Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

General Review Article

Liquid Filled Hard Shell Capsules: Current Drug Delivery Influencing Pharmaceutical Technology

Author(s): Prabhuti Nirale, Shivani Arora, Anita Solanki, Jnanadeva Bhat, Rishi Kumar Singh and Khushwant S. Yadav*

Volume 19, Issue 2, 2022

Published on: 01 March, 2021

Page: [238 - 249] Pages: 12

DOI: 10.2174/1567201818666210301094400

Price: $65

Open Access Journals Promotions 2
Abstract

Purpose: Gastric absorption is an upfront route for drug delivery as it is convenient, economical and most suitable for getting the desired systemic effects. Unfortunately, many traditional and newer generation drugs suffer from poor solubility and have lower bioavailability. With a perspective of bringing a novel delivery system in such a condition for old/existing/new drugs, liquidfilled hard capsules hold promise as the delivery system.

Methods: Anorganizedstate of the art literature review including patents was conducted to accommodate information on the innovations in technology, processes, and applications in the field of liquid filling in hard-shell capsules.

Results: The review findings revealed the importance of understanding the impact of liquid filled hard shell capsules would have in use of complex drug molecules, especially the ones sensitive to light and moisture. This technology can have diverse functions to be used for both immediate and delayed drug release. According to the technology point of view, the band sealing in such hardshell capsules helps in protecting against the tampering of capsule fill.

Conclusion: The review provides an insight into the progression in the technology forefront related to formulation development of liquid formulations to be filled in hard shell capsules for better therapeutic potentials and convenience to the patients.

Keywords: Liquid fill, capsules, gelatin, starch, pullulan, band sealing, oil, personalized medicine, 3D printing.

« Previous
Graphical Abstract
[1]
Serajuddin, A.T. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci., 1999, 88(10), 1058-1066.
[http://dx.doi.org/10.1021/js980403l] [PMID: 10514356]
[2]
Gursoy, R.N.; Benita, S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 2004, 58(3), 173-182.
[http://dx.doi.org/10.1016/j.biopha.2004.02.001] [PMID: 15082340]
[3]
Rajpoot, K.; Tekade, M.; Pandey, V.; Nagaraja, S.; Youngren-Ortiz, S.R.; Tekade, R.K. Self-microemulsifying drug-delivery system: ongoing challenges and future ahead drug deliv., 2002, 393-454.
[4]
Shaker, M.A.; Elbadawy, H.M.; Shaker, M.A. Improved solubility, dissolution, and oral bioavailability for atorvastatin-Pluronic® solid dispersions. Int. J. Pharm., 2020, 574, 118891.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118891] [PMID: 31786357]
[5]
Paudel, A.; Worku, Z.A.; Meeus, J.; Guns, S.; Van den Mooter, G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int. J. Pharm., 2013, 453(1), 253-284.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.015] [PMID: 22820134]
[6]
Jermain, S.V.; Brough, C.; Williams, R.O., III Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery - An update. Int. J. Pharm., 2018, 535(1-2), 379-392.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.051] [PMID: 29128423]
[7]
Fu, Y.; Yang, S.; Jeong, S.H.; Kimura, S.; Park, K. Orally fast disintegrating tablets: developments, technologies, taste-masking and clinical studies. Crit. Rev. Ther. Drug Carrier Syst., 2004, 21(6), 433-476.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i6.10] [PMID: 15658933]
[8]
Christen, J.D.; Cheng, W.J. Dow Chemical Co. Capsule shell U.S. Patent 4,026,986. 1977.
[9]
Cole, E.T.; Cadé, D.; Benameur, H. Challenges and opportunities in the encapsulation of liquid and semi-solid formulations into capsules for oral administration. Adv. Drug Deliv. Rev., 2008, 60(6), 747-756.
[http://dx.doi.org/10.1016/j.addr.2007.09.009] [PMID: 18096270]
[10]
Yang, J.H.; PARK, G.D. Manufacturing method for softgel capsule containing solid and liquid formulations as core ingredient. U.S. Patent Application 16/557,068. 2020.
[11]
Patra, C.N.; Rao, M.B.; Yadav, K.S.; Prakash, K. Influence of some cellulose ethers on the release of propranolol hydrochloride from guar gum matrix tablets. Indian J. Pharm. Sci., 2004, 66(5), 636-641.
[12]
Missaghi, S.; Fassihi, R. Evaluation and comparison of physicomechanical characteristics of gelatin and hypromellose capsules. Drug Dev. Ind. Pharm., 2006, 32(7), 829-838.
[http://dx.doi.org/10.1080/03639040600608888] [PMID: 16908420]
[13]
Mei, X.; Etzler, F.M.; Wang, Z. Use of texture analysis to study hydrophilic solvent effects on the mechanical properties of hard gelatin capsules. Int. J. Pharm., 2006, 324(2), 128-135.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.017] [PMID: 16844327]
[14]
Sonar, S.; Gondkar, S.; Saudagar, R.B. Liquid filled hard gelatin capsule. J. Drug Deliv. Ther., 2019, 9(3-s), 832-835.
[15]
Cole, E.T.; Scott, R.A.; Connor, A.L.; Wilding, I.R.; Petereit, H.U.; Schminke, C.; Beckert, T.; Cadé, D. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int. J. Pharm., 2002, 231(1), 83-95.
[http://dx.doi.org/10.1016/S0378-5173(01)00871-7] [PMID: 11719017]
[16]
Dokania, S.; Joshi, A.K. Self-microemulsifying drug delivery system (SMEDDS)-challenges and road ahead. Drug Deliv., 2015, 22(6), 675-690.
[http://dx.doi.org/10.3109/10717544.2014.896058] [PMID: 24670091]
[17]
Karasulu, H.Y.; Gündoğdu, E.; Turgay, T.; Türk, U.Ö.; Apaydın, S.; Şimşir, I.Y.; Yilmaz, C.; Karasulu, E. Development and optimization of self-emulsifying drug Delivery systems (SEDDS) for enhanced dissolution and permeability of rosuvastatin. Curr. Drug Deliv., 2016, 13(3), 362-370.
[http://dx.doi.org/10.2174/156720181303160520211640] [PMID: 27230902]
[18]
Rahman, M.A.; Hussain, A.; Hussain, M.S.; Mirza, M.A.; Iqbal, Z. Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). Drug Dev. Ind. Pharm., 2013, 39(1), 1-19.
[http://dx.doi.org/10.3109/03639045.2012.660949] [PMID: 22372916]
[19]
Mansky, P.; Dai, W.G.; Li, S.; Pollock-Dove, C.; Daehne, K.; Dong, L.; Eichenbaum, G. Screening method to identify preclinical liquid and semi-solid formulations for low solubility compounds: miniaturization and automation of solvent casting and dissolution testing. J. Pharm. Sci., 2007, 96(6), 1548-1563.
[http://dx.doi.org/10.1002/jps.20799] [PMID: 17094139]
[20]
Cade, D.; Cole, E.T.; Mayer, J.P.; Wittwer, F. Liquid filled and sealed hard gelatin capsules. Drug Dev. Ind. Pharm., 1986, 12(11-13), 2289-2300.
[http://dx.doi.org/10.3109/03639048609042636]
[21]
Bachour, G.; Bou-Chacra, N.A.; Löbenberg, R. Evaluation of the rupture test for stability studies of soft-shell capsules. Dissolut. Technol., 2017, 24, 16-19.
[http://dx.doi.org/10.14227/DT240217P16]
[22]
Brown, S.; Norman, G.; McNaughton, A. Liquid-fill based formulation: Advances and challenges. Innov. Pharm. Technol., 2009, 7, 64-68.
[23]
Augsburger, L.L. Hard and soft shell capsules. Modern Pharmaceutics Revised and Expanded; CRC Press, 1996, pp. 533-596.
[24]
Mariod, A.A.; Fadul, H. Gelatin, source, extraction and industrial applications. Acta Sci. Pol. Technol. Aliment., 2013, 12(2), 135-147.
[25]
Cadé, D.; Madit, N. Liquid filling in hard gelatin capsules-preliminary steps. Bulletin technique-gattefosse, 1996, 15-20.
[26]
Singh, S.; Rao, K.R.; Venugopal, K.; Manikandan, R. Alteration in dissolution characteristics of gelatin-containing formulations. Pharm. Technol. Int., 2002, 26(4), 36-54.
[27]
Iahnke, A.O.E.S. Stoll, L.; Bellé, A.S.; Hertz, P.F.; Rios, A.D.O.; Rahier, H.; Flôres, S.H. Gelatin capsule residue-based films crosslinked with the natural agent genipin. Packag. Technol. Sci., 2020, 33(1), 15-26.
[http://dx.doi.org/10.1002/pts.2481]
[28]
Digenis, G.A.; Gold, T.B.; Shah, V.P. Cross‐linking of gelatin capsules and its relevance to their in vitro-in vivo performance. J Pharm Sci., 1994, 83(7), 915-921.
[http://dx.doi.org/10.1002/jps.2600830702]
[29]
Srinageshwar, B.; Petersen, R.B.; Dunbar, G.L.; Rossignol, J. Prion-like mechanisms in neurodegenerative disease: Implications for Huntington’s disease therapy. Stem Cells Transl. Med., 2020, 9(5), 559-566.
[http://dx.doi.org/10.1002/sctm.19-0248] [PMID: 31997581]
[30]
Kathpalia, H.; Sharma, K.; Doshi, G. Recent trends in Hard Gelatin capsule delivery System. J. Adv. Pharm. Educ. Res., 2014, 4(2)
[31]
Thoma, K.; Bechtold, K. Enteric coated hard gelatin capsules; Capsugel Library, 1992, pp. 1-16.
[32]
Amey, J.; Cade, D.; Maes, P.; Scott, R. Process for encapsulation of caplets in a capsule and solid dosage forms obtainable by such process. U.S. Patent 6,245,350. 2001.
[33]
Alam, M.A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. Commercially bioavailable proprietary technologies and their marketed products. Drug Discov. Today, 2013, 18(19-20), 936-949.
[http://dx.doi.org/10.1016/j.drudis.2013.05.007] [PMID: 23707660]
[34]
Tuleu, C.; Khela, M.K.; Evans, D.F.; Jones, B.E.; Nagata, S.; Basit, A.W. A scintigraphic investigation of the disintegration behaviour of capsules in fasting subjects: a comparison of hypromellose capsules containing carrageenan as a gelling agent and standard gelatin capsules. Eur. J. Pharm. Sci., 2007, 30(3-4), 251-255.
[http://dx.doi.org/10.1016/j.ejps.2006.11.008] [PMID: 17188473]
[35]
Chiwele, I.; Jones, B.E.; Podczeck, F. The shell dissolution of various empty hard capsules. Chem. Pharm. Bull. (Tokyo), 2000, 48(7), 951-956.
[http://dx.doi.org/10.1248/cpb.48.951] [PMID: 10923822]
[36]
Prakash, A.; Soni, H.; Mishra, A.; Sarma, P. Are your capsules vegetarian or nonvegetarian: An ethical and scientific justification. Indian J. Pharmacol., 2017, 49(5), 401-404.
[PMID: 29515283]
[37]
Scott, R.; Cadé, D.; He, X. Fish gelatin compositions containing a hydrocolloid setting system. U.S. Patent 6,770,294. 2014.
[38]
Pranoto, Y.; Lee, C.M.; Park, H.J. Characterizations of fish gelatin films added with gellan and κ-carrageenan. Lebensm. Wiss. Technol., 2007, 40(5), 766-774.
[http://dx.doi.org/10.1016/j.lwt.2006.04.005]
[39]
Vilivalam, V.D.; Illum, I.; Iqbal, I. Starch capsules: an alternative system for oral drug delivery. Pharm. Sci. Technol. Today, 2000, 3(2), 64-69.
[http://dx.doi.org/10.1016/S1461-5347(99)00238-2] [PMID: 10664575]
[40]
Augsburger, L.L.; Hoag, S.W. Pharmaceutical dosage forms: capsules; CRC Press, 2017.
[http://dx.doi.org/10.1201/9781315111896]
[41]
Scott, R.; Cade, D.; He, X.; Cole, E. Pullulan capsules. U.S. Patent Application 11/121,226., 2005.
[42]
Chen, L.; Chi, Z.; Liu, G.L.; Xue, S.J.; Wang, Z.P.; Hu, Z.; Chi, Z.M. Improved pullulan production by a mutant of Aureobasidium melanogenum TN3-1 from a natural honey and capsule shell preparation. Int. J. Biol. Macromol., 2019, 141, 268-277.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.264] [PMID: 31487520]
[43]
Gullapalli, R.P. Soft gelatin capsules (softgels). J. Pharm. Sci., 2010, 99(10), 4107-4148.
[http://dx.doi.org/10.1002/jps.22151] [PMID: 20737624]
[44]
Rebroš, M.; Rosenberg, M.; Mlichova, Z.; Krištofíková, Ľ. Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsules. Food Chem., 2007, 102(3), 784-787.
[http://dx.doi.org/10.1016/j.foodchem.2006.06.020]
[45]
Kath, A.W. Capsule machine. U.S. Patent 2,671,245., 1954.
[46]
Chang, W. Capsule filling apparatus. U.S. Patent 6,170,226., 2001.
[47]
Podczeck, F. The development of an instrumented tamp-filling capsule machine I. Instrumentation Of a Bosch GKF 400S machine and feasibility study. Eur. J. Pharm. Sci., 2000, 10(4), 267-274.
[http://dx.doi.org/10.1016/S0928-0987(00)00071-3] [PMID: 10838016]
[48]
Jalundhwala, F.; Londhe, V.; Bhat, J.; Singh, S. Novel oral delivery of ibuprofen solution in hard gelatin capsules. Int. J. Pharm. Pharm. Sci., 2019, (11), 50-55.
[http://dx.doi.org/10.22159/ijpps.2019v11i6.32659]
[49]
Furuya, Y.; Enomoto, T.; Sato, K.; Mizuta, T. Method for forming a band seal on a capsule. U.S. Patent 5,930,984., 1999.
[50]
Cole, E.T. Liquid filled and sealed hard gelatin capsules. 1987.
[51]
Zhu, Y.; Ye, J.; Zhang, Q. Self-emulsifying drug delivery system improve oral bioavailability: role of excipients and physico-chemical characterization. Pharm. Nanotechnol., 2020, 8(4), 290-301.
[http://dx.doi.org/10.2174/2211738508666200811104240] [PMID: 32781978]
[52]
Prajapati, H.N.; Patel, D.P.; Patel, N.G.; Dalrymple, D.D.; Serajuddin, A.T. Effect of difference in fatty acid chain lengths of medium-chain lipids on lipid-surfactant-water phase diagrams and drug solubility. J. Excip. Food Chem., 2011, 2(3), 73-88.
[53]
Oliveira, M.D.A.R.; da Rocha Ataíde, T.; de Oliveira, S.L. de MeloLucena, A.L.; de Lira, C.E.P.R.; Soares, A.A.; de Almeida, C.B.S; Ximenes-da-Silva, A. Effects of short-term and long-term treatment with medium-and long-chain triglycerides ketogenic diet on cortical spreading depression in young rats. Neurosci. Lett., 2008, 434(1), 66-70.
[http://dx.doi.org/10.1016/j.neulet.2008.01.032] [PMID: 18281154]
[54]
Yáñez, J.A.; Wang, S.W.; Knemeyer, I.W.; Wirth, M.A.; Alton, K.B. Intestinal lymphatic transport for drug delivery. Adv. Drug Deliv. Rev., 2011, 63(10-11), 923-942.
[http://dx.doi.org/10.1016/j.addr.2011.05.019] [PMID: 21689702]
[55]
Pandey, V.; Kohli, S. Lipids and surfactants: the inside story of lipid-based drug delivery systems. critical reviews™ in therapeutic drug carrier systems. 2018, 35(2), 99-155.
[56]
Buyuktimkin, T. Water titration studies on microemulsions with a nonionic surfactant derived from castor oil and a series of polar oils. J. Drug Deliv. Sci. Technol., 2020, 56, 101521.
[http://dx.doi.org/10.1016/j.jddst.2020.101521]
[57]
Rane, S.S.; Anderson, B.D. What determines drug solubility in lipid vehicles: is it predictable? Adv. Drug Deliv. Rev., 2008, 60(6), 638-656.
[http://dx.doi.org/10.1016/j.addr.2007.10.015] [PMID: 18089295]
[58]
Date, A.A.; Nagarsenker, M.S. Parenteral microemulsions: an overview. Int. J. Pharm., 2008, 355(1-2), 19-30.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.004] [PMID: 18295991]
[59]
Jiao, J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv. Drug Deliv. Rev., 2008, 60(15), 1663-1673.
[http://dx.doi.org/10.1016/j.addr.2008.09.002] [PMID: 18845195]
[60]
Bagwe, R.P.; Kanicky, J.R.; Palla, B.J.; Patanjali, P.K.; Shah, D.O. Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Crit. Rev. Ther. Drug Carrier Syst., 2001, 18(1), 77-140.
[PMID: 11326744]
[61]
Pouton, C.W.; Porter, C.J. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv. Drug Deliv. Rev., 2008, 60(6), 625-637.
[http://dx.doi.org/10.1016/j.addr.2007.10.010] [PMID: 18068260]
[62]
Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev., 2012, 64, 175-193.
[http://dx.doi.org/10.1016/j.addr.2012.09.018] [PMID: 11104900]
[63]
Arabloo, M.; Ghazanfari, M.H.; Rashtchian, D. Wettability modification, interfacial tension and adsorption characteristics of a new surfactant: Implications for enhanced oil recovery. Fuel, 2016, 185, 199-210.
[http://dx.doi.org/10.1016/j.fuel.2016.06.088]
[64]
Parshad, B.; Prasad, S.; Bhatia, S.; Mittal, A.; Pan, Y.; Mishra, P.K.; Sharma, S.K.; Fruk, L. Non-ionic small amphiphile based nanostructures for biomedical applications. RSC Adv., 2020, 10(69), 42098-42115.
[http://dx.doi.org/10.1039/D0RA08092F]
[65]
Sharma, V.; Chotia, C.; Tarachand, ; Ganesan, V.; Okram, G.S. Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles. Phys. Chem. Chem. Phys., 2017, 19(21), 14096-14106.
[http://dx.doi.org/10.1039/C7CP01769C] [PMID: 28518207]
[66]
Lourenco, C.; Teixeira, M.; Simões, S.; Gaspar, R. Steric stabilization of nanoparticles: size and surface properties. Int. J. Pharm., 1996, 138(1), 1-12.
[http://dx.doi.org/10.1016/0378-5173(96)04486-9]
[67]
Yazdani, A.; Bagchi, P. Influence of membrane viscosity on capsule dynamics in shear flow. J. Fluid Mech., 2013, 718, 569-595.
[http://dx.doi.org/10.1017/jfm.2012.637]
[68]
Martys, N.S.; George, W.L.; Chun, B.W.; Lootens, D. A smoothed particle hydrodynamics-based fluid model with a spatially dependent viscosity: application to flow of a suspension with a non-Newtonian fluid matrix. Rheol. Acta, 2010, 49(10), 1059-1069.
[http://dx.doi.org/10.1007/s00397-010-0480-7]
[69]
Klingenberg, D.J. Magnetorheology: Applications and challenges. american institute of chemical engineers. AIChE J., 2001, 47(2), 246.
[http://dx.doi.org/10.1002/aic.690470202]
[70]
Nikiforidis, C.V.; Matsakidou, A.; Kiosseoglou, V. Composition, properties and potential food applications of natural emulsions and cream materials based on oil bodies. RSC Advances, 2014, 4(48), 25067-25078.
[http://dx.doi.org/10.1039/C4RA00903G]
[71]
Jiang, P.X.; Wang, Z.; Ren, Z.P.; Wang, B.X. Experimental research of fluid flow and convection heat transfer in plate channels filled with glass or metallic particles. Exp. Therm. Fluid Sci., 1999, 20(1), 45-54.
[72]
Al-Tabakha, M.M. HPMC capsules: current status and future prospects. J. Pharm. Pharm. Sci., 2010, 13(3), 428-442.
[http://dx.doi.org/10.18433/J3K881] [PMID: 21092714]
[73]
Hoag, S.W. Capsules dosage form: formulation and manufacturing considerations. Developing Solid Oral Dosage Forms; Academic Press., 2017, pp. 723-747.
[74]
Stegemann, S.; Bornem, C. Hard gelatin capsules today-and tomorrow; Capsugel Library, 1999.
[75]
Bowtle, W.J. Materials, process, and manufacturing considerations for lipid-based hard-capsule formats. Drugs pharm sci, 2007, 170, 79.
[76]
Gullapalli, R.P.; Mazzitelli, C.L. Gelatin and non-gelatin capsule dosage forms. J. Pharm. Sci., 2017, 106(6), 1453-1465.
[http://dx.doi.org/10.1016/j.xphs.2017.02.006] [PMID: 28209365]
[77]
Brown, J.; Madit, N.; Cole, E.T.; Wilding, I.R.; Cadé, D. The effect of cross-linking on the in vivo disintegration of hard gelatin capsules. Pharm. Res., 1998, 15(7), 1026-1030.
[http://dx.doi.org/10.1023/A:1011973909815] [PMID: 9688055]
[78]
Sultana, M.; Butt, M.A.; Saeed, T.; Mahmood, R.; Ul Hassan, S.; Hussain, K.; Raza, S.A.; Ahsan, M.; Bukhari, N.I. Effect of rheology and poloxamers properties on release of drugs from silicon dioxide gel-filled hard gelatin capsules-a further enhancement of viability of liquid semisolid matrix technology. AAPS PharmSciTech, 2017, 18(6), 1998-2010.
[http://dx.doi.org/10.1208/s12249-016-0674-0] [PMID: 27933585]
[79]
Vasvári, G.; Csontos, B.; Sovány, T.; Regdon, G., Jr; Bényei, A.; Váradi, J.; Bácskay, I.; Ujhelyi, Z.; Fehér, P.; Sinka, D.; Nguyen, T.L.P.; Vecsernyés, M.; Fenyvesi, F. Development and characterisation of modified release hard gelatin capsules, based on in situ lipid matrix formation. AAPS PharmSciTech, 2018, 19(7), 3165-3176.
[http://dx.doi.org/10.1208/s12249-018-1146-5] [PMID: 30136176]
[80]
Gallo, J.M.; Birtwistle, M.R. Network pharmacodynamic models for customized cancer therapy. Wiley Interdiscip. Rev. Syst. Biol. Med., 2015, 7(4), 243-251.
[http://dx.doi.org/10.1002/wsbm.1300] [PMID: 25914386]
[81]
Okwuosa, T.C.; Soares, C.; Gollwitzer, V.; Habashy, R.; Timmins, P.; Alhnan, M.A. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing. Eur. J. Pharm. Sci., 2018, 118, 134-143.
[http://dx.doi.org/10.1016/j.ejps.2018.03.010] [PMID: 29540300]
[82]
Yang, J.H. Manufacturing method for softgel capsule containing solid and liquid formulations as core ingredient. U.S. Patent Application 16/557,068, 2020.
[83]
Melocchi, A.; Parietti, F.; Loreti, G.; Maroni, A.; Gazzaniga, A.; Zema, L. 3D printing by fused deposition modeling [FDM] of a swellable/erodible capsular device for oral pulsatile release of drugs. J. Drug Deliv. Sci. Technol., 2015, 30, 360-367.
[http://dx.doi.org/10.1016/j.jddst.2015.07.016]
[84]
Smith, D.; Kapoor, Y.; Hermans, A.; Nofsinger, R.; Kesisoglou, F.; Gustafson, T.P.; Procopio, A. 3D printed capsules for quantitative regional absorption studies in the GI tract. Int. J. Pharm., 2018, 550(1-2), 418-428.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.055] [PMID: 30172750]
[85]
Paradissis, G.N.; Garegnani, J.A.; Whaley, R.S. Extended release pharmaceutical formulations. U.S. Patent 5,133,974., 1992.
[86]
Kalepua, S.; Nekkantib, V.; Manthinaa, M. Development and validation of a dissolution method for Raloxifene hydrochloride in pharmaceutical dosage forms using RP-HPLC. J. Chem. Pharm. Res., 2013, 5(12), 981-987.
[87]
Kalepu, S.; Manthina, M.; Padavala, V. Oral lipid-based drug delivery systems-an overview. Acta Pharm. Sin. B, 2013, 3(6), 361-372.
[http://dx.doi.org/10.1016/j.apsb.2013.10.001]
[88]
Kazi, M.; Al Amri, R.; Alanazi, F.K.; Hussain, M.D. In vitro methods for in vitro-in vivo correlation (IVIVC) for poorly water soluble drugs: lipid based formulation perspective. Curr. Drug Deliv., 2018, 15(7), 918-929.
[http://dx.doi.org/10.2174/1567201815666180116090910] [PMID: 29336263]
[89]
Jacob, S.; Nair, A.B.; Shah, J. Emerging role of nanosuspensions in drug delivery systems. Biomater. Res., 2020, 24(1), 3.
[http://dx.doi.org/10.1186/s40824-020-0184-8] [PMID: 31969986]
[90]
Ferrar, J.A.; Sellers, B.D.; Chan, C.; Leung, D.H. Towards an improved understanding of drug excipient interactions to enable rapid optimization of nanosuspension formulations. Int. J. Pharm., 2020, 578, 119094.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119094] [PMID: 32006625]
[91]
Junyaprasert, V.B.; Morakul, B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian. J. Pharm. Sci., 2015, 10(1), 13-23.
[92]
Controulis, J.; Davis, P. Hard gelatin capsules–new developments from capsugel. Drug Dev. Ind. Pharm., 1985, 11(2-3), 585-590.
[http://dx.doi.org/10.3109/03639048509056889]
[93]
Wientjes, C.; Mathus-Vliegen, E.; Riccioni, M.E.; Spada, C.; Costamagna, G.; Van Gossum, A.M.; Deviere, J.M.; Philipper, M.; Neuhaus, H.; Lapalus, M.G.; Ponchon, T. Multicenter randomized controlled comparison of two different video capsule endoscopy systems to diagnose small bowel bleeding and/or inflammation. Gastrointest. Endosc., 2009, 69(5), AB375-AB376.
[http://dx.doi.org/10.1016/j.gie.2009.03.1130]
[94]
Trafton, A. New drug-delivery capsule may replace injections pill coated with tiny needles can deliver drugs directly into the lining of the digestive tract. MIT News, 2014.
[95]
Kim, Y.; Kim, J.; Kim, Y.; Jang, J.H. Liquid filled multilayered capsules for oral delivery. 42nd Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence., 2019, 40, p. 529.
[96]
Yamamoto, T.; Abe, K.; Matsuura, S. Hard capsule for pharmaceutical drugs and method for producing the same. U.S. Patent 5,264,223., 1993.
[97]
Wong, P.S.L.; Dong, L.C.; Wan, J. Conversion of liquid filled gelatin capsules into controlled release systems by multiple coatings. U.S. Patent 6,419,952., 2002.
[98]
White, T.O. Stable liquid filled hard capsule comprising beta-hydroxy-beta methylbutyric acid. U.S. Patent 10,188,611., 2019.
[99]
De, H.N.; Banbury, S.; Aylwin, E.A.; Ferdinando, J.J.C.; Akzo Nobel, N.V. Formulation comprising testosteronundecanoate and castor oil. U.S. Patent Application 10/142,604., 2005.
[100]
Andriole, G.L.; Bostwick, D.G.; Brawley, O.W.; Gomella, L.G.; Marberger, M.; Montorsi, F.; Pettaway, C.A.; Tammela, T.L.; Teloken, C.; Tindall, D.J.; Somerville, M.C.; Wilson, T.H.; Fowler, I.L.; Rittmaster, R.S. Effect of dutasteride on the risk of prostate cancer. N. Engl. J. Med., 2010, 362(13), 1192-1202.
[http://dx.doi.org/10.1056/NEJMoa0908127] [PMID: 20357281]
[101]
Stryjewski, M.E.; Corey, G.R. Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clin. Infect. Dis., 2014, 58(Suppl. 1), S10-S19.
[http://dx.doi.org/10.1093/cid/cit613] [PMID: 24343827]
[102]
Lucas, R.A.; Bowtle, W.J.; Ryden, R. Disposition of vancomycin in healthy volunteers from oral solution and semi-solid matrix capsules. J. Clin. Pharm. Ther., 1987, 12(1), 27-31.
[PMID: 3449561]
[103]
González-Cuevas, J.; Navarro-Partida, J.; Marquez-Aguirre, A.L.; Bueno-Topete, M.R.; Beas-Zarate, C.; Armendáriz-Borunda, J. Ethylenediaminetetraacetic acid induces antioxidant and anti-inflammatory activities in experimental liver fibrosis. Redox Rep., 2011, 16(2), 62-70.
[http://dx.doi.org/10.1179/174329211X13002357050851] [PMID: 21722414]
[104]
Dhaliwal, D.K.; Farhi, P.; Eller, A.W.; Kowalski, R.P. Late capsular block syndrome associated with Propionibacterium acnes. Arch. Ophthalmol., 2011, 129(2), 246-247.
[http://dx.doi.org/10.1001/archophthalmol.2010.356]
[105]
Guillard, E.M.; Madit, N.; Scott, R.A. Ibuprofen containing hard shell capsules. U.S. Patent 7,229,639, 2007.
[106]
Shojaei, A.H.; Ibrahim, S.A.; Burnside, B.A. Oral capsule formulation with increased physical stability. U.S. Patent 7,011,846., 2006.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy