Title:Targeting Cancer Stem Cells with Repurposed Drugs to Improve Current Therapies
Volume: 16
Issue: 2
Author(s): Dunne Fong*, Chase T. Christensen and Marion M. Chan
Affiliation:
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,United States
Keywords:
Cancer stem cells, repurposed drugs, combination therapy, metformin, niclosamide, chloroquine, thioridazine.
Abstract:
Background: Cancer is a multistep process involving genetic and epigenetic changes in
the somatic genome. Genetic mutations as well as environmental factors lead to the initiation, promotion,
and progression of cancer. Metastasis allows cancer cells to spread via circulatory and lymphatic
systems; secondary tumorigenesis typically leads to a fatal outcome. Recent experimental
evidence suggests that Cancer Stem Cells (CSCs) play a pivotal role in tumor progression. A tumor
is heterogeneous and composed of different cell types. CSCs are a subpopulation of tumor cells possessing
abilities to self-renew and differentiate.
Objective: The aim of this study was to present repurposed drugs, and potential candidates, that
can serve as anticancer medications intended to target resistant cancer cells, i.e. CSCs.
Methods: Research publications, FDA filings, and patents have been reviewed for repurposed
drugs or drug combinations that can act to improve cancer treatment and care.
Results: Drugs that act against CSCs include ones approved for treatment of diabetes (metformin
& thiazolidinediones), parasitic diseases (chloroquine, niclosamide, mebendazole & pyrvinium),
psychotic disorders (thioridazine, clomipramine & phenothiazines), alcoholism (disulfiram), lipid
disorder (statins), inflammatory diseases (tranilast, auranofin, acetaminophen & celecoxib), antibiotics
(azithromycin), and other disorders. Current research findings advocate the existence of beneficial
effects by combining these repurposed drugs, and also through their complementary use with
conventional cancer therapies.
Conclusion: Repurposing FDA-approved medications towards cancer care, by targeting the resistant
CSCs, will allow for a quicker, cheaper development and approval process. A larger drug library
available to physicians will allow for increased efficacy during both first-line and recurrent
cancer treatments.