Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Phytochemicals from Peanut (Arachis hypogaea L.) Skin Extract with Potential for Pharmacological Activity

Author(s): Sampson Kofi Kyei*, William Iheanyi Eke, Hajara Abdul-Karim, Godfred Darko and Onyewuchi Akaranta

Volume 17, Issue 9, 2021

Published on: 01 February, 2021

Article ID: e190721190997 Pages: 19

DOI: 10.2174/1573407217666210202092052

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Plant phenolics, commonly present in legumes, leafy vegetables, fruits, grains are a key source of bioactive nutrients existing as flavonols, flavanones, flavanols, phytosterols, among others. Peanuts, being crops of high commercial use, undergo processing that generates voluminous agro-wastes. The waste comprises both the shells and skins, which could be valorized. Its versatile functionality has encouraged extensive research into peanut skin-derived chemicals for diverse applications over the past few decades. Peanut skin, however, is ascertained to be rich in flavonoids, stilbenes (resveratrol), and other phenolic compounds.

Methods: This review presents the biologically active compounds and pharmacological activities of peanut skins and their related works over the past few years. Articles carefully chosen from broad databases such as Scopus, Science Direct, Pub Med, SciFinder, among others, were used as the primary data.

Results: The bioactive components of peanut skin extracts exhibit anti-oxidant, anti-inflammatory, anti-bacterial, anti-viral, anti-fungal, anti-cancer/anti-tumour, anti-cardiovascular, and anti-diabetes/ obesity activities via in vitro and in vivo models. Besides, their varied biological properties make them potential precursors for the management of diverse diseases and ailments. Potential Applications: Phytochemicals from peanut skins could be deployed as antioxidant, antidiabetic and antimicrobial agents in drugs for the clinical treatment of ailments with extensive clinical applications.

Conclusion: The present review covers the chemistry and pharmacological activities of peanut skin phytochemicals. Our findings in this review substantiate the importance of peanut skin extracts and their varied potential for the treatment of specific diseases. The results indicate that they are attractive target compounds for the development of new drugs. We hope that this information will inform further in vivo studies on the role of peanut skin phenolic compounds in our health.

Keywords: Agro-wastes, peanut skin, phenolic compounds, bioactive components, pharmacological activity, in vivo.

Graphical Abstract
[1]
Kaur, R.; Rajput, R.; Nag, P.; Kumar, S.; Singh, M. Synthesis, characterization, and evaluation of antioxidant properties of catechin hydrate nanoparticles. J. Drug Deliv. Sci. Technol., 2017, 39, 398-407.
[http://dx.doi.org/10.1016/j.jddst.2017.04.030]
[2]
Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int., 2017, 101, 1-16.
[http://dx.doi.org/10.1016/j.foodres.2017.09.026] [PMID: 28941672]
[3]
Stalker, H.T. Peanut (Arachis hypogaea L.). F. Crop Res., 1997, 53, 205-217.
[http://dx.doi.org/10.1016/S0378-4290(97)00032-4]
[4]
Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as functional food: A review. J. Food Sci. Technol., 2016, 53(1), 31-41.
[http://dx.doi.org/10.1007/s13197-015-2007-9] [PMID: 26787930]
[5]
Kyei, S.K.; Onyewuchi, A.; Darko, G. Synthesis, characterization, and antimicrobial activity of peanut skin extract-azo-compounds. Sci. African, 2020, 8, e00406.
[http://dx.doi.org/10.1016/j.sciaf.2020.e00406]
[6]
Dudek, M.K.; Gliński, V.B.; Davey, M.H.; Sliva, D.; Kaźmierski, S.; Gliński, J.A. Trimeric and tetrameric A-type procyanidins from peanut skins. J. Nat. Prod., 2017, 80(2), 415-426.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00946] [PMID: 28231711]
[7]
Levy, J.; Boyer, R.R.; Neilson, A.P.; O’Keefe, S.F.; Chu, H.S.S.; Williams, R.C.; Dorenkott, M.R.; Goodrich, K.M. Evaluation of peanut skin and grape seed extracts to inhibit growth of foodborne pathogens. Food Sci. Nutr., 2017, 5(6), 1130-1138.
[http://dx.doi.org/10.1002/fsn3.503] [PMID: 29188040]
[8]
Toomer, O.T.; Vu, T.; Pereira, M.; Williams, K. Dietary supplementation with Peanut Skin Polyphenolic Extracts (PSPE) reduces hepatic lipid and glycogen stores in mice fed an atherogenic diet. J. Funct. Foods, 2019, 55, 362-370.
[http://dx.doi.org/10.1016/j.jff.2019.02.041]
[9]
de Camargo, A.C.; Regitano-d’Arce, M.A.B.; Rasera, G.B.; Canniatti-Brazaca, S.G.; do Prado-Silva, L.; Alvarenga, V.O.; Sant’Ana, A.S.; Shahidi, F. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects. Food Chem., 2017, 237, 538-544.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.046] [PMID: 28764032]
[10]
Gaafar, A.A.; Mahmoud, K.M.; Salama, Z.A. Antioxidant potential activity and cytotoxicity effects of different parts of peanuts (Arachis Hypogaea L.). Int. J. Pharma Bio Sci., 2015, 6, 19-32.
[11]
Zhao, X.; Chen, J.; Du, F. Potential use of peanut by-products in food processing: A review. J. Food Sci. Technol., 2012, 49(5), 521-529.
[http://dx.doi.org/10.1007/s13197-011-0449-2] [PMID: 24082262]
[12]
Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq, ; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother., 2019, 116, 108999.
