Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Optimization and Characterization of Biogenic Silver Nanoparticles Synthesized by Leaves Extract of Alphonsea madraspatana

Author(s): Amita Sahu, Sudhanshu Shekhar Swain, Goutam Ghosh, Deepak Pradhan, Dipak Kumar Sahu, Prativa Biswasroy and Goutam Rath*

Volume 17, Issue 10, 2021

Published on: 22 February, 2021

Article ID: e190721191719 Pages: 10

DOI: 10.2174/1573407217666210223092824

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Literature evidence as well as traditional uses of genus Alphonsea reveal significant antimicrobial and anti-oxidant activitiesencouraging to consider A. madraspatana to have potent antimicrobials, there by offering potential adjuncts to synthesize improved antimicrobial Silver nanoparticles (AgNPs). The objective of the present exposition is to optimize reaction parameters to synthesize antimicrobial Biogenic Silver nanoparticles (BAgNPs) from the extract of A. madraspatana leaves (AML) and to evaluate the effect against bacteria.

Methods: BAgNPs were synthesized by the optimized reaction. The Synthesized nanoparticles were characterized by UV, IR, ICP-MS and XRD analysis. The antibacterial potency of optimized BAgNPs was evaluated against E. coli by comparing with positive controls.

Results: Results of the optimization process indicate nanoscale BAgNPs were produced at 45°C for 120 min at pH 8 with 1:5 volume ratio of AgNO3 and extract. Optimized BAgNPs exhibits relatively higher antimicrobial activity (31±1mm) compared to Ciprofloxacin (27±1mm) and marketed nanosilver (28± 2 mm). The developed BAgNPs show comparable biofilm inhibition (86.50%) as compared to marketed nanosilver (88.10%) and Ciprofloxacin (83.10%).

Conclusion: Experimental evidence suggests methanolic extract of AML under predefined conditions, which successfully generate nano-template of silver with better antibacterial response against E. coli.

Keywords: A. madraspatana, silver nanoparticles, optimization, E. coli, antibiofilm activity, antimicrobial resistance, AML.

Graphical Abstract
[1]
Czuban, M.; Srinivasan, S.; Yee, N.A.; Agustin, E.; Koliszak, A.; Miller, E.; Khan, I.; Quinones, I.; Noory, H.; Motola, C.; Volkmer, R.; Di Luca, M.; Trampuz, A.; Royzen, M.; Mejia Oneto, J.M. Bio-orthogonal chemistry and reloadable biomaterial enable local activation of antibiotic prodrugs and enhance treatments against Staphylococcus aureus infections. ACS Cent. Sci., 2018, 4(12), 1624-1632.
[http://dx.doi.org/10.1021/acscentsci.8b00344] [PMID: 30648146]
[2]
Sedlmayer, F.; Jaeger, T.; Jenal, U.; Fussenegger, M. Quorum-quenching human designer cells for closed-loop control of Pseudomonas aeruginosa biofilms. Nano Lett., 2017, 17(8), 5043-5050.
[http://dx.doi.org/10.1021/acs.nanolett.7b02270] [PMID: 28703595]
[3]
Zhu, X.; Radovic-Moreno, A.F.; Wu, J.; Langer, R.; Shi, J. Nanomedicine in the management of microbial infection - overview and perspectives. Nano Today, 2014, 9(4), 478-498.
[http://dx.doi.org/10.1016/j.nantod.2014.06.003] [PMID: 25267927]
[4]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712-1720.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[5]
Peretyazhko, T.S.; Zhang, Q.; Colvin, V.L. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: Kinetics and size changes. Environ. Sci. Technol., 2014, 48(20), 11954-11961.
[http://dx.doi.org/10.1021/es5023202] [PMID: 25265014]
[6]
Kim, B.H.; Hackett, M.J.; Park, J.; Hyeon, T. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem. Mater., 2014, 26(1), 59-71.
[http://dx.doi.org/10.1021/cm402225z]
[7]
Silva, L.P.; Bonatto, C.C.; Polez, V.L.P. Green Synthesis of Metal Nanoparticles by Fungi: Current Trends and Challenges. In: Advances and Applications Through Fungal Nanobiotechnology, Fungal Biology; Prasad, R., Ed.; Springer International Publishing: Cham, 2016; pp. 71-89.
[8]
Mishra, A.; Sardar, M. Cellulase assisted synthesis of nano-silver and gold: Application as immobilization matrix for biocatalysis. Int. J. Biol. Macromol., 2015, 77, 105-113.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.014] [PMID: 25797407]
[9]
Phukan, S.; Bharali, P.; Das, A.K.; Rashid, Md. H Phytochemical assisted synthesis of size and shape tunable gold nanoparticles and assessment of their catalytic activities. RSC Adv., 2016, 6(55), 49307-49316.
[http://dx.doi.org/10.1039/C5RA23535A]
[10]
Mukherjee, S.; Dasari, M.; Priyamvada, S.; Kotcherlakota, R.; Bollu, V.S.; Patra, C.R. A green chemistry approach for the synthesis of gold nanoconjugates that induce the inhibition of cancer cell proliferation through induction of oxidative stress and their in vivo toxicity study. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(18), 3820-3830.
[http://dx.doi.org/10.1039/C5TB00244C] [PMID: 32262856]
[11]
Balasubramanian, S.; Bezawada, S.R.; Dhamodharan, R. Facile aqueous phase synthesis of (200) faceted Au-AgCl cubes using bael gum and its activity toward oxidation and detection of o -PDA. Chem. Eng., 2016, 4(6), 2960-2968.
[http://dx.doi.org/10.1021/acssuschemeng.5b01279]
[12]
Talip, M.A.; Azziz, S.S.S.A.; Wong, C.F.; Awang, K.; Naz, H.; Bakri, Y.M.; Ahmad, M.S.; Litaudon, M. New azafluorenone derivative and antibacterial activities of Alphonsea cylindrica barks. Nat. Prod. Sci., 2017, 23(3), 151.
[http://dx.doi.org/10.20307/nps.2017.23.3.151]
[13]
Bakri, Y.M.; Abdul Talip, M.; Abdul Azziz, S.S.S. A mini review on Alphonsea sp. (Annonaceae): Traditional uses, biological activities and phytochemistry. J. App. Pharm. Sci., 2017, 7(10), 200-203.
[http://dx.doi.org/10.7324/JAPS.2017.71030]
[14]
Johnson, T.A.; Sohn, J.; Ward, A.E.; Cohen, T.L.; Lorig-Roach, N.D.; Chen, H.; Pilli, R.A.; Widjaja, E.A.; Hanafi, M.; Kardono, L.B.S.; Lotulung, P.D.; Boundy-Mills, K.; Bjeldanes, L.F. (+)-Altholactone exhibits broad spectrum immune modulating activity by inhibiting the activation of pro-inflammatory cytokines in RAW 264.7 cell lines. Bioorg. Med. Chem., 2013, 21(14), 4358-4364.
[http://dx.doi.org/10.1016/j.bmc.2013.04.055] [PMID: 23735825]
[15]
Joshi, S.D.S.D.; Venkata, R.G.; Satya, P.M.; Kishore, B.M.; Surya, N.S.; Krishna, S Phytochemical screening and evaluation of antioxidant, antibacterial and antifungal activity of medicinal plant Alphonsea sclerocarpa Thaw. J Pharmacogn Phytochem, 2017, 6(4), 1280-1286.
[16]
Švecová, M.; Ulbrich, P.; Dendisová, M.; Matějka, P. SERS study of riboflavin on green-synthesized silver nanoparticles prepared by reduction using different flavonoids: What is the role of flavonoid used? Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 195, 236-245.
[http://dx.doi.org/10.1016/j.saa.2018.01.083] [PMID: 29428644]
[17]
Raorane, C.J.; Lee, J-H.; Kim, Y-G.; Rajasekharan, S.K.; García-Contreras, R.; Lee, J. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front. Microbiol., 2019, 10, 990.
[http://dx.doi.org/10.3389/fmicb.2019.00990] [PMID: 31134028]
[18]
Slobodníková, L.; Fialová, S.; Rendeková, K.; Kováč, J.; Mučaji, P. Antibiofilm activity of plant polyphenols. Molecules, 2016, 21(12), 1717.
[http://dx.doi.org/10.3390/molecules21121717] [PMID: 27983597]
[19]
Sahu, A.; Ghosh, G.; Rath, G. Identification and molecular docking studies of bioactive principles from Alphonsea madraspatana Bedd. against uropathogens. Cur. Pharm. Biotechnol., 2020, 21.
[20]
Božanić, D.K.; Dimitrijević-Branković, S.; Bibić, N.; Luyt, A.S.; Djoković, V. Silver nanoparticles encapsulated in glycogen biopolymer: Morphology, optical and antimicrobial properties. Carbohydr. Polym., 2011, 83(2), 883-890.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.070]
[21]
Estevez, M.B.; Raffaelli, S.; Mitchell, S.G.; Faccio, R.; Alborés, S. Biofilm eradication using biogenic silver nanoparticles. Molecules, 2020, 25(9), E2023.
[http://dx.doi.org/10.3390/molecules25092023] [PMID: 32357560]
[22]
Das, S.; Barman, S. Antidiabetic and antihyperlipidemic effects of ethanolic extract of leaves of Punica granatum in alloxan-induced non-insulin-dependent diabetes mellitus albino rats. Indian J. Pharmacol., 2012, 44(2), 219-224.
[http://dx.doi.org/10.4103/0253-7613.93853] [PMID: 22529479]
[23]
Dias, A.C.P.; Marslin, G. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int. J. Nanomed., 2015, 10, 5955-5963.
[24]
Amina, M.; Alarfaj, N.A.; El-Tohamy, M.F.; Al Musayeib, N.M.; Oraby, H.F. Sequential injection-chemiluminescence evaluation of stigmasterol glucoside and luteolin via green synthesis of silver nanoparticles using biomass of Plectranthus asirensis. Green Chem. Lett. Rev., 2018, 11(4), 523-533.
[http://dx.doi.org/10.1080/17518253.2018.1543457]
[25]
Naidu, K.S.B.; Murugan, N.; Adam, J.K. Sershen. Biogenic synthesis of silver nanoparticles from Avicennia marina seed extract and its antibacterial potential. BioNanoSci., 2019, 9(2), 266-273.
[http://dx.doi.org/10.1007/s12668-019-00612-4]
[26]
Ganesh Babu, M.M.; Gunasekaran, P. Extracellular synthesis of crystalline silver nanoparticles and its characterization. Mater. Lett., 2013, 90, 162-164.
[http://dx.doi.org/10.1016/j.matlet.2012.09.029]
[27]
Khalil, M.M.H.; Ismail, E.H.; El-Baghdady, K.Z.; Mohamed, D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem., 2014, 7(6), 1131-1139.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.007]
[28]
Megiel, E. Surface modification using TEMPO and its derivatives. Adv. Colloid Interface Sci., 2017, 250, 158-184.
[http://dx.doi.org/10.1016/j.cis.2017.08.008] [PMID: 28950986]
[29]
Sampaio, S.; Viana, J.C. Production of silver nanoparticles by green synthesis using artichoke (Cynara scolymus L.) aqueous extract and measurement of their electrical conductivity. Adv. Nat. Sci: Nanosci. Nanotechnol., 2018, 9(4), 045002.
[http://dx.doi.org/10.1088/2043-6254/aae987]
[30]
Santos, D.Y.A.C.; Salatino, M.L.F. Foliar flavonoids of Annonaceae from Brazil: Taxonomic significance. Phytochemistry, 2000, 55(6), 567-573.
[http://dx.doi.org/10.1016/S0031-9422(00)00227-2] [PMID: 11130666]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy