[1]
Foppiano, P.C.; Saleeb, P.G. Challenges in the diagnosis of tuberculous
meningitis. J. Clin. Tuberc. Mycobact. Dis., 2020, 20.,
[2]
Davids, M.; Pooran, A.S.; Pietersen, E.; Wainwright, H.C.; Warren, R.; Dheda, K.; Regulatory, T. Cells Subvert Mycobacterial Containment in Patients Failing Extensivesly Drug-Resistant Tuberculosis Treatment. Am. J. Respir. Crit. Care Med., 2018, 198(1), 104-116.
[3]
Palomino, J.C.; Martin, A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel), 2014, 3, 317-340.
[4]
Da Silva, P.E.; Palomino, J.C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J. Antimicrob. Chemother., 2011, 66, 1417-1430.
[5]
Fonseca, J.; Knight, G.; McHugh, T. The complex evolution of antibiotic resistance in Mycobacterium tuberculosis. Int. J. Infect. Dis., 2015, 32, 94-100.
[6]
Chopra, I.; O’Neill, A.J.; Miller, K. The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist. Updat., 2003, 6, 137-145.
[7]
Martinez, J.; Baquero, F. Mutation frequencies and antibiotic resistance. Antimicrob. Agents Chemother., 2000, 44, 1771-7.
[8]
da Silva, P.E.; Von Groll, A.; Martin, A. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol. Med. Micro., 2011, 63, 1-9.
[9]
Louw, G.; Warren, R.; Van Pittius, N.G. A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob. Agents Chemother., 2009, 53, 3181-9.
[10]
Koch, A.; Cox, H.; Mizrahi, V. Drug-resistant tuberculosis: challenges and opportunities for diagnosis and treatment. Curr. Opin. Pharm, 2018, 42, 7-15.
[11]
Migliori, G.B.; De Iaco, G.; Besozzi, G.; Centis, R.; Cirillo, D.M. First tuberculosis cases in Italy resistant to all tested drugs. Euro.
Comm. Dis. Bull., 2007 12(5), E070517,1.,
[12]
Parida, S.K.; Axelsson-Robertson, R.; Rao, M.V.; Singh, N.; Master, I. Totally drug-resistant tuberculosis and adjunct therapies. J. Int. Med., 2015, 277(4), 388-405.
[13]
Asadi, S.; Wexler, A.S.; Cappa, C.D.; Barreda, S.; Bouvier, N.M.; Ristenpart, W.D. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep., 2019, 9(1), 2348.
[14]
Bussi, C.; Gutierrez, M.G. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Micro. Rev., 2019, 43(4), 341-361.
[15]
Möller, M.; Kinnear, C.J.; Orlova, M.; Kroon, E.E.; Van Helden, P.D.; Schurr, E.; Hoal, E.G. Genetic Resistance to Mycobacterium tuberculosis Infection and Disease; Front. Immuno, 2018, p. 9.
[16]
Houben, R.M.G.J.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med., 2016, 13(10)e1002152
[17]
Haraguchi, S.; Day, N.K.; Kamchaisatian, W.; Macarena, H.; Stenger, S. LMP-420, a small-molecule inhibitor of TNF-alpha, reduces replication of HIV-1 and Mycobacterium tuberculosis in human cells. AIDS Res.and Therap, 2006, 3(1), 8.
[18]
Christopoulos, A.I.; Diamantopoulos, A.A.; Dimopoulos, P.A.; Goumenos, D.S.; Barbalias, G.A. Risk factors for tuberculosis in dialysis patients: a prospective multi-center clinical trial.BMC
nephr., 2009, 10, 36.,
[19]
Sidhu, A.; Verma, G.; Humar, A.; Kumar, D. Outcome of latent tuberculosis infection in solid organ transplant recipients over a 10-year period. Transplantation, 2014, 98(6), 671-675.
[20]
Rees, D.; Murray, J. Silica, silicosis and tuberculosis. Int. J. Tuberc. Lung Dis., 2007, 11(5), 474-484.
[21]
Jeon, C.Y.; Murray, M.B. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med., 2008, 5(7)e152
[22]
Maurya, V.; Vijayan, V.K.; Shah, A. Smoking and tuberculosis: an association overlooked. Int. J. Tuberc. Lung Dis., 2002, 6(11), 942-951.
[23]
Rehm, J.; Samokhvalov, A.V.; Room, R.; Neuman, M.G.; Parry, C.; Patra, J.; Poznyak, V.; Popova, S. The association between alcohol
use, alcohol use disorders and tuberculosis (TB). A systematic
review. BMC pub. health., 2009, 9(450).,
[24]
Lobue, P.; Menzies, D. Treatment of latent tuberculosis infection: An update. Resp . (Carlton, Vic.).,, 2010, 15(4), 603-622.
[25]
Bhat, Z.S.; Rather, M.A.; Maqbool, M.; Ahmad, Z. Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Biomed. & Pharm., 2018, 103, 1733-1747.
[26]
Barry, C.E.; Boshoff, H.M.; Dowd, C.S. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Rev. Micro, 2009, 7(12), 845-855.
[27]
Osborne, R. First novel anti-tuberculosis drug in 40 years. Nat. Biotech., 2013, 31(2), 89-90.
[28]
Diacon, A.H.; Dawson, R.; Hanekom, M.; Narunsky, K.; Venter, A.; Hittel, N.; Wells, C.D.; Paccaly, A.J.; Donald, P.R. Early bactericidal
activity of delamanid (OPC-67683) in smear-positive pulmonary
tuberculosis patients. 2011.,
[29]
Koul, A.; Vranckx, L.; Dhar, N.; Göhlmann, W.H.; Özdemir, E.; Neefs, J.; Schulz, M.; Lu, P.; Mørtz, E.; McKinney, J.D.; Bald, D. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat. Commun., 2014, 5(1), 3369.
[30]
McLeay, S.C.; Vis, P.; Van Heeswijk, R.P.G.; Green, B. Population Pharmacokinetics of Bedaquiline (TMC207), a Novel Antituberculosis Drug. Antimicrob. Agents Chemother., 2014, 58(9), 5315-5324.
[31]
Keam, S.J. Pretomanid: First Approval. Drugs, 2019, 79(16), 1797-1803.
[32]
Van den Bossche, A.; Varet, H.; Sury, M.; Sismeiro, O.; Legendre, R.; Coppee, J.; Mathys, V.; Ceyssens, P. Transcriptional profiling of a laboratory and clinical Mycobacterium tuberculosis strain suggests respiratory poisoning upon exposure to delamanid.Tuberc.,
2019 117, 18-23.,
[33]
Singh, R.; Manjunatha, U.; Boshoff, H.M.; Ha, Y.A.; Niyomrattanakit, P.; Ledwidge, R.; Dowd, C.S.; Lee, I.Y.; Kim, P.; Zhang, L.; Kang, S.; Keller, T.H.; Jiricek, J.; Barry, C.E. PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release. Sci., 2008, 322(5906), 1392-1395.
[34]
Jamaati, H.; Mortaz, E.; Pajouhi, Z. Nitric oxide in the pathogenesis and treatment of tuberculosis. Front. Micro., 2017, 8, 2008.
[35]
Voskuil, M.I.; Bartek, I.L.; Visconti, K.; Schoolnik, G.K. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front. Micro., 2011, 2, 105.
[36]
Wu, Y.; Gulbins, E.; Grassmé, H. Crosstalk between sphingomyelinases and reactive oxygen species in mycobacterial infection. Antioxid. Redox Signal., 2018, 28(10), 935-948.
[37]
Dantas, A.; Day, A.; Ikeh, M.; Kos, I.; Achan, B.; Quinn, J. Oxidative stress responses in the human fungal pathogen. Candida albicans. Biomol., 2015, 5(1), 142-165.
[38]
Portevin, D.; Sukumar, S.; Coscolla, M. Lipidomics and genomics of Mycobacterium tuberculosis reveal lineage-specific trends in mycolic acid biosynthesis. MicroogyOpen, 2014, 3(6), 823-835.
[39]
Betts, J.C.; Lukey, P.T.; Robb, L.C.; McAdam, R.A.; Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Micro., 2002, 43(3), 717-731.
[40]
Jaeger, T. Peroxiredoxin systems in mycobacteria. Subcell. Biochem., 2007, 44, 207-217.
[41]
Diaz, G.A.; Wayne, L.G. Isolation and characterization of catalase produced by Mycobacterium tuberculosis. Am. Rev. Respir. Dis., 1974, 110(3), 312-319.
[42]
Vilchèze, C.; Hartman, T.; Weinrick, B. Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proc. Nat. Acad. Sci. Unit. Stat. Ame., 2017, 114(17), 4495-4500.
[43]
Rakesh, B. D.F.; Scherman, M.S.; Singh, A.P.; Yang, L.; Liu, J.; Lenaerts, A.J.; Lee, R.E. Synthesis and evaluation of Pretomanid (PA-824) oxazolidinone hybrids. Bioorg. Med. Chem. Lett., 2016, 26(2), 388-391.
[44]
Sharma, G.N.; Gupta, G.; Sharma, P. A Comprehensive Review of
Free Radicals, Antioxidants, and Their Relationship with Human
Ailments. Crit. Rev. Trad., 2018, 28(2).,
[45]
Li, H.; Ma, H. New progress in spectroscopic probes for reactive oxygen species. J. Analy. Test., 2018, 2(1), 2-19.
[46]
Mukherjee, T.; Boshoff, H. Nitroimidazoles for the treatment of TB: past, present and Fut. Fut Med. Chem., 2011, 3(11), 1427-1454.
[47]
Bernstein, J.; Lott, W.A.; Steinberg, B.A.; Yale, H.L. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. Am. Rev. Tuberc., 1952, 65(4), 357-364.
[48]
Cardona, P.J. Understanding Tuberculosis: New Approaches to Fighting Against Drug Resistance; BoD - Books on Demand, 2012.
[49]
Timmins, G.S.; Deretic, V. Mechanisms of action of isoniazid. Mol. Micro., 2006, 62(5), 1220-1227.
[50]
Timmins, G.S.; Master, S. Rusnak. F.; Deretic, V. Nitric Oxide Generated from Isoniazid Activation by KatG: Source of Nitric Oxide and Activity against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2004, 48(8), 3006-3009.
[51]
Banerjee, A.; Dubnau, E.; Quemard, A.; Um, K.S.; Balasubramanian, V.; Wilson, T.; de Lisle, G.; Jacobs, W.R. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Sci., 1994, 263(5144), 227-230.
[52]
Bardou, F.; Raynaud, C.; Ramos, C.; Lanéelle, M.A.; Lanéelle, G. Mechanism of isoniazid uptake in Mycobacterium tuberculosis. Microbio., 1998, 144(9), 2539-2544.
[53]
Wade, M.M. Mechanisms of drug resistance in mycobacterium tuberculosis. Front. Biosci., 2004, 9(1-3), 975.
[54]
Ramaswamy, S.; Musser, J.M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis:1998 update. Tuber. Lung Dis., 1998, 79(1), 3-29.
[55]
Piccaro, G.; Pietraforte, D.; Giannoni, F.; Mustazzolu, A.; Fattorini, L. Rifampin Induces Hydroxyl Radical Formation in Mycobacterium tuberculosis. Antimicro. Agents chemother., 2014, 58(12), 7527-7533.,
[56]
Kono, Y. Oxygen Enhancement of bactericidal activity of rifamycin SV on Escherichia coli and aerobic oxidation of rifamycin SV to rifamycin S catalyzed by manganous ions: the role of superoxide. J. Biochem., 1982, 91(1), 381-395.
[57]
Alifano, P.; Palumbo, C.; Pasanisi, D.; Talà, A. Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. J. Biotech., 2015, 202, 60-77.
[58]
Ang, C.W. Jarrad. A.M.; Cooper, M.A.; Blaskovich, M.A.T. Nitroimidazoles: Molecular Fireworks That Combat a Broad Spectrum of Infectious Diseases. J. Med. Chem., 2017, 60(18), 7636-7657.
[59]
Nepali, K.; Lee, H.Y.; Liou, J.P. Nitro-Group-Containing Drugs. J. Med. Chem., 2019, 62(6), 2851-2893.
[60]
Azam, A.; Peerzada, M.N.; Ahmad, K. Parasitic diarrheal disease: drug development and targets. Front. Micro., 2015, 6, 1183.
[61]
Anderson, R.J.; Groundwater, P.W.; Todd, A.; Worsley, A.J. Antibacterial Agents: Chemistry, Mode of Action, Mechanisms of Resistance and Clinical Applications; John Wiley & Sons, Ltd: Chichester, UK, 2012.
[62]
Müller, M. Mode of action of metronidazole on anaerobic bacteria and protozoa. Surg., 1983, 93(1), 165-171.
[63]
Voogd, C.E. On the mutagenicity of nitroimidazoles. Mutat. Res., 1981, 86(3), 243-277.
[64]
Malek, R.; Gharibi, A.; Khlil, N.; Kissa, J. Necrotizing Ulcerative Gingivitis. Contemp. Clin. Dent., 2017, 8(3), 496-500.
[65]
Bayerdörffer, E.; Lind, T.; Díte, P.; Bardhan, K.D.; O'Morain, C.; Delchier, J.C.; Spiller, R.; Veldhuyzen van Zanten, S.; Sipponen, P.; Mégraud, F.; Zeijlon, L. Omeprazole, amoxycillin and metronidazole for the cure of Helicobacter pylori infection.Euro. J. Gastroenter. & Hepat., 1999, 11(2), S19-22 &S23-24.,
[66]
Narikawa, S. Distribution of metronidazole susceptibility factors in obligate anaerobes. J. Antimicrob. Chemother., 1986, 18(5), 565-574.
[67]
Sköld, M.; Gnarpe, H.; Hillström, L. Ornidazole: A new antiprotozoal compound for treatment of Trichomonas vaginalis infection. Br. J. Vener. Dis., 1977, 53(1), 44-48.
[68]
Videau, D.; Niel, G.; Siboulet, A.; Catalan, F. Secnidazole. A 5-nitroimidazole derivative with a long half-life. Br. J. Vener. Dis., 1978, 54(2), 77-80.
[69]
Zhang, L.; Zhang, Z.; Wu, K. In vivo and real time determination of ornidazole and tinidazole and pharmacokinetic study by capillary electrophoresis with microdialysis. J. Pharm. Biomed. Anal., 2006, 41(4), 1453-1457.
[70]
Lee, S.M. Metronidazole.Helicobacter pylori; Kim, N., Ed.; Springer: Singapore, 2016.
[71]
Edwards, D.I. Nitroimidazole drugs-action and resistance mechanisms I. Mechanism of action. J. Antimicrob. Chemother., 1993, 31(1), 9-20.
[72]
Weir, C.B.; Le, J.K. Metronidazole.StatPearls; StatPearls Publishing: Treasure Island, FL, 2020.
[73]
Stratton, C.W.; Weeks, L.S.; Aldridge, K.E. Comparison of the bactericidal activity of clindamycin and metronidazole against cefoxitin-susceptible and cefoxitin-resistant isolates of the Bacteroides fragilis group. Diagn. Micro. Infect. Dis., 1991, 14(5), 377-382.
[74]
Stratton, C.W.; Weeks, L.S.; Aldridge, K.E. Inhibitory and bactericidal activity of selected beta-lactam agents alone and in combination with beta-lactamase inhibitors compared with that of cefoxitin and metronidazole against cefoxitin-susceptible and cefoxitin-resistant isolates of the Bacteroides. Diagn. Micro. Infect. Dis., 1992, 15(4), 321-330.
[75]
Nix, D.E.; Tyrrell, R.; Müller, M. Pharmacodynamics of metronidazole determined by a time-kill assay for Trichomonas vaginalis. Antimicrob. Agents Chemother., 1995, 39(8), 1848-1852.
[76]
Lin, P.L.; Dartois, V.; Johnston, P.J.; Janssen, C.; Via, L.; Goodwin, M.B.; Klein, E.; Barry, C.E.; Flynn, J.L. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc. Nation. Acad. Sci., 2012, 109(35), 14188-14193.
[77]
Wayne, L.G.; Sramek, H.A. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1994, 38(9), 2054-2058.
[78]
Brooks, J.V.; Furney, S.K.; Orme, I.M. Metronidazole therapy in mice infected with tuberculosis. Antimicrob. Agents Chemother., 1999, 43(5), 1285-1288.
[79]
Via, L.E.; Lin, P.L.; Ray, S.M.; Carrillo, J.; Allen, S.S.; Eum, S.Y.; Taylor, K.; Klein, E.; Manjunatha, U.; Gonzales, J.; Lee, E.G.; Park, S.K.; Raleigh, J.A.; Cho, S.N.; McMurray, D.N.; Flynn, J.L.; Barry, C.E. Tuberculous Granulomas Are Hypoxic in Guinea Pigs, Rabbits, and Nonhuman Primates. Infect. Immun., 2008, 76(6), 2333-2340.
[80]
Dhillon, J.; Allen, B.W.; Hu, Y.M.; Coates, A.R.; Mitchison, D.A. Metronidazole has no antibacterial effect in Cornell model murine tuberculosis. Int. J. Tuberc. Lung Dis., 1998, 2(9), 736-742.
[81]
Hoff, D.; Caraway, M.I.; Brooks, E.J.; Driver, E.; Ryan, G.; Peloquin, C.; Orme, I.; Basaraba, R.; Lenaerts, A. Metronidazole lacks antibacterial activity in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2008, 52(11), 4137-4140.
[82]
Desai, C.R.; Heera, S.; Patel, A.; Babrekar, A.B.; Mahashur, A.A.; Kamat, S.R. Role of metronidazole in improving response and specific drug sensitivity in advanced pulmonary tuberculosis. J. Assoc. Physicians India, 1989, 37(11), 694-697.
[83]
Jokipii, L.; Jokipii, A.M. Comparative evaluation of the 2-methyl-5-nitroimidazole compounds dimetridazole, metronidazole, secnidazole, ornidazole, tinidazole, carnidazole, and panidazole against Bacteroides fragilis and other bacteria of the Bacteroides fragilis group. Antimicrob. Agents Chemother., 1985, 28(4), 561-564.
[84]
Al-Masoudi, N.A.; Abbas, Z.A.A. Synthesis and biological activity of new metronidazole derivatives. Monatshefte für Chemie - Chemi. Monthl., 2016, 147(2), 383-390.
[85]
Upadhyay, A.; Chandrakar, P.; Gupta, S.; Parmar, N.; Singh, S.K.; Rashid, M.; Kushwaha, P.; Wahajuddin, M.; Sashidhara, K.V.; Kar, S. Synthesis, Biological Evaluation, Structure-Activity Relationship, and Mechanism of Action Studies of Quinoline-Metronidazole Derivatives Against Experimental Visceral Leishmaniasis. J. Med. Chem., 2019, 62(11), 5655-5671.
[86]
Wang, S.F.; Chandrakar, P.; Gupta, S.; Wu, X.; Sha, S.; Zhang, L.; Zhu, H. Synthesis, molecular docking and biological evaluation of metronidazole derivatives containing piperazine skeleton as potential antibacterial agents. Bioorg. Med. Chem., 2014, 22(8), 2409-2415.
[87]
Alawadi, D.Y.; Saadeh, H.A.; Kaur, H.; Goyal, K.; Sehgal, R.; Ben Hadda, T.; ElSawy, N.; Mubarak, M.S. Metronidazole derivatives as a new class of antiparasitic agents: Synthesis, prediction of biological activity, and molecular properties. Med. Chem. Res., 2015, 24(3), 1196-1209.
[88]
Saadeh, H.A.; Mosleh, I.M.; Al-Bakri, A.G.; Mubarak, M.S. Synthesis and antimicrobial activity of new 1,2,4-triazole-3-thiol metronidazole derivatives. Monatshefte für Chemie - Chem. Monthl., 2010, 141(4), 471-478.
[89]
Nakamura, S. Structure of Azomycin, a New Antibiotic. Pharm. Bull., 1955, 3(5), 379-383.
[90]
Lancini, G.C.; Lazzari, E. THE SYNTHESIS OF AZOMYCIN (2-
NITROIMIDAZOLE). Exper., 1965, 21(83).,
[91]
Cavalleri, B.; Ballotta, R.; Arioli, V.; Lancini, G. New 5-substituted 1-alkyl-2-nitroimidazoles. J. Med. Chem., 1973, 16(5), 557-560.
[92]
Sharma, R. Nitroimidazole radiopharmaceuticals in hypoxia: part II cytotoxicity and radiosensitization applications.Curr.t Radiopharm., 2011, 4(4), 379-393.,
[93]
Santos, E.C.; Novaes, R.D.; Cupertino, M.C.; Bastos, D.S.; Klein, R.C.; Silva, E.M.; Fietto, J.L.; Talvani, A.; Bahia, M.T.; Oliveira, L.L. Concomitant Benznidazole and Suramin Chemotherapy in Mice Infected with a Virulent Strain of Trypanosoma cruzi. Antimicrob. Agents Chemother., 2015, 59(10), 5999-6006.
[94]
Khan, A.; Sarkar, S.; Sarkar, D. Bactericidal activity of 2-nitroimidazole against the active replicating stage of Mycobacterium bovis BCG and Mycobacterium tuberculosis with intracellular efficacy in THP-1 macrophages. Int. J. Antimicrob. Agents, 2008, 32(1), 40-45.
[95]
Cavalleri, B.; Volpe, G.; Arioli, V.; Lancini, G. Synthesis and biological activity of two metabolites of 1-methyl-5-(1-methylethyl)-2-nitro-1 H-imidazole, an antiprotozoal agent. J. Med. Chem., 1977, 20(11), 1522-1525.
[96]
Nagarajan, K. Nitroimidazoles XXI 2,3-dihydro-6-nitroimidazo [2,1-b] oxazoles with antitubercular activity. Eur. J. Med. Chem., 1989, 24(6), 631-633.
[97]
Matsumoto, M.; Hashizume, H. Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M.; Hopewell, P. OPC-67683, a Nitro-Dihydro-Imidazooxazole Derivative with Promising Action against Tuberculosis In Vitro and In Mice. PLoS Med., 2006, 3(11)e466
[98]
Denny, W.A.; Palmer, B.D. The nitroimidazooxazines (PA-824 and analogs): structure-activity relationship and mechanistic studies. Fut Med. Chem., 2010, 2(8), 1295-1304.
[99]
Gurumurthy, M.; Mukherjee, T.; Dowd, C.; Singh, R.; Niyomrattanakit, P.; Tay, J.N.; Nayyar, A.; Lee, Y.S.; Cherian, J.; Boshoff, H.I.; Dick, T.; Barry, C.E.; Manjunatha, U.H. Substrate specificity of the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis responsible for the bioreductive activation of bicyclic nitroimidazoles: Biochemical characterization of Mtb Ddn. FEBS J., 2012, 279(1), 113-125.
[100]
Boshoff, H.I.; Barry, C.E. Is the mycobacterial cell wall a hopeless drug target for latent tuberculosis? Drug Discov. Today Dis. Mech., 2006, 3(2), 237-245.
[101]
Manjunatha, U.H.; Boshoff, H.; Dowd, C.S.; Zhang, L.; Albert, T.J.; Norton, J.E.; Daniels, L.; Dick, T.; Pang, S.S.; Barry, C.E. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci., 2006, 103(2), 431-436.
[102]
Stover, C.K.; Warrener, P.; VanDevanter, D.R.; Sherman, D.R.; Arain, T.M.; Langhorne, M.H.; Anderson, S.W.; Towell, J.A.; Yuan, Y.; McMurray, D.N.; Kreiswirth, B.N.; Barry, C.E.; Baker, W.R. A small molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nat., 2000, 405(6789), 962-966.
[103]
Sutherland, H.S.; Blaser, A.; Kmentova, I.; Franzblau, S.G.; Wan, B.; Wang, Y.; Ma, Z.; Palmer, B.D.; Denny, W.A.; Thompson, A.M. Synthesis and structure-activity relationships of antitubercular 2-nitroimidazooxazines bearing heterocyclic side chains. J. Med. Chem., 2010, 53(2), 855-866.
[104]
Poce, G.; Cocozza, M.; Consalvi, S. Biava. M. SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development. Eur. J. Med. Chem., 2014, 86, 335-351.
[105]
Li, X.; Manjunatha, U.H.; Goodwin, M.B.; Knox, J.E.; Lipinski, C.A.; Keller, T.A.; Barry, C.E.; Dowd, C.S. Synthesis and antitubercular activity of 7-(R)- and 7-(S)-methyl-2-nitro-6-(S)-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazines, analogues of PA-824. Bioorg. Med. Chem. Lett., 2008, 18(7), 2256-2262.
[106]
Kim, P.; Zhang, L.; Manjunatha, U.H.; Singh, R.; Patel, S.; Jiricek, J.; Keller, T.H.; Boshoff, H.I.; Barry, C.E.; Dowd, C.S. Structure−Activity Relationships of Antitubercular Nitroimidazoles. 1. Structural Features Associated with Aerobic and Anaerobic Activities of 4- and 5-Nitroimidazoles. J. Med. Chem., 2009, 52(5), 1317-1328.
[107]
Kim, P.; Kang, S.; Boshoff, H.I.; Jiricek, J.; Collins, M.; Singh, R.; Manjunatha, U.H.; Niyomrattanakit, P.; Zhang, L.; Goodwin, M.; Dick, T.; Keller, T.H.; Dowd, C.S. Structure-activity relationships of antitubercular nitroimidazoles. 2. Determinants of aerobic activity and quantitative structure-activity relationships. J. Med. Chem., 2009, 52(5), 1329-1344.
[108]
Thompson, A.M.; Bonnet, M.; Lee, H.H.; Franzblau, S.G.; Wan, B.; Cooper, G.S.; Cooper, C.B.; Denny, W.A. Antitubercular Nitroimidazoles Revisited: Synthesis and Activity of the Authentic 3-Nitro Isomer of Pretomanid. ACS Med. Chem. Lett., 2017, 8(12), 1275-1280.
[109]
Liu, Y.; Matsumoto, M.; Ishida, H.; Yoshitake, M.; Gupta, R.; Geiter, L.; Hafkin, J. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuber., 2018, 111, 20-30.
[110]
Fujiwara, M.; Kawasaki, M.; Hariguchi, N.; Liu, Y.; Matsumoto, M. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuber., 2018, 108, 186-194.
[111]
Wen, S.; Jing, W.; Zhang, T.; Zong, Z.; Xue, Y.; Shang, Y.; Wang, F.; Huang, H.; Chu, N.; Pang, Y.U. Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug-resistant tuberculosis. Eur. J. Clin. Micro. Infect. Dis., 2019, 38(7), 1293-1296.
[112]
Jarrad, A.M.; Ang, C.W.; Debnath, A.; Hahn, H.J.; Woods, K.; Tan, L.; Sykes, M.L.; Jones, A.J.; Pelingon, R.; Butler, M.S.; Avery, V.M.; West, N.P.; Karoli, T.; Blaskovich, M.A.T.; Cooper, M.A. Design, Synthesis, and Biological Evaluation of 2-Nitroimidazopyrazin-one/-es with Antitubercular and Antiparasitic Activity. J. Med. Chem., 2018, 61(24), 11349-11371.
[113]
Yempalla, K.R.; Munagala, G.; Singh, S.; Kour, G.; Sharma, S.; Chib, R.; Kumar, S.; Wazir, P.; Singh, G.D.; Raina, S.; Bharate, S.S.; Khan, I.S.; Vishwakarma, R.A.; Singh, P.P. Synthesis and Biological Evaluation of Polar Functionalities Containing Nitrodihydroimidazooxazoles as Anti-TB Agents. ACS Med. Chem. Lett., 2015, 6(10), 1059-1064.
[114]
Manjunatha, U.; Boshoff, H.I.M.; Barry, C.E. The mechanism of action of PA-824. Commun. Integr. Biol., 2009, 2(3), 215-218.
[115]
Bertinaria, M.; Galli, U.; Sorba, G.; Fruttero, R.; Gasco, A.; Brenciaglia, M.I.; Scaltrito, M.M.; Dubini, F. Synthesis and anti-Helicobacter pylori properties of NO-donor/metronidazole hybrids and related compounds. Drug Dev. Res., 2003, 60(3), 225-239.
[116]
Bryan, N.S. Nitric oxide enhancement strategies. Fut. Sci., 2015,
1(1),
[117]
Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA, 2018, 115(23), 5839-5848.
[118]
Marletta, M.A. Nitric oxide synthase: aspects concerning structure and catalysis. Cell, 1994, 78(6), 927-930.
[119]
Wilson, A.M.; Harada, R.; Nair, N.; Balasubramanian, N.; Cooke, J.P. L-arginine supplementation in peripheral arterial disease: No benefit and possible harm. Circul., 2007, 116(2), 188-195.
[120]
Gresele, P.; Momi, S.; Guglielmini, G. Nitric oxide-enhancing or -releasing agents as antithrombotic drugs. J. Biochem. Pharma., 2019, 166, 300-312.
[121]
Kumar, S.; Singh, R.K.; Bhardwaj, T.R. Therapeutic role of nitric oxide as emerging molecule. J. Biomed. & Pharma., 2017, 85, 182-201.
[122]
Bi, Y.; Yang, X.; Zhang, T.; Liu, Z.; Zhang, X.; Lu, J.; Cheng, K.; Xu, J.; Wang, H.; Lv, G.; Lewis, P.J.; Meng, Q.; Ma, C. Design, synthesis, nitric oxide release and antibacterial evaluation of novel nitrated ocotillol-type derivatives. Eur. J. Med. Chem., 2015, 101, 71-80.
[123]
Park, D.; Kim, J.; Lee, Y.M.; Park, J.; Kim, W.J. Polydopamine Hollow Nanoparticle Functionalized with <i>N</i> -diazeniumdiolates as a Nitric Oxide Delivery Carrier for Antibacterial Therapy. Adv. Healthc. Mater., 2016, 5(16), 2019-2024.
[124]
Ren, S.Z.; Wang, Z.C.; Zhu, D.; Zhu, X.H.; Shen, F.Q.; Wu, S.Y.; Chen, J.J.; Xu, C.; Zhu, H. Design, synthesis and biological evaluation of novel ferrocene-pyrazole derivatives containing nitric oxide donors as COX-2 inhibitors for cancer therapy. Eur. J. Med. Chem., 2018, 157, 909-924.
[125]
Keeble, J.E.; Moore, P.K. Pharmacology and potential therapeutic applications of nitric oxide-releasing non-steroidal anti-inflammatory and related nitric oxide-donating drugs. Brit. J. Pharm., 2002, 137(3), 295-310.
[126]
Takeuchi, K.; Suzuki, K.; Yamamoto, H.; Araki, H.; Mizoguchi, H.; Ukawa, H. Cyclooxygenase-2 selective and nitric oxide-releasing nonsteroidal anti-inflammatory drugs and gastric mucosal responses. J. Phys. Pharma., 1998, 49(4), 501-513.
[127]
Mizoguchi, H.; Hase, S.; Tanaka, A.; Takeuchi, K. Lack of small
intestinal ulcerogenecity of nitric oxide-releasing indomethacin,
NCX-530, in rats. Alimen. Pharm. Therap., 2001, 15(2), 257-267
(2001).,
[128]
Cuzzolin, L.; Conforti, A.; Adami, A.; Lussignoli, S.; Menestrina, F.; del Soldato, P.; Benoni, G. Anti-inflammatory potency and gastrointestinal toxicity of a new compound, nitronaproxen. Pharm. Res., 1995, 31(1), 61-65.
[129]
Wallace, J.L.; Reuter, B.; Cicala, C.; McKnight, W.; Grisham, M.B.; Cirino, G. Novel nonsterodial anti-inflammatory drug derivatives with markedly reduced ulcerogenic properties in the rat. Gastroenter., 1994, 107(1), 173-179.
[130]
Pereira-Leite, C.; Nunes, C.; Bozelli, J.C.; Schreier, S.; Kamma-Lorger, C.; Cuccovia, L.M.; Reis, S. Can NO-indomethacin counteract the topical gastric toxicity induced by indomethacin interactions with phospholipid bilayers? Coll. Surf. B: Biointerf., 2018, 169, 375-383.
[131]
Abdellatif, K.; Abdelall, E.; Bakr, R. Nitric Oxide-NASIDS Donor Prodrugs as Hybrid Safe Anti-inflammatory Agents. Curr. Top. Med. Chem., 2016, 17(8), 941-955.
[132]
Bertrand, V.; Guimaud, R.; Sogni, P.; Lamrani, H.; Mauprivez, C.; Giroud, J.P.; Couturier, D.; Chauvelot-Moachon, L.; Chaussade, S. Role of tumour necrosis factor-alpha and induicible nitric oxide synthase in the prevention of nitro-flurbiprofen small intestine toxicity. Eur. J. Pharmacol., 1998, 356, 245-253.
[133]
Davies, N.M.; Roseth, A.G.; Appleyard, C.B; Mcknight, W.; Del Soldato, P.; Calignano, A.; Cirono, G.; Wallace, J.L. NO-naproxen
vs naproxen:ulcerogenic, an,
[134]
Miller, M.R.; Megson, I.L. Recent developments in nitric oxide donor drugs. Brit. J. Pharm., 2007, 151(3), 305-321.
[135]
Campbell, S.; Alexander-Lindo, R.; Dasgupta, T.; McGrowder, D. The effect of S-nitrosocaptopril and S-nitroso-N-acetyl-D,L-penicillamine on blood glucose concentration and haemodynamic parameters. J. Appl. Biomed., 2009, 7(3), 123-131.
[136]
Tsui, D.Y.Y.; Gambino, A.; Wanstall, J.C. S-nitrosocaptopril: In vitro characterization of pulmonary vascular effects in rats. Brit. J. Pharm., 2003, 138(5), 855-864.
[137]
Bauer, R.; Straub, V.; Blain, A.; Bushby, K.; MacGowan, G.A. Contrasting effects of steroids and angiotensin-converting-enzyme inhibitors in a mouse model of dystrophin-deficient cardiomyopathy. Eur. J. Heart Fail., 2009, 11(5), 463-471.