[http://dx.doi.org/10.1016/j.biopha.2019.108999] [PMID: 31146109]
[13]
FAO. World’s top peanut producing countries, 2019, Available at: https://www.fao.org/3/ca6030en/ca6030en.pdf
[14]
USDA. World Agricultural Production, Circular Series WAP, 2020, 4-20. Available at: https://apps.fas.usda.gov/psdonline/circulars/production.pdf
[15]
Chakuri, D. Technical efficiency of groundnut production in Ghana: a Bayesian approach. M.Phil. Thesis, University of Ghana, 2018.
[16]
Reed, K.A. Identification of phenolic compounds from peanut skin using HPLC-MSn. Ph.D. Thesis, Virginia Polytechnic Institute and State University, 2009.
[17]
Ferguson, M.E.; Bramel, P.J.; Chandra, S. Gene diversity among botanical varieties in peanut (Arachis hypogaea L.). Crop Sci., 2004, 44, 1847-1854.
[http://dx.doi.org/10.2135/cropsci2004.1847]
[18]
Konja, D.T. Farmers’ preferences and use of certified groundnut seed in Northern Ghana. M.Phil. Thesis, University for Development Studies, 2019.
[19]
Mora-escobedo, R.; Hernández-luna, P.; Joaquín-torres, I.C.; Ortiz-Moreno, A.; Robles-ramírez, M.C. Physicochemical properties and fatty acid profile of eight peanut varieties grown in Mexico. CYTA J. Food, 2015, 13, 37-41.
[http://dx.doi.org/10.1080/19476337.2014.971345]
[20]
Olwari, F.; Bisikwa, J.; Kaaya, A.N.; Okello, D.K. Tolerance levels of peanut varieties against Aspergillus flavus infection. J. Plant Pathol. Microbiol., 2013, 4
[http://dx.doi.org/10.4172/2157-7471.1000195]
[21]
Suprapto, A.; Sugito, Y.; Sitompul, S.M. Study of growth, yield and radiation energy conversion efficiency on varieties and different plant population of peanut. Procedia Environ. Sci., 2013, 17, 37-45.
[http://dx.doi.org/10.1016/j.proenv.2013.02.009]
[22]
CSIR. Groundnut (Arachis hypogeal), CSIR crop varieties released and registered in Ghana 2017. Available at: https://www.csir.org.gh/images/Doc/NewsLetter/Cropvarieties released and registered in ghana.pdf
[23]
Jonnala, R.S.; Dunford, N.T.; Chenault, K. Nutritional composition of genetically modified peanut varieties. J. Food Sci., 2005, 70, 254-256.
[http://dx.doi.org/10.1111/j.1365-2621.2005.tb07198.x]
[24]
Francisco, M.L.L.D.; Resurreccion, A.A. Total phenolics and antioxidant capacity of heat-treated peanut skins. J. Food Compos. Anal., 2009, 22, 16-24.
[http://dx.doi.org/10.1016/j.jfca.2008.05.012]
[25]
Collino, D.J.; Dardanelli, J.L.; Sereno, R.; Racca, R.W. Physiological responses of argentine peanut varieties to water stress, light interception, radiation use efficiency and partitioning of assimilates. F. Crop. Res., 2001, 70, 177-184.
[http://dx.doi.org/10.1016/S0378-4290(01)00137-X]
[26]
Zorzete, P.; Reis, T.A.; Felício, J.D.; Baquião, A.C.; Makimoto, P.; Corrêa, B. Fungi, mycotoxins and phytoalexin in peanut varieties, during plant growth in the field. Food Chem., 2011, 129(3), 957-964.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.053] [PMID: 25212324]
[27]
Gong, A.; Shi, A.; Liu, H-z. Yu, H-w; Liu, L.; Lin, W-j.; Wang, Q. Relationship of chemical properties of different peanut varieties to peanut butter storage stability. J. Integr. Agric., 2018, 17, 1003-1010.
[http://dx.doi.org/10.1016/S2095-3119(18)61919-7]
[28]
Blanche, K.R.A.; Hughes, M.B.; Ludwig, J.A.C.; Cunningham, S.A.D. Do flower-tripping bees enhance yields in peanut varieties grown in north Queensland? Aust. J. Exp. Agric., 2006, 46, 1529-1534.
[http://dx.doi.org/10.1071/EA05190]
[29]
Varshney, R.K.; Pandey, M.K.; Janila, P.; Nigam, S.N.; Sudini, H.; Gowda, M.V.C.; Sriswathi, M.; Radhakrishnan, T.; Manohar, S.S.; Nagesh, P. Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor. Appl. Genet., 2014, 127(8), 1771-1781.
[http://dx.doi.org/10.1007/s00122-014-2338-3] [PMID: 24927821]
[30]
Saravanamoorthy, M.D.; Ranjitha, K.B.D. Effect of textile waste water on morphophysiology and yield on two varieties of peanut (Arachis hypogaea L.). Agric. Technol. Thail., 2007, 3, 335-343.
[31]
Win, M.M.; Abdul-Hamid, A.; Baharin, B.S.; Anwar, F.; Sabu, M.C.; Pak-Dek, M. Phenolic compounds and antioxidant activity of peanut’s skin, hull, raw kernel and roasted kernel flour. Pak. J. Bot., 2011, 43, 1635-1642.
[32]
Elsorady, M.E.I.; Ali, S.E. Antioxidant activity of roasted and unroasted peanut skin extracts. Int. Food Res. J., 2018, 25, 43-50.
[33]
Davis, J.P.; Dean, L.L. Peanut Composition, Flavor and Nutrition Peanuts; Elsevier Inc., 2016, pp. 289-345.
[http://dx.doi.org/10.1016/B978-1-63067-038-2.00011-3]
[34]
Niaz, K.; Khan, F. Analysis of polyphenolics. Recent Advances in Natural Products Analysis; Elsevier Inc., 2020, pp. 39-197.
[http://dx.doi.org/10.1016/B978-0-12-816455-6.00003-2]
[35]
Sobolev, V.S.; Cole, R.J. Note on the utilisation of peanut seed testa. J. Sci. Food Agric., 2003, 84, 105-111.
[http://dx.doi.org/10.1002/jsfa.1593]
[36]
Oldoni, T.L.C.; Melo, P.S.; Massarioli, A.P.; Moreno, I.A.M.; Bezerra, R.M.N.; Rosalen, P.L.; da Silva, G.V.J.; Nascimento, A.M.; Alencar, S.M. Bioassay-guided isolation of proanthocyanidins with antioxidant activity from peanut (Arachis hypogaea) skin by combination of chromatography techniques. Food Chem., 2016, 192, 306-312.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.004] [PMID: 26304352]
[37]
Larrauri, M.; Zunino, M.P.; Zygadlo, J.A.; Grosso, N.R.; Nepote, V. Chemical characterization and antioxidant properties of fractions separated from an extract of peanut skin derived from different industrial processes. Ind. Crops Prod., 2016, 94, 964-971.
[http://dx.doi.org/10.1016/j.indcrop.2016.09.066]
[38]
Park, S.H.; Do, M.H.; Lee, J.H.; Jeong, M.; Lim, O.K.; Kim, S.Y. Inhibitory effect of Arachis hypogaea (Peanut) and its phenolics against methylglyoxal-derived advanced glycation end-product toxicity. Nutrients, 2017, 9(11), 1-21.
[http://dx.doi.org/10.3390/nu9111214] [PMID: 29113063]
[39]
Sarnoski, P.J.; Johnson, J.V.; Reed, K.A.; Tanko, J.M.; O’Keefe, S.F. Separation and characterization of proanthocyanidins in Virginia type peanut skins by LC-MSn. Food Chem., 2012, 131, 927-939.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.081]
[40]
Ye, L. Characterisation of A-type proanthocyanidins in peanut skins using MALDI-TOF MS. PhD Thesis, Virginia Polytechnic Institute and State University, 2015.
[41]
Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel), 2017, 6(4), 1-23.
[http://dx.doi.org/10.3390/plants6040042] [PMID: 28937585]
[42]
Gadkari, P.V.; Balaraman, M. Catechin: Sources, extraction, and encapsulation: A review. Food Bioprod. Process., 2015, 93, 122-138.
[http://dx.doi.org/10.1016/j.fbp.2013.12.004]
[43]
Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules, 2013, 18(2), 2328-2375.
[http://dx.doi.org/10.3390/molecules18022328] [PMID: 23429347]
[44]
Nepote, V.; Grosso, N.R.; Guzmán, C.A. Optimization of extraction of phenolic antioxidants from peanut skins. J. Sci. Food Agric., 2005, 85, 33-38.
[http://dx.doi.org/10.1002/jsfa.1933]
[45]
Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med., 2018, 13, 20.
[http://dx.doi.org/10.1186/s13020-018-0177-x] [PMID: 29692864]
[46]
Yu, J.; Ahmedna, M.; Goktepe, I. Peanut skin phenolics: Extraction, identification, antioxidant activity, and potential applications. In: Antioxidant Measurement and Applications; Shahidi, F., Ed.; American Chemical Society: Washington, DC, 2007; pp. 226-241.
[http://dx.doi.org/10.1021/bk-2007-0956.ch016]
[47]
Putra, N.R.; Rizkiyah, D.N.; Zaini, A.S.; Yunus, A.A.C.; Machmudah, S.; Idham, Z.B. Effect of particle size on yield extract and antioxidant activity of peanut skin using modified supercritical carbon dioxide and soxhlet extraction. J. Food Process., 2018, 42
[http://dx.doi.org/10.1111/jfpp.13689]
[48]
Tsujita, T.; Shintani, T.; Sato, H. Preparation and characterisation of peanut seed skin polyphenols. Food Chem., 2014, 151, 15-20.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.072] [PMID: 24423496]
[49]
Chavan, U.D.; Amarowicz, R. Effect of various solvent systems on the extraction of phenolics, tannins, and sugars from beach pea (Lathyrus maritimus L.). Int. Food Res. J., 2013, 20, 1139-1144.
[50]
Yu, J.; Ahmedna, M.; Goktepe, I. Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics. Food Chem., 2005, 90, 199-206.
[http://dx.doi.org/10.1016/j.foodchem.2004.03.048]
[51]
Lewis, W.E.; Harris, G.K.; Sanders, T.H.; White, B.L.; Dean, L.L. Antioxidant and anti-Inflammatory effects of peanut skin extracts. Food Nutr. Sci., 2013, 4, 22-32.
[http://dx.doi.org/10.4236/fns.2013.48A003]
[52]
Zhang, H.; Liu, M.; Han, S.; Wei, Y. Optimizing the extraction of catechin from peanut red skin using response surface methodology and its antioxidant activity. IERI Procedia, 2013, 5, 312-320.
[http://dx.doi.org/10.1016/j.ieri.2013.11.109]
[53]
de Camargo, A.C.; Regitano-d’Arce, M.A.B.; Gallo, C.R.; Shahidi, F. Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin. J. Funct. Foods, 2015, 12, 129-143.
[http://dx.doi.org/10.1016/j.jff.2014.10.034]
[54]
Braga, G.C.; Melo, P.S.; Bergamaschi, K.B.; Tiveron, A.P.; Massarioli, A.P.; de Alencar, S.M. Extraction yield, antioxidant activity and phenolics from grape, mango and peanut agro-industrial by-products. Cienc. Rural, 2016, 46, 1498-1504.
[http://dx.doi.org/10.1590/0103-8478cr20150531]
[55]
de Camargo, A.C.; Regitano-d’Arce, M.A.B.; Shahidi, F. Phenolic profile of peanut by-products: antioxidant potential and inhibition of alpha-glucosidase and lipase activities. J. Am. Oil Chem. Soc., 2017, 94, 959-971.
[http://dx.doi.org/10.1007/s11746-017-2996-9]
[56]
Kasprzak, M.M.; Erxleben, A.; Ochocki, J. Properties and applications of flavonoid metal complexes. RSC Advances, 2015, 5, 45853-45877.
[http://dx.doi.org/10.1039/C5RA05069C]
[57]
Vladimir-Knežević, S.; Blažeković, B.; Štefan, M.B.; Babac, M. Plant Polyphenols as Antioxidants Influencing the Human Health.Phytochemicals as Nutraceuticals - Global Approaches to Their Role in Nutrition and Health; Rao, V., Ed.; InTech, China, 2012, pp. 155-180.
[http://dx.doi.org/10.5772/27843]
[58]
Constanza, K.E.; White, B.L.; Davis, J.P.; Sanders, T.H.; Dean, L.L. Value-added processing of peanut skins: antioxidant capacity, total phenolics, and procyanidin content of spray-dried extracts. J. Agric. Food Chem., 2012, 60(43), 10776-10783.
[http://dx.doi.org/10.1021/jf3035258] [PMID: 23050560]
[59]
Vijayalaxmi, S.; Jayalakshmi, S.K.; Sreeramulu, K. Polyphenols from different agricultural residues: extraction, identification and their antioxidant properties. J. Food Sci. Technol., 2015, 52(5), 2761-2769.
[http://dx.doi.org/10.1007/s13197-014-1295-9] [PMID: 25892773]
[60]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J., 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[61]
Eseyin, O.A.; Benedict, U.; Thomas, P.S.; Etim, I.; Essien, E.; Johnson, E.; Ebong, A.; Munavvar, Z.; Ahmad, A.; Sheryar, A.; Akpan, U. Isolation and characterization of antioxidant constituents of the fruit of Telfairia occidentalis Hook F (Cucurbitaceae). Trop. J. Pharm. Res., 2018, 17, 1953-1960.
[http://dx.doi.org/10.4314/tjpr.v17i10.9]
[62]
Romulo, A. The principle of some in vitro antioxidant activity methods: A review. IOP Conf. Ser. Earth Environ. Sci., 2020, 426, 012177.
[http://dx.doi.org/10.1088/1755-1315/426/1/012177]
[63]
Chuenchom, P.; Swatsitang, P.; Senawong, T.; Jogloy, S. Antioxidant capacity and phenolic content evaluation on peanut skins from 3 peanut types. Chiang Mai J. Sci., 2016, 43(1), 1177-1191.
[64]
Ojha, K.; Dubey, S.; Chandrakar, J.; Minj, R.A.; Dehariya, R.; Dixit, A.K. A review on different methods of determination of antioxidant activity assay of herbal plants. Res. J. Life Sci. Bioinformatics, Pharm. Chem. Sci. (Camb.), 2018, 4, 707-712.
[65]
Farhadi, K.; Esmaeilzadeh, F.; Hatami, M.; Forough, M.; Molaie, R. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chem., 2016, 199, 847-855.
[http://dx.doi.org/10.1016/j.foodchem.2015.12.083] [PMID: 26776043]
[66]
Moharram, H.A.; Youssef, M.M. Methods for determining the antioxidant activity: A review. Alex. J. Fd. Sci. Technol., 2015, 1, 31-42.
[67]
Baba, S.A.; Malik, S.A. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii blume. Integr. Med. Res., 2015, 9, 449-454.
[68]
Lozano-Sanchez, J.; Borra-Linares, I.; Sass-Kiss, A.; Segura-carretero, A. Chromatographic Technique: High-Performance Liquid Chromatography (HPLC).Modern Techniques for Food Authentication; Elsevier Inc., 2018, pp. 459-526.
[http://dx.doi.org/10.1016/B978-0-12-814264-6.00013-X]
[69]
Zhao, Z.; Wu, M.; Zhan, Y.; Zhan, K.; Chang, X.; Yang, H.; Li, Z. Characterization and purification of anthocyanins from black peanut (Arachis hypogaea L.) skin by combined column chromatography. J. Chromatogr. A, 2017, 1519, 74-82.
[http://dx.doi.org/10.1016/j.chroma.2017.08.078] [PMID: 28890269]
[70]
Ma, Y.; Kosińska-Cagnazzo, A.; Kerr, W.L.; Amarowicz, R.; Swanson, R.B.; Pegg, R.B. Separation and characterization of phenolic compounds from dry-blanched peanut skins by liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A, 2014, 1356, 64-81.
[http://dx.doi.org/10.1016/j.chroma.2014.06.027] [PMID: 25016324]
[71]
Oliveri, P.; Malegori, C.; Mustorgi, E.; Casale, M. Application of chemometrics in the food sciences. Comprehensive Chemometrics, 2nd ed; Elsevier Inc., 2019, pp. 99-111.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.14748-1]
[72]
Shi, T.; Wu, G.; Jin, Q.; Wang, X. Camellia oil authentication: A comparative analysis and recent analytical techniques developed for its assessment: a review. Trends Food Sci. Technol., 2020, 97, 88-89.
[http://dx.doi.org/10.1016/j.tifs.2020.01.005]
[73]
Valdés, A.; Vidal, L.; Beltrán, A.; Canals, A.; Garrigós, M.C. Microwave-assisted extraction of phenolic compounds from almond skin by-products (Prunus amygdalus): A multivariate analysis approach. J. Agric. Food Chem., 2015, 63(22), 5395-5402.
[http://dx.doi.org/10.1021/acs.jafc.5b01011] [PMID: 26005743]
[74]
Callao, M.P.; Ruisánchez, I. An overview of multivariate qualitative methods for food fraud detection. Food Control, 2018, 86, 283-293.
[http://dx.doi.org/10.1016/j.foodcont.2017.11.034]
[75]
Ferreira, S.L.C.; Silva Junior, M.M.; Felix, C.S.A.; da Silva, D.L.F.; Santos, A.S.; Santos Neto, J.H.; de Souza, C.T.; Cruz Junior, R.A.; Souza, A.S. Multivariate optimization techniques in food analysis - A review. Food Chem., 2019, 273, 3-8.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.114] [PMID: 30292370]
[76]
Zhu, H.; Zhang, J.; Li, C.; Liu, S.; Wang, L. Morinda citrifolia L. leaves extracts obtained by traditional and eco-friendly extraction solvents: Relation between phenolic compositions and biological properties by multivariate analysis. Ind. Crops Prod., 2020, 153
[http://dx.doi.org/10.1016/j.indcrop.2020.112586]
[77]
Dall’Acqua, S.; Kumara, G.; Sinanb, K.I.; Sutc, S.; Ferraresea, I.; Mahomoodally, M.F.; Seebaluck-Sandoram, R.; Etienne, O.K.; Zengin, G. An insight into Cochlospermum planchonii extracts obtained by traditional and green extraction methods: Relation between chemical compositions and biological properties by multivariate analysis. Ind. Crops Prod., 2020, 147
[http://dx.doi.org/10.1016/j.indcrop.2020.112226]
[78]
Santos, D.I.; Saraiva, J.M.A.; Vicente, A.A.; Moldão-Martins, M. Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Elsevier Inc., 2019, pp. 23-54.
[http://dx.doi.org/10.1016/B978-0-12-814174-8.00002-0]
[79]
Galanakis, C.M. Introduction.Nutraceutical and Functional Food Components: Effects of Innovative Processing Techniques; Elsevier Inc., 2017, pp. 1-14.
[http://dx.doi.org/10.1016/B978-0-12-805257-0.00001-6]
[80]
Chukwumah, Y.; Walker, L.; Vogler, B.; Verghese, M. Profiling of bioactive compounds in cultivars of Runner and Valencia peanut market-types using liquid chromatography/APCI mass spectrometry. Food Chem., 2012, 132(1), 525-531.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.050] [PMID: 26434326]
[81]
Hamzalioğlu, A.; Gökmen, V. Interaction between Bioactive Carbonyl Compounds and Asparagine and Impact on Acrylamide. Acrylamide in Food: Analysis, Content and Potential Health Effects; Elsevier Inc., 2016, pp. 355-376.
[http://dx.doi.org/10.1016/B978-0-12-802832-2.00018-8]
[82]
Rossi, Y.E.; Bohla, L.P.; Brabera, N.L.V.; Ballatoreb, M.B.; Escobarb, F.M.; Bodoira, R.; Maestri, D.M.; Porporatto, C.; Cavaglieri, L.R.; Montenegro, M.A. Polyphenols of peanut (Arachis hypogaea L.) skin as bioprotectors of normal cells. Studies of cytotoxicity, cytoprotection, and interaction with ROS. J. Funct. Foods, 2020, 67
[http://dx.doi.org/10.1016/j.jff.2020.103862]
[83]
Francisco, M.L.D.L.; Resurreccion, A.V.A. Development of Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) procedure for the simultaneous determination of phenolic compounds in peanut skin extracts. Food Chem., 2009, 117, 356-363.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.110]
[84]
Lucci, P.; Saurina, J.; Núñez, O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. Trends Analyt. Chem., 2017, 88, 1-24.
[http://dx.doi.org/10.1016/j.trac.2016.12.006]
[85]
Chong, J.; Poutaraud, A.; Hugueney, P. Metabolism and roles of stilbenes in plants. Plant Sci., 2009, 177, 143-155.
[http://dx.doi.org/10.1016/j.plantsci.2009.05.012]
[86]
Ziyatdinova, G.K.; Budnikov, H.C. Natural phenolic antioxidants in bioanalytical chemistry: State of the art and prospects of development. Russ. Chem. Rev., 2015, 84, 194-224.
[http://dx.doi.org/10.1070/RCR4436]
[87]
Kasiotis, K.M.; Pratsinis, H.; Kletsas, D.; Haroutounian, S.A. Resveratrol and related stilbenes: Their anti-aging and anti-angiogenic properties. Food Chem. Toxicol., 2013, 61, 112-120.
[http://dx.doi.org/10.1016/j.fct.2013.03.038] [PMID: 23567244]
[88]
Francisco, M.L.D.L.; Resurreccion, A.V.A. Functional components in peanuts. Crit. Rev. Food Sci. Nutr., 2008, 48(8), 715-746.
[http://dx.doi.org/10.1080/10408390701640718] [PMID: 18756396]
[89]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[90]
Regev-Shoshani, G.; Shoseyov, O.; Kerem, Z. Influence of lipophilicity on the interactions of hydroxy stilbenes with cytochrome P450 3A4. Biochem. Biophys. Res. Commun., 2004, 323(2), 668-673.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.141] [PMID: 15369802]
[91]
Tripathi, A.; Misra, K. Stilbene analogues as inhibitors of breast cancer stem cells through P-glycoprotein efflux: A 3D quantitative structure-activity relationship study (the inhibitory activity of stilbenes analogues on breast cancer). IEEE Int. Conf. Bioinforma. Syst. Biol., 2016, 1-4.
[http://dx.doi.org/10.1109/BSB.2016.7552134]
[92]
Platella, C.; Guida, S.; Bonmassar, L.; Aquino, A.; Bonmassar, E.; Ravagnan, G.; Montesarchio, D.; Roviello, G.N.; Musumeci, D.; Fuggetta, M.P. Antitumour activity of resveratrol on human melanoma cells: A possible mechanism related to its interaction with malignant cell telomerase. Biochim. Biophys. Acta. Gen. Subj., 2017, 1861(11 Pt A), 2843-2851.
[http://dx.doi.org/10.1016/j.bbagen.2017.08.001] [PMID: 28780124 ]
[93]
Pintea, A.M.; Rugină, D.O. Resveratrol and the Human Retina. Handbook of Nutrition, Diet, and the Eye; Elsevier Inc., 2014, pp. 481-491.
[http://dx.doi.org/10.1016/B978-0-12-401717-7.00049-6]
[94]
Andrade, J.M.O.; Paraíso, A.F.; de Oliveira, M.V.M.; Martins, A.M.; Neto, J.F.R.; Guimarães, A.L.S.; de Paula, A.M.B.; Qureshi, M.; Santos, S.H.S. Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition, 2014, 30(7-8), 915-919.
[http://dx.doi.org/10.1016/j.nut.2013.11.016] [PMID: 24985011]
[95]
Schnekenburger, M.; Diederich, M. Nutritional epigenetic regulators in the field of cancer: New avenues for chemopreventive approaches. Epigenetic Cancer Therapy; Gray, S.G., Ed.; Elsevier Inc., 2015, pp. 393-425.
[http://dx.doi.org/10.1016/B978-0-12-800206-3.00018-5]
[96]
Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[97]
Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci., 2007, 30(18), 3268-3295.
[http://dx.doi.org/10.1002/jssc.200700261] [PMID: 18069740]
[98]
Ignat, I.; Volf, I.; Popa, V.I. Analytical Methods of Phenolic Compounds. Natural Products; Ramawat, K.G.; Me’rillon, J.M., Eds.; Springer-Verlag Berlin Heidelberg, 2013, pp. 2061-2092.
[http://dx.doi.org/10.1007/978-3-642-22144-6_56]
[99]
Herrero, M.; Plaza, M.; Cifuentes, A.; Ibáñez, E. Extraction techniques for the determination of phenolic compounds in food. Compr. Sampl. Sample Prep, 2012, 4, 159-180.
[http://dx.doi.org/10.1016/B978-0-12-381373-2.00132-0]
[100]
Porfírio, D.A.; Ferreira, R.D.Q.; Malagutti, A.R.; Valle, E.M.A. Electrochemical study of the increased antioxidant capacity of flavonoids through complexation with iron(II) ions. Electrochim. Acta, 2014, 141, 33-38.
[http://dx.doi.org/10.1016/j.electacta.2014.07.046]
[101]
Lee, Y.; Lee, J. Protective actions of polyphenols in the development of nonalcoholic fatty liver disease. Dietary Interventions in Liver Disease; Elsevier Inc., 2019, Vol. 1, pp. 91-99.
[http://dx.doi.org/10.1016/B978-0-12-814466-4.00008-2]
[102]
Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem., 2019, 299
[http://dx.doi.org/10.1016/j.foodchem.2019.125124] [PMID: 31288163]
[103]
Christman, L.M.; Dean, L.L.; Bueno Almeida, C.; Weissburg, J.R. Acceptability of peanut skins as a natural antioxidant in flavored coated peanuts. J. Food Sci., 2018, 83(10), 2571-2577.
[http://dx.doi.org/10.1111/1750-3841.14323] [PMID: 30184251]
[104]
Lorenzo, J.M.; Munekatab, P.E.S.; Sant’Anac, A.S.; Carvalhoc, R.B.; Barbad, F.J.; Toldrá, F.; Mora, L.; Trindade, M.A. Main characteristics of peanut skin and its role for the preservation of meat products. Trends Food Sci. Technol., 2018, 77, 1-10.
[http://dx.doi.org/10.1016/j.tifs.2018.04.007]
[105]
Munekata, P.E.; Fernandes, R.P.P.; de Melo, M.P.; Trindade, M.A.; Lorenzo, J.M. Influence of peanut skin extract on shelf-life of sheep patties. Asian Pac. J. Trop. Biomed., 2016, 6, 586-596.
[http://dx.doi.org/10.1016/j.apjtb.2016.05.002]
[106]
Ortega, M.A.M.; Campos, S.M.R. Bioactive Compounds as Therapeutic Alternatives in Bioactive Compounds: Health Benefits and Potential Applications; Elsevier Inc., 2018, pp. 247-264.
[107]
Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]
[108]
Shi, J.; Kakuda, Y. Bioavailability and synergistic effects of tea Catechins as antioxidants in the human diet in Herbs: Challenges in Chemistry and Biology; American Chemical Society: Washington, DC, 2006, Vol. 925, pp. 254-264.
[109]
Pereira, R.B.; Sousa, C.; Costa, A.; Andrade, P.B.; Valentão, P. Glutathione and the antioxidant potential of binary mixtures with flavonoids: synergisms and antagonisms. Molecules, 2013, 18(8), 8858-8872.
[http://dx.doi.org/10.3390/molecules18088858] [PMID: 23892632]
[110]
Tiwari, S.C.; Husain, N. Biological activities and role of flavonoids in human health-a biological activities and role of flavonoids in human health: A review. Indian J. Soc. Res., 2017, 12, 193-196.
[111]
De Bruyne, T.; Pieters, L.; Deelstra, H.; Vlietinck, A. Condensed vegetable tannins: Biodiversity in structure and biological activities. Biochem. Syst. Ecol., 1999, 27, 445-459.
[http://dx.doi.org/10.1016/S0305-1978(98)00101-X]
[112]
Yu, J.; Ahmedna, M.; Goktepe, I.; Dai, J. Peanut skin procyanidins: Composition and antioxidant activities as affected by processing. J. Food Compos. Anal., 2006, 19, 364-371.
[http://dx.doi.org/10.1016/j.jfca.2005.08.003]
[113]
Wang, Q.; Shi, A.; Liu, H.; Liu, L.; Zhang, Y.; Li, N.; Gong, K.; Yu, M.; Zheng, L. Peanut By-Products Utilization Technology. Peanuts: Processing Technology and Product Development; Elsevier Inc., 2016, pp. 211-325.
[http://dx.doi.org/10.1016/B978-0-12-809595-9.00005-3]
[114]
Smoliga, J.M.; Baur, J.A.; Hausenblas, H.A. Resveratrol and health-A comprehensive review of human clinical trials. Mol. Nutr. Food Res., 2011, 55(8), 1129-1141.
[http://dx.doi.org/10.1002/mnfr.201100143] [PMID: 21688389]
[115]
Rogerio, A.P.; Dora, C.L.; Andrade, E.L.; Chaves, J.S.; Silva, L.F.; Lemos-Senna, E.; Calixto, J.B. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol. Res., 2010, 61(4), 288-297.
[http://dx.doi.org/10.1016/j.phrs.2009.10.005] [PMID: 19892018]
[116]
Tomé-Carneiro, J.; Larrosa, M.; González-Sarrías, A.; Tomás-Barberán, F.A.; García-Conesa, M.T.; Espín, J.C. Resveratrol and clinical trials: The crossroad from in vitro studies to human evidence. Curr. Pharm. Des., 2013, 19(34), 6064-6093.
[http://dx.doi.org/10.2174/13816128113199990407] [PMID: 23448440]
[117]
Tatsuno, T.; Jinno, M.; Arima, Y.; Kawabata, T.; Hasegawa, T.; Yahagi, N.; Takano, F.; Ohta, T. Anti-inflammatory and anti-melanogenic proanthocyanidin oligomers from peanut skin. Biol. Pharm. Bull., 2012, 35(6), 909-916.
[http://dx.doi.org/10.1248/bpb.35.909] [PMID: 22687483]
[118]
Dong, X.Q.; Zou, B.; Zhang, Y.; Ge, Z.Z.; Du, J.; Li, C.M. Preparation of A-type proanthocyanidin dimers from peanut skins and persimmon pulp and comparison of the antioxidant activity of A- type and B-type dimers. Fitoterapia, 2013, 91, 128-139.
[http://dx.doi.org/10.1016/j.fitote.2013.08.019] [PMID: 24001713]
[119]
Meng, W.; Shi, J.; Zhang, X.; Lian, H.; Wang, Q.; Peng, Y. Effects of peanut shell and skin extracts on the antioxidant ability, physical and structure properties of starch-chitosan active packaging films. Int. J. Biol. Macromol., 2020, 152, 137-146.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.235] [PMID: 32092422]
[120]
Culpitt, S.V.; Rogers, D.F.; Fenwick, P.S.; Shah, P.; De Matos, C.; Russell, R.E.K.; Barnes, P.J.; Donnelly, L.E. Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax, 2003, 58(11), 942-946.
[http://dx.doi.org/10.1136/thorax.58.11.942] [PMID: 14586044]
[121]
Rivera, L.; Morón, R.; Zarzuelo, A.; Galisteo, M. Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem. Pharmacol., 2009, 77(6), 1053-1063.
[http://dx.doi.org/10.1016/j.bcp.2008.11.027] [PMID: 19100718]
[122]
Terra, X.; Valls, J.; Vitrac, X.; Mérrillon, J.M.; Arola, L.; Ardèvol, A.; Bladé, C.; Fernandez-Larrea, J.; Pujadas, G.; Salvadó, J.; Blay, M. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J. Agric. Food Chem., 2007, 55(11), 4357-4365.
[http://dx.doi.org/10.1021/jf0633185] [PMID: 17461594]
[123]
Yu, J.; Ahmedna, M.; Goktepe, I. Potential of peanut skin phenolic extract as an antioxidative and antibacterial agent in cooked and raw ground beef. Int. J. Food Sci. Technol., 2010, 45, 1337-1344.
[http://dx.doi.org/10.1111/j.1365-2621.2010.02241.x]
[124]
do Valle Calomeni, A.; de Souza, V.B.; Tulini, F.L.; Thomazini, M.; Ostroschi, L.C.; de Alencar, S.M.; Massarioli, A.P.; de Carvalho Balieiro, J.C.; de Carvalho, R.A.; Favaro-Trindade, C.S. Characterization of antioxidant and antimicrobial properties of spray-dried extracts from peanut skins. Food Bioprod. Process., 2017, 105, 215-223.
[http://dx.doi.org/10.1016/j.fbp.2017.08.001]
[125]
Tamura, T.; Inoue, N.; Ozawa, M.; Shimizu-Ibuka, A.; Arai, S.; Abe, N.; Koshino, H.; Mura, K. Peanut-skin polyphenols, procyanidin A1 and epicatechin-(4 β → 6)-epicatechin-(2 β → O → 7, 4 β → 8)-catechin, exert cholesterol micelle-degrading activity in vitro. Biosci. Biotechnol. Biochem., 2013, 77(6), 1306-1309.
[http://dx.doi.org/10.1271/bbb.121023] [PMID: 23748765]
[126]
Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[127]
Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol., 2017, 174(11), 1244-1262.
[http://dx.doi.org/10.1111/bph.13630] [PMID: 27646690]
[128]
Samir, R.M.; Osman, A.; Algaby, A.M. Physicochemical properties and antimicrobial effects of roselle corolla, onion peels, and peanut skins anthocyanins. Zagazig J. Agric. Res., 2019, 46, 769-781.
[http://dx.doi.org/10.21608/zjar.2019.40966]
[129]
Helmy, H.M.; Kamel, M.M.; Hagag, K.; El-Hawary, N.; El-Shemy, N.S. Antimicrobial activity of dyed wool fabrics with peanut red skin extract using different heating techniques. Egypt. J. Chem., 2017, 60, 103-116.
[http://dx.doi.org/10.21608/ejchem.2017.1601.1129]
[130]
Pizzolitto, R.P.; Dambolenaa, J.S.; Zuninoa, M.P.; Larrauric, M.; Grossoc, N.R.; Nepote, V.; Dalcero, A.M.; Zygadlo, J.A. Activity of natural compounds from peanut skins on Fusarium verticillioides growth and fumonisin B1 production. Ind. Crops Prod., 2013, 47, 286-290.
[http://dx.doi.org/10.1016/j.indcrop.2013.03.020]
[131]
Chan, M.M. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochem. Pharmacol., 2002, 63(2), 99-104.
[http://dx.doi.org/10.1016/S0006-2952(01)00886-3] [PMID: 11841782]
[132]
Houillé, B.; Papon, N.; Boudesocque, L.; Bourdeaud, E.; Besseau, S.; Courdavault, V.; Enguehard-Gueiffier, C.; Delanoue, G.; Guérin, L.; Bouchara, J.P.; Clastre, M.; Giglioli-Guivarc’h, N.; Guillard, J.; Lanoue, A. Antifungal activity of resveratrol derivatives against Candida species. J. Nat. Prod., 2014, 77(7), 1658-1662.
[http://dx.doi.org/10.1021/np5002576] [PMID: 25014026]
[133]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, Epigallocatechin-3-Gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[134]
Chun-fu, W. U.; Jing-yu, Y.; Fang, W.; Xiao-xiao, W. Resveratrol: Botanical origin, pharmacological activity, and applications. Chin. J. Nat. Med, 2013, 11, 0001-0015.
[135]
Gollucke, A.P.; Aguiar, O., Jr; Barbisan, L.F.; Ribeiro, D.A. Use of grape polyphenols against carcinogenesis: putative molecular mechanisms of action using in vitro and in vivo test systems. J. Med. Food, 2013, 16(3), 199-205.
[http://dx.doi.org/10.1089/jmf.2012.0170] [PMID: 23477622]
[136]
Sieniawska, E. Activities of tannins – from in vitro studies to clinical trials. Nat. Prod. Commun., 2015, 10(11), 1877-1884.
[http://dx.doi.org/10.1177/1934578X1501001118] [PMID: 26749816]
[137]
Nassiri-asl, M.; Hosseinzadeh, H. Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive constituents: An update. Phyther. Res, 2016, 30(9), 1392-1403.
[http://dx.doi.org/10.1002/ptr.5644] [PMID: 27196869]
[138]
Liu, Z.; Song, Y.; Zhang, X.; Liu, Z.; Zhang, W.; Mao, W.; Wang, W.; Cui, W.; Zhang, X.; Jia, X.; Li, N.; Han, C.; Liu, C. Effects of trans-resveratrol on hypertension-induced cardiac hypertrophy using the partially nephrectomized rat model. Clin. Exp. Pharmacol. Physiol., 2005, 32(12), 1049-1054.
[PMID: 16445570]
[139]
Juric, D.; Wojciechowski, P.; Das, D.K.; Netticadan, T. Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(5), H2138-H2143.
[http://dx.doi.org/10.1152/ajpheart.00852.2006] [PMID: 17488730]
[140]
Bonku, R.; Yu, J. Health aspects of peanuts as an outcome of its chemical composition. Food Sci. Hum. Wellness, 2020, 9(1), 21-30.
[http://dx.doi.org/10.1016/j.fshw.2019.12.005]
[141]
Ahmed, D.; Kumar, V.; Sharma, M.; Verma, A. Target guided isolation, in-vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. Bark. BMC Complement. Altern. Med., 2014, 14, 155.
[http://dx.doi.org/10.1186/1472-6882-14-155] [PMID: 24886138]
[142]
Christman, L.M.; Dean, L.L.; Allen, J.C.; Godinez, S.F.; Toomer, O.T. Peanut skin phenolic extract attenuates hyperglycemic responses in vivo and in vitro. PLoS One, 2019, 14(3), e0214591.
[http://dx.doi.org/10.1371/journal.pone.0214591] [PMID: 30917157]
[143]
Adelli, G.R.; Srirangam, R.; Majumdar, S. Phytochemicals in ocular health: Therapeutic potential and delivery challenges. World J. Pharmacol., 2013, 2, 18-34.
[http://dx.doi.org/10.5497/wjp.v2.i1.18]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy