar, V.M.; Nawale, L.; Sarkar, D.; Navale, G.R.; Shinde, S.S. Synthesis, biological evaluation and molecular docking of novel coumarin incorporated triazoles as antitubercular, antioxidant and antimicrobial agents. Med. Chem. Res., 2016, 25, 790-804.
[http://dx.doi.org/10.1007/s00044-016-1519-9]
[142]
Kraljević, T.G.; Harej, A.; Sedić, M.; Pavelić, S.K.; Stepanić, V.; Drenjančević, D.; Talapko, J.; Raić-Malić, S. Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole-coumarin hybrids. Eur. J. Med. Chem., 2016, 124, 794-808.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.062] [PMID: 27639370]
[143]
Peng, X.; Kumar, K.V.; Damu, G.L.V.; Zhou, C-H. Coumarin-derived azolyl ethanols: Synthesis, antimicrobial evaluation and preliminary action mechanism. Sci. China Chem., 2016, 59, 878-894.
[http://dx.doi.org/10.1007/s11426-015-0351-0]
[144]
Zayane, M.; Rahmouni, A.; Daami-Remadi, M.; Ben Mansour, M.; Romdhane, A.; Ben Jannet, H. Design and synthesis of antimicrobial, anticoagulant, and anticholinesterase hybrid molecules from 4-methylumbelliferone. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1566-1575.
[http://dx.doi.org/10.3109/14756366.2016.1158171] [PMID: 27033638]
[145]
Kumar, S.; Prasad, S.; Kumar, B.; Gautam, H.K.; Sharma, S.K. Synthesis of novel triazolyl pyranochromen-2(1H)-ones and their antibacterial activity evaluation. Med. Chem. Res., 2016, 25, 1057-1073.
[http://dx.doi.org/10.1007/s00044-016-1549-3]
[146]
Yadav, P.; Kumar, B.; Gautam, H.K.; Sharma, S.K. Synthesis and antibacterial activity screening of quaternary ammonium derivatives of triazolyl pyranochromenones. J. Chem. Sci., 2017, 129, 211-222.
[http://dx.doi.org/10.1007/s12039-016-1214-x]
[147]
López-Rojas, P.; Janeczko, M.; Kubiński, K.; Amesty, Á.; Masłyk, M.; Estévez-Braun, A. Synthesis and antimicrobial activity of 4-substituted 1,2,3-triazole-coumarin derivatives. Molecules, 2018, 23(1), 199.
[http://dx.doi.org/10.3390/molecules23010199] [PMID: 29346325]
[148]
Kolichala, N.; Thummala, B.; Karkala, V.K.P. Regioselective synthesis and antibacterial activity studies of 1,2,3-triazol-4-yl]-4-methyl-2H-chromen-2-ones. J. Heterocycl. Chem., 2018, 55(6), 1398-1402.
[http://dx.doi.org/10.1002/jhet.3175]
[149]
Jin, X.; Xu, Y.; Yang, X.; Chen, X.; Wu, M.; Guan, J.; Feng, L. Design, Synthesis and in vitro anti-microbial evaluation of ethylene/propylene-1H-1,2,3-triazole-4-methylene-tethered isatin-coumarin hybrids. Curr. Top. Med. Chem., 2017, 17(29), 3213-3218.
[PMID: 29243578]
[150]
Madar, J.M.; Shastri, L.A.; Shastri, S.L.; Guda, R.; Holiyachi, M.; Naik, N.S.; Dodamani, D.; Jalapre, S.; Sungar, V.A. Design and synthesis of structurally identical coumarinotriazoles as cytotoxic and antimicrobial agents Chem. Data Collect., 2018, 17-18, 219-235.
[http://dx.doi.org/10.1016/j.cdc.2018.09.005]
[151]
Lipeeva, A.V.; Zakharov, D.O.; Burova, L.G.; Frolova, T.S.; Baev, D.S.; Shirokikh, I.V.; Evstropov, A.N.; Sinitsyna, O.I.; Tolsikova, T.G.; Shults, E.E. Design, synthesis and antibacterial activity of coumarin-1,2,3-triazole hybrids obtained from natural furocoumarin peucedanin. Molecules, 2019, 24(11), 2126.
[http://dx.doi.org/10.3390/molecules24112126] [PMID: 31195697]
[152]
Bhagat, K.; Bhagat, J.; Gupta, M.K.; Singh, J.V.; Gulati, H.K.; Singh, A.; Kaur, K.; Kaur, G.; Sharma, S.; Rana, A.; Singh, H.; Sharma, S.; Singh Bedi, P.M. Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione−coumarin molecular hybrids. ACS Omega, 2019, 4(5), 8720-8730.
[http://dx.doi.org/10.1021/acsomega.8b02481] [PMID: 31459961]
[153]
Ashok, D.; Reddy, M.R.; Dharavath, R.; Ramakrishna, K.; Nagaraju, N.; Sarasija, M. Microwave-assisted synthesis of some new 1,2,3-triazole derivatives and their antimicrobial activity. J. Chem. Sci., 2020, 132, 47.
[http://dx.doi.org/10.1007/s12039-020-1748-9]
[154]
Dharavath, R.; Nagaraju, N.; Reddy, M.R.; Ashok, D.; Sarasija, M.; Vijjulatha, M.; Vani, T.; Jyothi, K.; Prashanthi, G. Microwave-assisted synthesis, biological evaluation and molecular docking studies of new coumarin-based-1,2,3-triazoles. RSC Advances, 2020, 10, 11615-11623.
[http://dx.doi.org/10.1039/D0RA01052A]
[155]
Joy, M.N.; Bodke, Y.D.; Telkar, S.; Bakulev, V.A. Synthesis of coumarins linked with 1,2,3-triazoles under microwave irradiation and evaluation of their antimicrobial and antioxidant activity. J. Mex. Chem. Soc., 2020, 64(1), 53-73.
[156]
Naik, R.J.; Kulkarni, M.V.; Sreedhara Ranganath Pai, K.; Nayak, P.G. Click chemistry approach for bis-chromenyl triazole hybrids and their antitubercular activity. Chem. Biol. Drug Des., 2012, 80(4), 516-523.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01441.x] [PMID: 22737986]
[157]
Anand, A.; Naik, R.J.; Revankar, H.M.; Kulkarni, M.V.; Dixit, S.R.; Joshi, S.D. A click chemistry approach for the synthesis of mono and bis aryloxy linked coumarinyl triazoles as anti-tubercular agents. Eur. J. Med. Chem., 2015, 105, 194-207.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.019] [PMID: 26491982]
[158]
Somagond, S.M.; Kamble, R.R.; Bayannavar, P.K.; Shaikh, S.K.J.; Joshi, S.D.; Kumbar, V.M.; Nesaragi, A.R.; Kariduraganavar, M.Y. Click chemistry based regioselective one-pot synthesis of coumarin-3-yl-methyl-1,2,3-triazolyl-1,2,4-triazol-3(4H)-ones as newer potent antitubercular agents. Arch. Pharm. (Weinheim), 2019, 352(10), e1900013.
[http://dx.doi.org/10.1002/ardp.201900013] [PMID: 31397503]
[159]
Khanapurmath, N.; Kulkarni, M.V.; Joshi, S.D.; Anil Kumar, G.N. A click chemistry approach for the synthesis of cyclic ureido tethered coumarinyl and 1-aza coumarinyl 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis H37Rv and their in silico studies. Bioorg. Med. Chem., 2019, 27(20), 115054.
[http://dx.doi.org/10.1016/j.bmc.2019.115054] [PMID: 31471101]
[160]
Anand, A.; Kulkarni, M.V.; Joshi, S.D.; Dixit, S.R. One pot Click chemistry: A three component reaction for the synthesis of 2-mercaptobenzimidazole linked coumarinyl triazoles as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(19), 4709-4713.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.045] [PMID: 27595420]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy