Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Radical Releasing Anti-tuberculosis Agents and the Treatment of Mycobacterial Tuberculosis Infections - An Overview

Author(s): Afeez I. Kareem, Sarel F. Malan and Jacques Joubert*

Volume 22, Issue 2, 2022

Published on: 19 February, 2021

Page: [387 - 407] Pages: 21

DOI: 10.2174/1389557521666210219161045

Price: $65

Open Access Journals Promotions 2
Abstract

Abstract: The treatment and management of tuberculosis (TB) is a major global concern. Approved drugs for the treatment of TB, to date, have displayed various modes of action which can be grouped into radical releasing and non-radical releasing anti-TB agents. Radical releasing agents are of special interest because they diffuse directly into the mycobacterium cell wall, interact with the host cell DNA, causing DNA strand breakages and fatal destabilization of the DNA helix inhibiting nucleic acid synthase. As a therapeutic agent with the aforementioned activity, nitroimidazoles and most especially bicyclic nitroimidazoles are currently in clinical use for the treatment of tuberculosis. However, the approved drugs, pretomanid (PR) and delamanid (DE) are limited in their nitric oxide radical (NO) releasing abilities to cause effective bactericidity. It is believed that their bactericidal activity can be improved by harnessing alternative strategies to increase NO release. The last decade has witnessed the strategic inclusion of NO-donors into native drugs to improve their activities and/or reverse resistance. The rationale behind this strategy is the targeting of NO release at specific therapeutic sites. This review, therefore, aims to highlight various radical releasing agents that may be effective in the treatment of TB. The review also investigates various structural modifications to PR and DE and suggests alternative strategies to improve NOrelease as well as some applications where NO-donor hybrid drugs have been used with good therapeutic effect.

Keywords: Radical species, Mycobacterium tuberculosis, bicyclic nitroimidazoles, delamanid, pretomanid, nitric oxide.

« Previous
Graphical Abstract
[1]
Foppiano, P.C.; Saleeb, P.G. Challenges in the diagnosis of tuberculous meningitis. J. Clin. Tuberc. Mycobact. Dis., 2020, 20.,
[2]
Davids, M.; Pooran, A.S.; Pietersen, E.; Wainwright, H.C.; Warren, R.; Dheda, K.; Regulatory, T. Cells Subvert Mycobacterial Containment in Patients Failing Extensivesly Drug-Resistant Tuberculosis Treatment. Am. J. Respir. Crit. Care Med., 2018, 198(1), 104-116.
[3]
Palomino, J.C.; Martin, A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel), 2014, 3, 317-340.
[4]
Da Silva, P.E.; Palomino, J.C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J. Antimicrob. Chemother., 2011, 66, 1417-1430.
[5]
Fonseca, J.; Knight, G.; McHugh, T. The complex evolution of antibiotic resistance in Mycobacterium tuberculosis. Int. J. Infect. Dis., 2015, 32, 94-100.
[6]
Chopra, I.; O’Neill, A.J.; Miller, K. The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist. Updat., 2003, 6, 137-145.
[7]
Martinez, J.; Baquero, F. Mutation frequencies and antibiotic resistance. Antimicrob. Agents Chemother., 2000, 44, 1771-7.
[8]
da Silva, P.E.; Von Groll, A.; Martin, A. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol. Med. Micro., 2011, 63, 1-9.
[9]
Louw, G.; Warren, R.; Van Pittius, N.G. A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob. Agents Chemother., 2009, 53, 3181-9.
[10]
Koch, A.; Cox, H.; Mizrahi, V. Drug-resistant tuberculosis: challenges and opportunities for diagnosis and treatment. Curr. Opin. Pharm, 2018, 42, 7-15.
[11]
Migliori, G.B.; De Iaco, G.; Besozzi, G.; Centis, R.; Cirillo, D.M. First tuberculosis cases in Italy resistant to all tested drugs. Euro. Comm. Dis. Bull., 2007 12(5), E070517,1.,
[12]
Parida, S.K.; Axelsson-Robertson, R.; Rao, M.V.; Singh, N.; Master, I. Totally drug-resistant tuberculosis and adjunct therapies. J. Int. Med., 2015, 277(4), 388-405.
[13]
Asadi, S.; Wexler, A.S.; Cappa, C.D.; Barreda, S.; Bouvier, N.M.; Ristenpart, W.D. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep., 2019, 9(1), 2348.
[14]
Bussi, C.; Gutierrez, M.G. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Micro. Rev., 2019, 43(4), 341-361.
[15]
Möller, M.; Kinnear, C.J.; Orlova, M.; Kroon, E.E.; Van Helden, P.D.; Schurr, E.; Hoal, E.G. Genetic Resistance to Mycobacterium tuberculosis Infection and Disease; Front. Immuno, 2018, p. 9.
[16]
Houben, R.M.G.J.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med., 2016, 13(10)e1002152
[17]
Haraguchi, S.; Day, N.K.; Kamchaisatian, W.; Macarena, H.; Stenger, S. LMP-420, a small-molecule inhibitor of TNF-alpha, reduces replication of HIV-1 and Mycobacterium tuberculosis in human cells. AIDS Res.and Therap, 2006, 3(1), 8.
[18]
Christopoulos, A.I.; Diamantopoulos, A.A.; Dimopoulos, P.A.; Goumenos, D.S.; Barbalias, G.A. Risk factors for tuberculosis in dialysis patients: a prospective multi-center clinical trial.BMC nephr., 2009, 10, 36.,
[19]
Sidhu, A.; Verma, G.; Humar, A.; Kumar, D. Outcome of latent tuberculosis infection in solid organ transplant recipients over a 10-year period. Transplantation, 2014, 98(6), 671-675.
[20]
Rees, D.; Murray, J. Silica, silicosis and tuberculosis. Int. J. Tuberc. Lung Dis., 2007, 11(5), 474-484.
[21]
Jeon, C.Y.; Murray, M.B. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med., 2008, 5(7)e152
[22]
Maurya, V.; Vijayan, V.K.; Shah, A. Smoking and tuberculosis: an association overlooked. Int. J. Tuberc. Lung Dis., 2002, 6(11), 942-951.
[23]
Rehm, J.; Samokhvalov, A.V.; Room, R.; Neuman, M.G.; Parry, C.; Patra, J.; Poznyak, V.; Popova, S. The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review. BMC pub. health., 2009, 9(450).,
[24]
Lobue, P.; Menzies, D. Treatment of latent tuberculosis infection: An update. Resp . (Carlton, Vic.).,, 2010, 15(4), 603-622.
[25]
Bhat, Z.S.; Rather, M.A.; Maqbool, M.; Ahmad, Z. Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Biomed. & Pharm., 2018, 103, 1733-1747.
[26]
Barry, C.E.; Boshoff, H.M.; Dowd, C.S. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Rev. Micro, 2009, 7(12), 845-855.
[27]
Osborne, R. First novel anti-tuberculosis drug in 40 years. Nat. Biotech., 2013, 31(2), 89-90.
[28]
Diacon, A.H.; Dawson, R.; Hanekom, M.; Narunsky, K.; Venter, A.; Hittel, N.; Wells, C.D.; Paccaly, A.J.; Donald, P.R. Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. 2011.,
[29]
Koul, A.; Vranckx, L.; Dhar, N.; Göhlmann, W.H.; Özdemir, E.; Neefs, J.; Schulz, M.; Lu, P.; Mørtz, E.; McKinney, J.D.; Bald, D. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat. Commun., 2014, 5(1), 3369.
[30]
McLeay, S.C.; Vis, P.; Van Heeswijk, R.P.G.; Green, B. Population Pharmacokinetics of Bedaquiline (TMC207), a Novel Antituberculosis Drug. Antimicrob. Agents Chemother., 2014, 58(9), 5315-5324.
[31]
Keam, S.J. Pretomanid: First Approval. Drugs, 2019, 79(16), 1797-1803.
[32]
Van den Bossche, A.; Varet, H.; Sury, M.; Sismeiro, O.; Legendre, R.; Coppee, J.; Mathys, V.; Ceyssens, P. Transcriptional profiling of a laboratory and clinical Mycobacterium tuberculosis strain suggests respiratory poisoning upon exposure to delamanid.Tuberc., 2019 117, 18-23.,
[33]
Singh, R.; Manjunatha, U.; Boshoff, H.M.; Ha, Y.A.; Niyomrattanakit, P.; Ledwidge, R.; Dowd, C.S.; Lee, I.Y.; Kim, P.; Zhang, L.; Kang, S.; Keller, T.H.; Jiricek, J.; Barry, C.E. PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release. Sci., 2008, 322(5906), 1392-1395.
[34]
Jamaati, H.; Mortaz, E.; Pajouhi, Z. Nitric oxide in the pathogenesis and treatment of tuberculosis. Front. Micro., 2017, 8, 2008.
[35]
Voskuil, M.I.; Bartek, I.L.; Visconti, K.; Schoolnik, G.K. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front. Micro., 2011, 2, 105.
[36]
Wu, Y.; Gulbins, E.; Grassmé, H. Crosstalk between sphingomyelinases and reactive oxygen species in mycobacterial infection. Antioxid. Redox Signal., 2018, 28(10), 935-948.
[37]
Dantas, A.; Day, A.; Ikeh, M.; Kos, I.; Achan, B.; Quinn, J. Oxidative stress responses in the human fungal pathogen. Candida albicans. Biomol., 2015, 5(1), 142-165.
[38]
Portevin, D.; Sukumar, S.; Coscolla, M. Lipidomics and genomics of Mycobacterium tuberculosis reveal lineage-specific trends in mycolic acid biosynthesis. MicroogyOpen, 2014, 3(6), 823-835.
[39]
Betts, J.C.; Lukey, P.T.; Robb, L.C.; McAdam, R.A.; Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Micro., 2002, 43(3), 717-731.
[40]
Jaeger, T. Peroxiredoxin systems in mycobacteria. Subcell. Biochem., 2007, 44, 207-217.
[41]
Diaz, G.A.; Wayne, L.G. Isolation and characterization of catalase produced by Mycobacterium tuberculosis. Am. Rev. Respir. Dis., 1974, 110(3), 312-319.
[42]
Vilchèze, C.; Hartman, T.; Weinrick, B. Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proc. Nat. Acad. Sci. Unit. Stat. Ame., 2017, 114(17), 4495-4500.
[43]
Rakesh, B. D.F.; Scherman, M.S.; Singh, A.P.; Yang, L.; Liu, J.; Lenaerts, A.J.; Lee, R.E. Synthesis and evaluation of Pretomanid (PA-824) oxazolidinone hybrids. Bioorg. Med. Chem. Lett., 2016, 26(2), 388-391.
[44]
Sharma, G.N.; Gupta, G.; Sharma, P. A Comprehensive Review of Free Radicals, Antioxidants, and Their Relationship with Human Ailments. Crit. Rev. Trad., 2018, 28(2).,
[45]
Li, H.; Ma, H. New progress in spectroscopic probes for reactive oxygen species. J. Analy. Test., 2018, 2(1), 2-19.
[46]
Mukherjee, T.; Boshoff, H. Nitroimidazoles for the treatment of TB: past, present and Fut. Fut Med. Chem., 2011, 3(11), 1427-1454.
[47]
Bernstein, J.; Lott, W.A.; Steinberg, B.A.; Yale, H.L. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. Am. Rev. Tuberc., 1952, 65(4), 357-364.
[48]
Cardona, P.J. Understanding Tuberculosis: New Approaches to Fighting Against Drug Resistance; BoD - Books on Demand, 2012.
[49]
Timmins, G.S.; Deretic, V. Mechanisms of action of isoniazid. Mol. Micro., 2006, 62(5), 1220-1227.
[50]
Timmins, G.S.; Master, S. Rusnak. F.; Deretic, V. Nitric Oxide Generated from Isoniazid Activation by KatG: Source of Nitric Oxide and Activity against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2004, 48(8), 3006-3009.
[51]
Banerjee, A.; Dubnau, E.; Quemard, A.; Um, K.S.; Balasubramanian, V.; Wilson, T.; de Lisle, G.; Jacobs, W.R. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Sci., 1994, 263(5144), 227-230.
[52]
Bardou, F.; Raynaud, C.; Ramos, C.; Lanéelle, M.A.; Lanéelle, G. Mechanism of isoniazid uptake in Mycobacterium tuberculosis. Microbio., 1998, 144(9), 2539-2544.
[53]
Wade, M.M. Mechanisms of drug resistance in mycobacterium tuberculosis. Front. Biosci., 2004, 9(1-3), 975.
[54]
Ramaswamy, S.; Musser, J.M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis:1998 update. Tuber. Lung Dis., 1998, 79(1), 3-29.
[55]
Piccaro, G.; Pietraforte, D.; Giannoni, F.; Mustazzolu, A.; Fattorini, L. Rifampin Induces Hydroxyl Radical Formation in Mycobacterium tuberculosis. Antimicro. Agents chemother., 2014, 58(12), 7527-7533.,
[56]
Kono, Y. Oxygen Enhancement of bactericidal activity of rifamycin SV on Escherichia coli and aerobic oxidation of rifamycin SV to rifamycin S catalyzed by manganous ions: the role of superoxide. J. Biochem., 1982, 91(1), 381-395.
[57]
Alifano, P.; Palumbo, C.; Pasanisi, D.; Talà, A. Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. J. Biotech., 2015, 202, 60-77.
[58]
Ang, C.W. Jarrad. A.M.; Cooper, M.A.; Blaskovich, M.A.T. Nitroimidazoles: Molecular Fireworks That Combat a Broad Spectrum of Infectious Diseases. J. Med. Chem., 2017, 60(18), 7636-7657.
[59]
Nepali, K.; Lee, H.Y.; Liou, J.P. Nitro-Group-Containing Drugs. J. Med. Chem., 2019, 62(6), 2851-2893.
[60]
Azam, A.; Peerzada, M.N.; Ahmad, K. Parasitic diarrheal disease: drug development and targets. Front. Micro., 2015, 6, 1183.
[61]
Anderson, R.J.; Groundwater, P.W.; Todd, A.; Worsley, A.J. Antibacterial Agents: Chemistry, Mode of Action, Mechanisms of Resistance and Clinical Applications; John Wiley & Sons, Ltd: Chichester, UK, 2012.
[62]
Müller, M. Mode of action of metronidazole on anaerobic bacteria and protozoa. Surg., 1983, 93(1), 165-171.
[63]
Voogd, C.E. On the mutagenicity of nitroimidazoles. Mutat. Res., 1981, 86(3), 243-277.
[64]
Malek, R.; Gharibi, A.; Khlil, N.; Kissa, J. Necrotizing Ulcerative Gingivitis. Contemp. Clin. Dent., 2017, 8(3), 496-500.
[65]
Bayerdörffer, E.; Lind, T.; Díte, P.; Bardhan, K.D.; O'Morain, C.; Delchier, J.C.; Spiller, R.; Veldhuyzen van Zanten, S.; Sipponen, P.; Mégraud, F.; Zeijlon, L. Omeprazole, amoxycillin and metronidazole for the cure of Helicobacter pylori infection.Euro. J. Gastroenter. & Hepat., 1999, 11(2), S19-22 &S23-24.,
[66]
Narikawa, S. Distribution of metronidazole susceptibility factors in obligate anaerobes. J. Antimicrob. Chemother., 1986, 18(5), 565-574.
[67]
Sköld, M.; Gnarpe, H.; Hillström, L. Ornidazole: A new antiprotozoal compound for treatment of Trichomonas vaginalis infection. Br. J. Vener. Dis., 1977, 53(1), 44-48.
[68]
Videau, D.; Niel, G.; Siboulet, A.; Catalan, F. Secnidazole. A 5-nitroimidazole derivative with a long half-life. Br. J. Vener. Dis., 1978, 54(2), 77-80.
[69]
Zhang, L.; Zhang, Z.; Wu, K. In vivo and real time determination of ornidazole and tinidazole and pharmacokinetic study by capillary electrophoresis with microdialysis. J. Pharm. Biomed. Anal., 2006, 41(4), 1453-1457.
[70]
Lee, S.M. Metronidazole.Helicobacter pylori; Kim, N., Ed.; Springer: Singapore, 2016.
[71]
Edwards, D.I. Nitroimidazole drugs-action and resistance mechanisms I. Mechanism of action. J. Antimicrob. Chemother., 1993, 31(1), 9-20.
[72]
Weir, C.B.; Le, J.K. Metronidazole.StatPearls; StatPearls Publishing: Treasure Island, FL, 2020.
[73]
Stratton, C.W.; Weeks, L.S.; Aldridge, K.E. Comparison of the bactericidal activity of clindamycin and metronidazole against cefoxitin-susceptible and cefoxitin-resistant isolates of the Bacteroides fragilis group. Diagn. Micro. Infect. Dis., 1991, 14(5), 377-382.
[74]
Stratton, C.W.; Weeks, L.S.; Aldridge, K.E. Inhibitory and bactericidal activity of selected beta-lactam agents alone and in combination with beta-lactamase inhibitors compared with that of cefoxitin and metronidazole against cefoxitin-susceptible and cefoxitin-resistant isolates of the Bacteroides. Diagn. Micro. Infect. Dis., 1992, 15(4), 321-330.
[75]
Nix, D.E.; Tyrrell, R.; Müller, M. Pharmacodynamics of metronidazole determined by a time-kill assay for Trichomonas vaginalis. Antimicrob. Agents Chemother., 1995, 39(8), 1848-1852.
[76]
Lin, P.L.; Dartois, V.; Johnston, P.J.; Janssen, C.; Via, L.; Goodwin, M.B.; Klein, E.; Barry, C.E.; Flynn, J.L. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc. Nation. Acad. Sci., 2012, 109(35), 14188-14193.
[77]
Wayne, L.G.; Sramek, H.A. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1994, 38(9), 2054-2058.
[78]
Brooks, J.V.; Furney, S.K.; Orme, I.M. Metronidazole therapy in mice infected with tuberculosis. Antimicrob. Agents Chemother., 1999, 43(5), 1285-1288.
[79]
Via, L.E.; Lin, P.L.; Ray, S.M.; Carrillo, J.; Allen, S.S.; Eum, S.Y.; Taylor, K.; Klein, E.; Manjunatha, U.; Gonzales, J.; Lee, E.G.; Park, S.K.; Raleigh, J.A.; Cho, S.N.; McMurray, D.N.; Flynn, J.L.; Barry, C.E. Tuberculous Granulomas Are Hypoxic in Guinea Pigs, Rabbits, and Nonhuman Primates. Infect. Immun., 2008, 76(6), 2333-2340.
[80]
Dhillon, J.; Allen, B.W.; Hu, Y.M.; Coates, A.R.; Mitchison, D.A. Metronidazole has no antibacterial effect in Cornell model murine tuberculosis. Int. J. Tuberc. Lung Dis., 1998, 2(9), 736-742.
[81]
Hoff, D.; Caraway, M.I.; Brooks, E.J.; Driver, E.; Ryan, G.; Peloquin, C.; Orme, I.; Basaraba, R.; Lenaerts, A. Metronidazole lacks antibacterial activity in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2008, 52(11), 4137-4140.
[82]
Desai, C.R.; Heera, S.; Patel, A.; Babrekar, A.B.; Mahashur, A.A.; Kamat, S.R. Role of metronidazole in improving response and specific drug sensitivity in advanced pulmonary tuberculosis. J. Assoc. Physicians India, 1989, 37(11), 694-697.
[83]
Jokipii, L.; Jokipii, A.M. Comparative evaluation of the 2-methyl-5-nitroimidazole compounds dimetridazole, metronidazole, secnidazole, ornidazole, tinidazole, carnidazole, and panidazole against Bacteroides fragilis and other bacteria of the Bacteroides fragilis group. Antimicrob. Agents Chemother., 1985, 28(4), 561-564.
[84]
Al-Masoudi, N.A.; Abbas, Z.A.A. Synthesis and biological activity of new metronidazole derivatives. Monatshefte für Chemie - Chemi. Monthl., 2016, 147(2), 383-390.
[85]
Upadhyay, A.; Chandrakar, P.; Gupta, S.; Parmar, N.; Singh, S.K.; Rashid, M.; Kushwaha, P.; Wahajuddin, M.; Sashidhara, K.V.; Kar, S. Synthesis, Biological Evaluation, Structure-Activity Relationship, and Mechanism of Action Studies of Quinoline-Metronidazole Derivatives Against Experimental Visceral Leishmaniasis. J. Med. Chem., 2019, 62(11), 5655-5671.
[86]
Wang, S.F.; Chandrakar, P.; Gupta, S.; Wu, X.; Sha, S.; Zhang, L.; Zhu, H. Synthesis, molecular docking and biological evaluation of metronidazole derivatives containing piperazine skeleton as potential antibacterial agents. Bioorg. Med. Chem., 2014, 22(8), 2409-2415.
[87]
Alawadi, D.Y.; Saadeh, H.A.; Kaur, H.; Goyal, K.; Sehgal, R.; Ben Hadda, T.; ElSawy, N.; Mubarak, M.S. Metronidazole derivatives as a new class of antiparasitic agents: Synthesis, prediction of biological activity, and molecular properties. Med. Chem. Res., 2015, 24(3), 1196-1209.
[88]
Saadeh, H.A.; Mosleh, I.M.; Al-Bakri, A.G.; Mubarak, M.S. Synthesis and antimicrobial activity of new 1,2,4-triazole-3-thiol metronidazole derivatives. Monatshefte für Chemie - Chem. Monthl., 2010, 141(4), 471-478.
[89]
Nakamura, S. Structure of Azomycin, a New Antibiotic. Pharm. Bull., 1955, 3(5), 379-383.
[90]
Lancini, G.C.; Lazzari, E. THE SYNTHESIS OF AZOMYCIN (2- NITROIMIDAZOLE). Exper., 1965, 21(83).,
[91]
Cavalleri, B.; Ballotta, R.; Arioli, V.; Lancini, G. New 5-substituted 1-alkyl-2-nitroimidazoles. J. Med. Chem., 1973, 16(5), 557-560.
[92]
Sharma, R. Nitroimidazole radiopharmaceuticals in hypoxia: part II cytotoxicity and radiosensitization applications.Curr.t Radiopharm., 2011, 4(4), 379-393.,
[93]
Santos, E.C.; Novaes, R.D.; Cupertino, M.C.; Bastos, D.S.; Klein, R.C.; Silva, E.M.; Fietto, J.L.; Talvani, A.; Bahia, M.T.; Oliveira, L.L. Concomitant Benznidazole and Suramin Chemotherapy in Mice Infected with a Virulent Strain of Trypanosoma cruzi. Antimicrob. Agents Chemother., 2015, 59(10), 5999-6006.
[94]
Khan, A.; Sarkar, S.; Sarkar, D. Bactericidal activity of 2-nitroimidazole against the active replicating stage of Mycobacterium bovis BCG and Mycobacterium tuberculosis with intracellular efficacy in THP-1 macrophages. Int. J. Antimicrob. Agents, 2008, 32(1), 40-45.
[95]
Cavalleri, B.; Volpe, G.; Arioli, V.; Lancini, G. Synthesis and biological activity of two metabolites of 1-methyl-5-(1-methylethyl)-2-nitro-1 H-imidazole, an antiprotozoal agent. J. Med. Chem., 1977, 20(11), 1522-1525.
[96]
Nagarajan, K. Nitroimidazoles XXI 2,3-dihydro-6-nitroimidazo [2,1-b] oxazoles with antitubercular activity. Eur. J. Med. Chem., 1989, 24(6), 631-633.
[97]
Matsumoto, M.; Hashizume, H. Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M.; Hopewell, P. OPC-67683, a Nitro-Dihydro-Imidazooxazole Derivative with Promising Action against Tuberculosis In Vitro and In Mice. PLoS Med., 2006, 3(11)e466
[98]
Denny, W.A.; Palmer, B.D. The nitroimidazooxazines (PA-824 and analogs): structure-activity relationship and mechanistic studies. Fut Med. Chem., 2010, 2(8), 1295-1304.
[99]
Gurumurthy, M.; Mukherjee, T.; Dowd, C.; Singh, R.; Niyomrattanakit, P.; Tay, J.N.; Nayyar, A.; Lee, Y.S.; Cherian, J.; Boshoff, H.I.; Dick, T.; Barry, C.E.; Manjunatha, U.H. Substrate specificity of the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis responsible for the bioreductive activation of bicyclic nitroimidazoles: Biochemical characterization of Mtb Ddn. FEBS J., 2012, 279(1), 113-125.
[100]
Boshoff, H.I.; Barry, C.E. Is the mycobacterial cell wall a hopeless drug target for latent tuberculosis? Drug Discov. Today Dis. Mech., 2006, 3(2), 237-245.
[101]
Manjunatha, U.H.; Boshoff, H.; Dowd, C.S.; Zhang, L.; Albert, T.J.; Norton, J.E.; Daniels, L.; Dick, T.; Pang, S.S.; Barry, C.E. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci., 2006, 103(2), 431-436.
[102]
Stover, C.K.; Warrener, P.; VanDevanter, D.R.; Sherman, D.R.; Arain, T.M.; Langhorne, M.H.; Anderson, S.W.; Towell, J.A.; Yuan, Y.; McMurray, D.N.; Kreiswirth, B.N.; Barry, C.E.; Baker, W.R. A small molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nat., 2000, 405(6789), 962-966.
[103]
Sutherland, H.S.; Blaser, A.; Kmentova, I.; Franzblau, S.G.; Wan, B.; Wang, Y.; Ma, Z.; Palmer, B.D.; Denny, W.A.; Thompson, A.M. Synthesis and structure-activity relationships of antitubercular 2-nitroimidazooxazines bearing heterocyclic side chains. J. Med. Chem., 2010, 53(2), 855-866.
[104]
Poce, G.; Cocozza, M.; Consalvi, S. Biava. M. SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development. Eur. J. Med. Chem., 2014, 86, 335-351.
[105]
Li, X.; Manjunatha, U.H.; Goodwin, M.B.; Knox, J.E.; Lipinski, C.A.; Keller, T.A.; Barry, C.E.; Dowd, C.S. Synthesis and antitubercular activity of 7-(R)- and 7-(S)-methyl-2-nitro-6-(S)-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazines, analogues of PA-824. Bioorg. Med. Chem. Lett., 2008, 18(7), 2256-2262.
[106]
Kim, P.; Zhang, L.; Manjunatha, U.H.; Singh, R.; Patel, S.; Jiricek, J.; Keller, T.H.; Boshoff, H.I.; Barry, C.E.; Dowd, C.S. Structure−Activity Relationships of Antitubercular Nitroimidazoles. 1. Structural Features Associated with Aerobic and Anaerobic Activities of 4- and 5-Nitroimidazoles. J. Med. Chem., 2009, 52(5), 1317-1328.
[107]
Kim, P.; Kang, S.; Boshoff, H.I.; Jiricek, J.; Collins, M.; Singh, R.; Manjunatha, U.H.; Niyomrattanakit, P.; Zhang, L.; Goodwin, M.; Dick, T.; Keller, T.H.; Dowd, C.S. Structure-activity relationships of antitubercular nitroimidazoles. 2. Determinants of aerobic activity and quantitative structure-activity relationships. J. Med. Chem., 2009, 52(5), 1329-1344.
[108]
Thompson, A.M.; Bonnet, M.; Lee, H.H.; Franzblau, S.G.; Wan, B.; Cooper, G.S.; Cooper, C.B.; Denny, W.A. Antitubercular Nitroimidazoles Revisited: Synthesis and Activity of the Authentic 3-Nitro Isomer of Pretomanid. ACS Med. Chem. Lett., 2017, 8(12), 1275-1280.
[109]
Liu, Y.; Matsumoto, M.; Ishida, H.; Yoshitake, M.; Gupta, R.; Geiter, L.; Hafkin, J. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuber., 2018, 111, 20-30.
[110]
Fujiwara, M.; Kawasaki, M.; Hariguchi, N.; Liu, Y.; Matsumoto, M. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuber., 2018, 108, 186-194.
[111]
Wen, S.; Jing, W.; Zhang, T.; Zong, Z.; Xue, Y.; Shang, Y.; Wang, F.; Huang, H.; Chu, N.; Pang, Y.U. Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug-resistant tuberculosis. Eur. J. Clin. Micro. Infect. Dis., 2019, 38(7), 1293-1296.
[112]
Jarrad, A.M.; Ang, C.W.; Debnath, A.; Hahn, H.J.; Woods, K.; Tan, L.; Sykes, M.L.; Jones, A.J.; Pelingon, R.; Butler, M.S.; Avery, V.M.; West, N.P.; Karoli, T.; Blaskovich, M.A.T.; Cooper, M.A. Design, Synthesis, and Biological Evaluation of 2-Nitroimidazopyrazin-one/-es with Antitubercular and Antiparasitic Activity. J. Med. Chem., 2018, 61(24), 11349-11371.
[113]
Yempalla, K.R.; Munagala, G.; Singh, S.; Kour, G.; Sharma, S.; Chib, R.; Kumar, S.; Wazir, P.; Singh, G.D.; Raina, S.; Bharate, S.S.; Khan, I.S.; Vishwakarma, R.A.; Singh, P.P. Synthesis and Biological Evaluation of Polar Functionalities Containing Nitrodihydroimidazooxazoles as Anti-TB Agents. ACS Med. Chem. Lett., 2015, 6(10), 1059-1064.
[114]
Manjunatha, U.; Boshoff, H.I.M.; Barry, C.E. The mechanism of action of PA-824. Commun. Integr. Biol., 2009, 2(3), 215-218.
[115]
Bertinaria, M.; Galli, U.; Sorba, G.; Fruttero, R.; Gasco, A.; Brenciaglia, M.I.; Scaltrito, M.M.; Dubini, F. Synthesis and anti-Helicobacter pylori properties of NO-donor/metronidazole hybrids and related compounds. Drug Dev. Res., 2003, 60(3), 225-239.
[116]
Bryan, N.S. Nitric oxide enhancement strategies. Fut. Sci., 2015, 1(1),
[117]
Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA, 2018, 115(23), 5839-5848.
[118]
Marletta, M.A. Nitric oxide synthase: aspects concerning structure and catalysis. Cell, 1994, 78(6), 927-930.
[119]
Wilson, A.M.; Harada, R.; Nair, N.; Balasubramanian, N.; Cooke, J.P. L-arginine supplementation in peripheral arterial disease: No benefit and possible harm. Circul., 2007, 116(2), 188-195.
[120]
Gresele, P.; Momi, S.; Guglielmini, G. Nitric oxide-enhancing or -releasing agents as antithrombotic drugs. J. Biochem. Pharma., 2019, 166, 300-312.
[121]
Kumar, S.; Singh, R.K.; Bhardwaj, T.R. Therapeutic role of nitric oxide as emerging molecule. J. Biomed. & Pharma., 2017, 85, 182-201.
[122]
Bi, Y.; Yang, X.; Zhang, T.; Liu, Z.; Zhang, X.; Lu, J.; Cheng, K.; Xu, J.; Wang, H.; Lv, G.; Lewis, P.J.; Meng, Q.; Ma, C. Design, synthesis, nitric oxide release and antibacterial evaluation of novel nitrated ocotillol-type derivatives. Eur. J. Med. Chem., 2015, 101, 71-80.
[123]
Park, D.; Kim, J.; Lee, Y.M.; Park, J.; Kim, W.J. Polydopamine Hollow Nanoparticle Functionalized with <i>N</i> -diazeniumdiolates as a Nitric Oxide Delivery Carrier for Antibacterial Therapy. Adv. Healthc. Mater., 2016, 5(16), 2019-2024.
[124]
Ren, S.Z.; Wang, Z.C.; Zhu, D.; Zhu, X.H.; Shen, F.Q.; Wu, S.Y.; Chen, J.J.; Xu, C.; Zhu, H. Design, synthesis and biological evaluation of novel ferrocene-pyrazole derivatives containing nitric oxide donors as COX-2 inhibitors for cancer therapy. Eur. J. Med. Chem., 2018, 157, 909-924.
[125]
Keeble, J.E.; Moore, P.K. Pharmacology and potential therapeutic applications of nitric oxide-releasing non-steroidal anti-inflammatory and related nitric oxide-donating drugs. Brit. J. Pharm., 2002, 137(3), 295-310.
[126]
Takeuchi, K.; Suzuki, K.; Yamamoto, H.; Araki, H.; Mizoguchi, H.; Ukawa, H. Cyclooxygenase-2 selective and nitric oxide-releasing nonsteroidal anti-inflammatory drugs and gastric mucosal responses. J. Phys. Pharma., 1998, 49(4), 501-513.
[127]
Mizoguchi, H.; Hase, S.; Tanaka, A.; Takeuchi, K. Lack of small intestinal ulcerogenecity of nitric oxide-releasing indomethacin, NCX-530, in rats. Alimen. Pharm. Therap., 2001, 15(2), 257-267 (2001).,
[128]
Cuzzolin, L.; Conforti, A.; Adami, A.; Lussignoli, S.; Menestrina, F.; del Soldato, P.; Benoni, G. Anti-inflammatory potency and gastrointestinal toxicity of a new compound, nitronaproxen. Pharm. Res., 1995, 31(1), 61-65.
[129]
Wallace, J.L.; Reuter, B.; Cicala, C.; McKnight, W.; Grisham, M.B.; Cirino, G. Novel nonsterodial anti-inflammatory drug derivatives with markedly reduced ulcerogenic properties in the rat. Gastroenter., 1994, 107(1), 173-179.
[130]
Pereira-Leite, C.; Nunes, C.; Bozelli, J.C.; Schreier, S.; Kamma-Lorger, C.; Cuccovia, L.M.; Reis, S. Can NO-indomethacin counteract the topical gastric toxicity induced by indomethacin interactions with phospholipid bilayers? Coll. Surf. B: Biointerf., 2018, 169, 375-383.
[131]
Abdellatif, K.; Abdelall, E.; Bakr, R. Nitric Oxide-NASIDS Donor Prodrugs as Hybrid Safe Anti-inflammatory Agents. Curr. Top. Med. Chem., 2016, 17(8), 941-955.
[132]
Bertrand, V.; Guimaud, R.; Sogni, P.; Lamrani, H.; Mauprivez, C.; Giroud, J.P.; Couturier, D.; Chauvelot-Moachon, L.; Chaussade, S. Role of tumour necrosis factor-alpha and induicible nitric oxide synthase in the prevention of nitro-flurbiprofen small intestine toxicity. Eur. J. Pharmacol., 1998, 356, 245-253.
[133]
Davies, N.M.; Roseth, A.G.; Appleyard, C.B; Mcknight, W.; Del Soldato, P.; Calignano, A.; Cirono, G.; Wallace, J.L. NO-naproxen vs naproxen:ulcerogenic, an,
[134]
Miller, M.R.; Megson, I.L. Recent developments in nitric oxide donor drugs. Brit. J. Pharm., 2007, 151(3), 305-321.
[135]
Campbell, S.; Alexander-Lindo, R.; Dasgupta, T.; McGrowder, D. The effect of S-nitrosocaptopril and S-nitroso-N-acetyl-D,L-penicillamine on blood glucose concentration and haemodynamic parameters. J. Appl. Biomed., 2009, 7(3), 123-131.
[136]
Tsui, D.Y.Y.; Gambino, A.; Wanstall, J.C. S-nitrosocaptopril: In vitro characterization of pulmonary vascular effects in rats. Brit. J. Pharm., 2003, 138(5), 855-864.
[137]
Bauer, R.; Straub, V.; Blain, A.; Bushby, K.; MacGowan, G.A. Contrasting effects of steroids and angiotensin-converting-enzyme inhibitors in a mouse model of dystrophin-deficient cardiomyopathy. Eur. J. Heart Fail., 2009, 11(5), 463-471.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy