Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Quinoxaline 1,4-di-N-Oxide Derivatives: Are They Unselective or Selective Inhibitors?

Author(s): Gildardo Rivera*

Volume 22, Issue 1, 2022

Published on: 26 January, 2021

Page: [15 - 25] Pages: 11

DOI: 10.2174/1389557521666210126142541

Price: $65

Abstract

Background: For decades, the quinoxaline 1,4-di-N-oxide ring has been considered a privileged structure to develop new antibacterial, antitumoural, and antiprotozoal agents, among others; however, its mechanism of action is not clear.

Objective: The main aim of this mini-review was to analyze the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives reported as antibacterial, antitumoural, and antiprotozoal agents.

Results: Initially, the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives against bacteria, tumoural cell lines, and parasites have been described as nonspecific, but recently, the results against different organisms have shown that these compounds have an inhibitory action on specific targets such as trypanothione reductase, triosephosphate isomerase, and other essential enzymes.

Conclusion: In summary, quinoxaline 1,4-di-N-oxide is a scaffold to develop new anti- Mycobacterium tuberculosis, antitumoural and antiprotozoal agents; however, understanding the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives in each microorganism could contribute to the development of new and more potent selective drugs.

Keywords: Quinoxaline 1, 4-di-N-oxide, drugs, biological activity, antimicrobial, mechanism of action.

Graphical Abstract
[1]
Mcllwain, H. Bacterial Inhibition by Metabolite Analogues. Part V. Reactions and Antibacterial Properties of p-Diaxine Di-N-oxides. J. Chem. Soc., 1943, 322-325.
[http://dx.doi.org/10.1039/jr9430000322]
[2]
Coulthard, C.E.; Hale, L.J. The treatment of experimental bacillary infections of mice with quinoxaline 1:4 di-N-oxide. Br. J. Pharmacol. Chemother., 1955, 10(3), 394-396.
[http://dx.doi.org/10.1111/j.1476-5381.1955.tb00890.x] [PMID: 13269721]
[3]
Hennessey, T.D.; Edwards, J.R. Antibacterial properties of quindoxin: a new growth-promoting agent. Vet. Rec., 1972, 90(7), 187-191.
[http://dx.doi.org/10.1136/vr.90.7.187] [PMID: 4553051]
[4]
Suter, W.; Rosselet, A.; Knüsel, F. Mode of action of quindoxin and substituted quinoxaline-di-N-oxides on Escherichia coli. Antimicrob. Agents Chemother., 1978, 13(5), 770-783.
[http://dx.doi.org/10.1128/AAC.13.5.770] [PMID: 352264]
[5]
Beutin, L.; Preller, E.; Kowalski, B. Mutagenicity of quindoxin, its metabolites, and two substituted quinoxaline-di-N-oxides. Antimicrob. Agents Chemother., 1981, 20(3), 336-343.
[http://dx.doi.org/10.1128/AAC.20.3.336] [PMID: 7030199]
[6]
Nunoshiba, T.; Nishioka, H. Genotoxicity of quinoxaline 1,4-dioxide derivatives in Escherichia coli and Salmonella typhimurium. Mutat. Res., 1989, 217(3), 203-209.
[http://dx.doi.org/10.1016/0921-8777(89)90072-4] [PMID: 2654625]
[7]
Zeman, E.M.; Brown, J.M.; Lemmon, M.J.; Hirst, V.K.; Lee, W.W.; Sr, SR -4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int. J. Radiat. Oncol. Biol. Phys., 1986, 12(7), 1239-1242.
[http://dx.doi.org/10.1016/0360-3016(86)90267-1] [PMID: 3744945]
[8]
Laderoute, K.; Wardman, P.; Rauth, A.M. Molecular mechanisms for the hypoxia-dependent activation of 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233). Biochem. Pharmacol., 1988, 37(8), 1487-1495.
[http://dx.doi.org/10.1016/0006-2952(88)90010-X] [PMID: 3128984]
[9]
Zeman, E.M.; Baker, M.A.; Lemmon, M.J.; Pearson, C.I.; Adams, J.A.; Brown, J.M.; Lee, W.W.; Tracy, M. Structure-activity relationships for benzotriazine di-N-oxides. Int. J. Radiat. Oncol. Biol. Phys., 1989, 16(4), 977-981.
[http://dx.doi.org/10.1016/0360-3016(89)90899-7] [PMID: 2703405]
[10]
Monge, A.; Palop, J.A.; López de Ceráin, A.; Senador, V.; Martínez-Crespo, F.J.; Sainz, Y.; Narro, S.; García, E.; de Miguel, C.; González, M.; Hamilton, E.; Barker, A.J.; Clarke, E.D.; Greenhow, D.T. Hypoxia-selective agents derived from quinoxaline 1,4-di-N-oxides. J. Med. Chem., 1995, 38(10), 1786-1792.
[http://dx.doi.org/10.1021/jm00010a023] [PMID: 7752202]
[11]
Gali-Muhtasib, H.U.; Haddadin, M.J.; Rahhal, D.N.; Younes, I.H. Quinoxaline 1,4-dioxides as anticancer and hypoxia-selective drugs. Oncol. Rep., 2001, 8(3), 679-684.
[http://dx.doi.org/10.3892/or.8.3.679] [PMID: 11295102]
[12]
Ganley, B.; Chowdhury, G.; Bhansali, J.; Daniels, J.S.; Gates, K.S. Redox-activated, hypoxia-selective DNA cleavage by quinoxaline 1,4-di-N-oxide. Bioorg. Med. Chem., 2001, 9(9), 2395-2401.
[http://dx.doi.org/10.1016/S0968-0896(01)00163-8] [PMID: 11553481]
[13]
Diab-Assef, M.; Haddadin, M.J.; Yared, P.; Assaad, C.; Gali-Muhtasib, H.U. Quinoxaline 1,4-dioxides: hypoxia-selective therapeutic agents. Mol. Carcinog., 2002, 33(4), 198-205.
[http://dx.doi.org/10.1002/mc.10036] [PMID: 11933073]
[14]
Carta, A.; Paglietti, G.; Rahbar Nikookar, M.E.; Sanna, P.; Sechi, L.; Zanetti, S. Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity. Eur. J. Med. Chem., 2002, 37(5), 355-366.
[http://dx.doi.org/10.1016/S0223-5234(02)01346-6] [PMID: 12008050]
[15]
Solano, B.; Junnotula, V.; Marín, A.; Villar, R.; Burguete, A.; Vicente, E.; Pérez-Silanes, S.; Aldana, I.; Monge, A.; Dutta, S.; Sarkar, U.; Gates, K.S. Synthesis and biological evaluation of new 2-arylcarbonyl-3-trifluoromethylquinoxaline 1,4-di-N-oxide derivatives and their reduced analogues. J. Med. Chem., 2007, 50(22), 5485-5492.
[http://dx.doi.org/10.1021/jm0703993] [PMID: 17910426]
[16]
Vicente, E.; Lima, L.M.; Bongard, E.; Charnaud, S.; Villar, R.; Solano, B.; Burguete, A.; Perez-Silanes, S.; Aldana, I.; Vivas, L.; Monge, A. Synthesis and structure-activity relationship of 3-phenylquinoxaline 1,4-di-N-oxide derivatives as antimalarial agents. Eur. J. Med. Chem., 2008, 43(9), 1903-1910.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.024] [PMID: 18215443]
[17]
Weng, Q.; Wang, D.; Guo, P.; Fang, L.; Hu, Y.; He, Q.; Yang, B. Q39, a novel synthetic Quinoxaline 1,4-Di-N-oxide compound with anti-cancer activity in hypoxia. Eur. J. Pharmacol., 2008, 581(3), 262-269.
[http://dx.doi.org/10.1016/j.ejphar.2007.12.006] [PMID: 18215659]
[18]
Moreno, E.; Ancizu, S.; Pérez-Silanes, S.; Torres, E.; Aldana, I.; Monge, A. Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Eur. J. Med. Chem., 2010, 45(10), 4418-4426.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.036] [PMID: 20656380]
[19]
Ismail, M.M.F.; Amin, K.M.; Noaman, E.; Soliman, D.H.; Ammar, Y.A. New quinoxaline 1, 4-di-N-oxides: anticancer and hypoxia-selective therapeutic agents. Eur. J. Med. Chem., 2010, 45(7), 2733-2738.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.052] [PMID: 20236735]
[20]
Benitez, D.; Cabrera, M.; Hernández, P.; Boiani, L.; Lavaggi, M.L.; Di Maio, R.; Yaluff, G.; Serna, E.; Torres, S.; Ferreira, M.E.; Vera de Bilbao, N.; Torres, E.; Pérez-Silanes, S.; Solano, B.; Moreno, E.; Aldana, I.; López de Ceráin, A.; Cerecetto, H.; González, M.; Monge, A. 3-Trifluoromethylquinoxaline N,N′-dioxides as anti-trypanosomatid agents. Identification of optimal anti-T. cruzi agents and mechanism of action studies. J. Med. Chem., 2011, 54(10), 3624-3636.
[http://dx.doi.org/10.1021/jm2002469] [PMID: 21506600]
[21]
Barea, C.; Pabón, A.; Castillo, D.; Zimic, M.; Quiliano, M.; Galiano, S.; Pérez-Silanes, S.; Monge, A.; Deharo, E.; Aldana, I. New salicylamide and sulfonamide derivatives of quinoxaline 1,4-di-N-oxide with antileishmanial and antimalarial activities. Bioorg. Med. Chem. Lett., 2011, 21(15), 4498-4502.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.125] [PMID: 21724395]
[22]
Hu, Y.; Xia, Q.; Shangguan, S.; Liu, X.; Hu, Y.; Sheng, R. Synthesis and biological evaluation of 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives as hypoxic selective anti-tumor agents. Molecules, 2012, 17(8), 9683-9696.
[http://dx.doi.org/10.3390/molecules17089683] [PMID: 22890172]
[23]
Soliman, D.H. Synthesis, Characterization, Anti-Bacterial and Anti-Fungal Activities of New Quinoxaline 1,4-di-N-Oxide Derivatives. Int. J. Org. Chem. (Irvine), 2013, 3(3A), 65-72.
[http://dx.doi.org/10.4236/ijoc.2013.33A007]
[24]
Barea, C.; Pabón, A.; Pérez-Silanes, S.; Galiano, S.; Gonzalez, G.; Monge, A.; Deharo, E.; Aldana, I. New amide derivatives of quinoxaline 1,4-di-N-oxide with leishmanicidal and antiplasmodial activities. Molecules, 2013, 18(4), 4718-4727.
[http://dx.doi.org/10.3390/molecules18044718] [PMID: 23609622]
[25]
Torres, E.; Moreno-Viguri, E.; Galiano, S.; Devarapally, G.; Crawford, P.W.; Azqueta, A.; Arbillaga, L.; Varela, J.; Birriel, E.; Di Maio, R.; Cerecetto, H.; González, M.; Aldana, I.; Monge, A.; Pérez-Silanes, S. Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents. Eur. J. Med. Chem., 2013, 66, 324-334.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.065] [PMID: 23811257]
[26]
Ghattass, K.; El-Sitt, S.; Zibara, K.; Rayes, S.; Haddadin, M.J.; El-Sabban, M.; Gali-Muhtasib, H. The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway. Mol. Cancer, 2014, 13, 12.
[http://dx.doi.org/10.1186/1476-4598-13-12] [PMID: 24461075]
[27]
Vieira, M.; Pinheiro, C.; Fernandes, R.; Noronha, J.P.; Prudêncio, C. Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3-substituted derivatives. Microbiol. Res., 2014, 169(4), 287-293.
[http://dx.doi.org/10.1016/j.micres.2013.06.015] [PMID: 23928379]
[28]
Brizuela, M.; Huang, H.M.; Smith, C.; Burgio, G.; Foote, S.J.; McMorran, B.J. Treatment of erythrocytes with the 2-cys peroxiredoxin inhibitor, Conoidin A, prevents the growth of Plasmodium falciparum and enhances parasite sensitivity to chloroquine. PLoS One, 2014, 9(4)e92411
[http://dx.doi.org/10.1371/journal.pone.0092411] [PMID: 24699133]
[29]
Villalobos-Rocha, J.C.; Sánchez-Torres, L.; Nogueda-Torres, B.; Segura-Cabrera, A.; García-Pérez, C.A.; Bocanegra-García, V.; Palos, I.; Monge, A.; Rivera, G. Anti-Trypanosoma cruzi and anti-leishmanial activity by quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives. Parasitol. Res., 2014, 113(6), 2027-2035.
[http://dx.doi.org/10.1007/s00436-014-3850-8] [PMID: 24691716]
[30]
Cheng, G.; Li, B.; Wang, C.; Zhang, H.; Liang, G.; Weng, Z.; Hao, H.; Wang, X.; Liu, Z.; Dai, M.; Wang, Y.; Yuan, Z. Systematic and Molecular Basis of the Antibacterial Action of Quinoxaline 1,4-Di-N-Oxides against Escherichia coli. PLoS One, 2015, 10(8)e0136450
[http://dx.doi.org/10.1371/journal.pone.0136450] [PMID: 26296207]
[31]
Pérez-Silanes, S.; Torres, E.; Arbillaga, L.; Varela, J.; Cerecetto, H.; González, M.; Azqueta, A.; Moreno-Viguri, E. Synthesis and biological evaluation of quinoxaline di-N-oxide derivatives with in vitro trypanocidal activity. Bioorg. Med. Chem. Lett., 2016, 26(3), 903-906.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.070] [PMID: 26750255]
[32]
Pan, Y.; Li, P.; Xie, S.; Tao, Y.; Chen, D.; Dai, M.; Hao, H.; Huang, L.; Wang, Y.; Wang, L.; Liu, Z.; Yuan, Z. Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents. Bioorg. Med. Chem. Lett., 2016, 26(16), 4146-4153.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.066] [PMID: 27426298]
[33]
Anderson, R.F.; Yadav, P.; Shinde, S.S.; Hong, C.R.; Pullen, S.M.; Reynisson, J.; Wilson, W.R.; Hay, M.P. Radical Chemistry and Cytotoxicity of Bioreductive 3-Substituted Quinoxaline Di-N-Oxides. Chem. Res. Toxicol., 2016, 29(8), 1310-1324.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00133] [PMID: 27380897]
[34]
Santivañez-Veliz, M.; Pérez-Silanes, S.; Torres, E.; Moreno-Viguri, E. Design and synthesis of novel quinoxaline derivatives as potential candidates for treatment of multidrug-resistant and latent tuberculosis. Bioorg. Med. Chem. Lett., 2016, 26(9), 2188-2193.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.066] [PMID: 27025343]
[35]
Zhao, Y.; Cheng, G.; Hao, H.; Pan, Y.; Liu, Z.; Dai, M.; Yuan, Z. In vitro antimicrobial activities of animal-used quinoxaline 1,4-di-N-oxides against mycobacteria, mycoplasma and fungi. BMC Vet. Res., 2016, 12(1), 186.
[http://dx.doi.org/10.1186/s12917-016-0812-7] [PMID: 27600955]
[36]
Xu, F.; Cheng, G.; Hao, H.; Wang, Y.; Wang, X.; Chen, D.; Peng, D.; Liu, Z.; Yuan, Z.; Dai, M. Mechanisms of Antibacterial Action of Quinoxaline 1,4-di-N-oxides against Clostridium perfringens and Brachyspira hyodysenteriae. Front. Microbiol., 2016, 7, 1948.
[http://dx.doi.org/10.3389/fmicb.2016.01948] [PMID: 28018297]
[37]
Quiliano, M.; Pabón, A.; Ramirez-Calderon, G.; Barea, C.; Deharo, E.; Galiano, S.; Aldana, I. New hydrazine and hydrazide quinoxaline 1,4-di-N-oxide derivatives: In silico ADMET, antiplasmodial and antileishmanial activity. Bioorg. Med. Chem. Lett., 2017, 27(8), 1820-1825.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.049] [PMID: 28291694]
[38]
Rivera, G.; Ahmad Shah, S.S.; Arrieta-Baez, D.; Palos, I.; Mongue, A.; Sánchez-Torres, L.E. Esters of Quinoxaline 1`4-Di-N-oxide with Cytotoxic Activity on Tumor Cell Lines Based on NCI-60 Panel. Iran. J. Pharm. Res., 2017, 16(3), 953-965.
[PMID: 29201086]
[39]
Scherbakov, A.M.; Borunov, A.M.; Buravchenko, G.I.; Andreeva, O.E.; Kudryavtsev, I.A.; Dezhenkova, L.G.; Shchekotikhin, A.E. Novel Quinoxaline-2-Carbonitrile-1,4-Dioxide Derivatives Suppress HIF1α Activity and Circumvent MDR in Cancer Cells. Cancer Invest., 2018, 36(3), 199-209.
[http://dx.doi.org/10.1080/07357907.2018.1453072] [PMID: 29624460]
[40]
Palos, I.; Luna-Herrera, J.; Lara-Ramírez, E.E.; Loera-Piedra, A.; Fernández-Ramírez, E.; Aguilera-Arreola, M.G.; Paz-González, A.D.; Monge, A.; Wan, B.; Franzblau, S.; Rivera, G. Anti-Mycobacterium tuberculosis Activity of Esters of Quinoxaline 1,4-Di-N-Oxide. Molecules, 2018, 23(6), 1453.
[http://dx.doi.org/10.3390/molecules23061453] [PMID: 29914062]
[41]
Jaso, A.; Zarranz, B.; Aldana, I.; Monge, A. Synthesis of new 2-acetyl and 2-benzoyl quinoxaline 1,4-di-N-oxide derivatives as anti-Mycobacterium tuberculosis agents. Eur. J. Med. Chem., 2003, 38(9), 791-800.
[http://dx.doi.org/10.1016/S0223-5234(03)00137-5] [PMID: 14561478]
[42]
Villar, R.; Vicente, E.; Solano, B.; Pérez-Silanes, S.; Aldana, I.; Maddry, J.A.; Lenaerts, A.J.; Franzblau, S.G.; Cho, S.H.; Monge, A.; Goldman, R.C. In vitro and in vivo antimycobacterial activities of ketone and amide derivatives of quinoxaline 1,4-di-N-oxide. J. Antimicrob. Chemother., 2008, 62(3), 547-554.
[http://dx.doi.org/10.1093/jac/dkn214] [PMID: 18502817]
[43]
Ancizu, S.; Moreno, E.; Solano, B.; Villar, R.; Burguete, A.; Torres, E.; Pérez-Silanes, S.; Aldana, I.; Monge, A. New 3-methylquinoxaline-2-carboxamide 1,4-di-N-oxide derivatives as anti-Mycobacterium tuberculosis agents. Bioorg. Med. Chem., 2010, 18(7), 2713-2719.
[http://dx.doi.org/10.1016/j.bmc.2010.02.024] [PMID: 20233660]
[44]
Torres, E.; Moreno, E.; Ancizu, S.; Barea, C.; Galiano, S.; Aldana, I.; Monge, A.; Pérez-Silanes, S. New 1,4-di-N-oxide-quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives as anti-Mycobacterium tuberculosis agents. Bioorg. Med. Chem. Lett., 2011, 21(12), 3699-3703.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.072] [PMID: 21570839]
[45]
Bonilla-Ramirez, L.; Rios, A.; Quiliano, M.; Ramirez-Calderon, G.; Beltrán-Hortelano, I.; Franetich, J.F.; Corcuera, L.; Bordessoulles, M.; Vettorazzi, A.; López de Cerain, A.; Aldana, I.; Mazier, D.; Pabón, A.; Galiano, S. Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies. Eur. J. Med. Chem., 2018, 158, 68-81.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.063] [PMID: 30199706]
[46]
Ferraro, F.; Merlino, A.; Gil, J.; Cerecetto, H.; Corvo, I.; Cabrera, M.; Cathepsin, L.; Cathepsin, L. Inhibitors with Activity against the Liver Fluke Identified From a Focus Library of Quinoxaline 1,4-di-N-Oxide Derivatives. Molecules, 2019, 24(13), 2348.
[http://dx.doi.org/10.3390/molecules24132348] [PMID: 31247891]
[47]
Silva, L.; Coelho, P.; Soares, R.; Prudêncio, C.; Vieira, M. Quinoxaline-1,4-dioxide derivatives inhibitory action in melanoma and brain tumor cells. Future Med. Chem., 2019, 11(7), 645-657.
[http://dx.doi.org/10.4155/fmc-2018-0251] [PMID: 30964331]
[48]
El-Atawy, M.A.; Hamed, E.A.; Alhadi, M.; Omar, A.Z. Synthesis and Antimicrobial Activity of Some New Substituted Quinoxalines. Molecules, 2019, 24(22), 1-16.
[http://dx.doi.org/10.3390/molecules24224198] [PMID: 31752396]
[49]
Srinivasarao, S.; Nandikolla, A.; Suresh, A.; Ewa, A-K.; Głogowska, A.; Ghosh, B.; Kumar, B.K.; Murugesan, S.; Pulya, S.; Aggarwal, H.; Sekhar, K.V.G.C. Discovery of 1,2,3-triazole based quinoxaline-1,4-di-N-oxide derivatives as potential anti-tubercular agents. Bioorg. Chem., 2020.100103955
[http://dx.doi.org/10.1016/j.bioorg.2020.103955] [PMID: 32464405]
[50]
Liu, Q.; Zhang, J.; Luo, X.; Ihsan, A.; Liu, X.; Dai, M.; Cheng, G.; Hao, H.; Wang, X.; Yuan, Z. Further investigations into the genotoxicity of quinoxaline-di-N-oxides and their primary metabolites. Food Chem. Toxicol., 2016, 93, 145-157.
[http://dx.doi.org/10.1016/j.fct.2016.04.029] [PMID: 27170491]
[51]
Keri, R.S.; Pandule, S.S.; Budagumpi, S.; Nagaraja, B.M. Quinoxaline and quinoxaline-1,4-di-N-oxides: An emerging class of antimycobacterials. Arch. Pharm. (Weinheim), 2018, 351(5)e1700325
[http://dx.doi.org/10.1002/ardp.201700325] [PMID: 29611626]
[52]
Bonilla-Ramírez, L.; Galiano, S.; Quiliano, M.; Aldana, I.; Pabón, A. Primaquine-quinoxaline 1,4-di-N-oxide hybrids with action on the exo-erythrocytic forms of Plasmodium induce their effect by the production of reactive oxygen species. Malar. J., 2019, 18(1), 201.
[http://dx.doi.org/10.1186/s12936-019-2825-8] [PMID: 31217011]
[53]
Pinheiro, A.C.; Mendonça Nogueira, T.C.; de Souza, M.V.N. Quinoxaline Nucleus: A Promising Scaffold in Anti-cancer Drug Discovery. Anticancer. Agents Med. Chem., 2016, 16(10), 1339-1352.
[http://dx.doi.org/10.2174/1871520616666160622090839] [PMID: 27349448]
[54]
Murthy, Y.L.N.; Mani, P.; Govindh, B.; Diwakar, B.S.; Karthikeyan, N.; Rao, T.R.; Rao, K.V.R. Synthesis and characterization of 2,3-diphenylquinoxaline 1,4-di-N-oxide derivatives and study of their antimicrobial activities. Res. J. Pharm. Biol. Chem. Sci., 2011, 2(1), 553-560.
[55]
Cheng, G.; Sa, W.; Cao, C.; Guo, L.; Hao, H.; Liu, Z.; Wang, X.; Yuan, Z. Quinoxaline 1,4-di-N-oxide; Biological Activities and Mechanism of Actions. Front. Pharmacol., 2016, 7(64), 1-21.
[http://dx.doi.org/10.3389/fphar.2016.00064]
[56]
Zou, J.; Chen, Q.; Jin, X.; Tang, S.; Chen, K.; Zhang, T.; Xiao, X. Olaquindox induces apoptosis through the mitochondrial pathway in HepG2 cells. Toxicology, 2011, 285(3), 104-113.
[http://dx.doi.org/10.1016/j.tox.2011.04.010] [PMID: 21549799]
[57]
Ihsan, A.; Wang, X.; Tu, H-G.; Zhang, W.; Dai, M-H.; Peng, D-P.; Wang, Y-L.; Huang, L-L.; Chen, D-M.; Mannan, S.; Tao, Y-F.; Liu, Z-L.; Yuan, Z-H. Genotoxicity evaluation of Mequindox in different short-term tests. Food Chem. Toxicol., 2013, 51, 330-336.
[http://dx.doi.org/10.1016/j.fct.2012.10.003] [PMID: 23063596]
[58]
Wang, X.; Martínez, M-A.; Cheng, G.; Liu, Z.; Huang, L.; Dai, M.; Chen, D.; Martínez-Larrañaga, M.R.; Anadón, A.; Yuan, Z. The critical role of oxidative stress in the toxicity and metabolism of quinoxaline 1,4-di-N-oxides in vitro and in vivo. Drug Metab. Rev., 2016, 48(2), 159-182.
[http://dx.doi.org/10.1080/03602532.2016.1189560] [PMID: 27285897]
[59]
Lima, L.M.; do Amaral, D.N. Beirut Reaction and its Application in the Synthesis of Quinoxaline-N,N′-Dioxides Bioactive Compounds. Rev. Virtual Quim, 2013, 5(6), 1075-1100.
[http://dx.doi.org/10.5935/1984-6835.20130079]
[60]
Miller, E.M.; Brazel, C.J.; Brillos-Monia, K.A.; Crawford, P.W.; Hufford, H.C.; Loncaric, M.R.; Mruzik, M.N.; Nenninger, A.W.; Ragain, C.M. Reduction Potential Predictions for Some 3-Aryl-Quinoxaline-2-Carbonitrile 1,4-Di-N-Oxide Derivatives with Known Anti-Tumor Properties. Computation, 2019, 7(1), 6.
[http://dx.doi.org/10.3390/computation7010006]
[61]
Khan, S.; O’Brien, P.J. Molecular mechanisms of tirapazamine (SR 4233, Win 59075)-induced hepatocyte toxicity under low oxygen concentrations. Br. J. Cancer, 1995, 71(4), 780-785.
[http://dx.doi.org/10.1038/bjc.1995.151] [PMID: 7710944]
[62]
Shah, Z.; Mahbuba, R.; Turcotte, B. The anticancer drug tirapazamine has antimicrobial activity against Escherichia coli, Staphylococcus aureus and Clostridium difficile. FEMS Microbiol. Lett., 2013, 347(1), 61-69.
[http://dx.doi.org/10.1111/1574-6968.12223] [PMID: 23888874]
[63]
Radwan, A.A.; Abdel-Mageed, W.M. In silico studies of quinoxaline-2-carboxamide 1,4-di-n-oxide derivatives as antimycobacterial agents. Molecules, 2014, 19(2), 2247-2260.
[http://dx.doi.org/10.3390/molecules19022247] [PMID: 24566302]
[64]
Kaushal, T.; Srivastava, G.; Sharma, A.; Singh Negi, A. An insight into medicinal chemistry of anticancer quinoxalines. Bioorg. Med. Chem., 2019, 27(1), 16-35.
[http://dx.doi.org/10.1016/j.bmc.2018.11.021] [PMID: 30502116]
[65]
Silva, L.; Coelho, P.; Teixeira, D.; Monteiro, A.; Pinto, G.; Soares, R.; Prudêncio, C.; Vieira, M. Oxidative Stress Modulation and Radiosensitizing Effect of Quinoxaline-1,4-Dioxides Derivatives. Anticancer. Agents Med. Chem., 2020, 20(1), 111-120.
[http://dx.doi.org/10.2174/1871520619666191028091547] [PMID: 31746309]
[66]
Shinde, S.S.; Maroz, A.; Hay, M.P.; Patterson, A.V.; Denny, W.A.; Anderson, R.F. Characterization of radicals formed following enzymatic reduction of 3-substituted analogues of the hypoxia-selective cytotoxin 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine). J. Am. Chem. Soc., 2010, 132(8), 2591-2599.
[http://dx.doi.org/10.1021/ja908689f] [PMID: 20141134]
[67]
Zarranz, B.; Jaso, A.; Aldana, I.; Monge, A. Synthesis and anticancer activity evaluation of new 2-alkylcarbonyl and 2-benzoyl-3-trifluoromethyl-quinoxaline 1,4-di-N-oxide derivatives. Bioorg. Med. Chem., 2004, 12(13), 3711-3721.
[http://dx.doi.org/10.1016/j.bmc.2004.04.013] [PMID: 15186857]
[68]
Torre, M.H.; Gambino, D.; Araujo, J.; Cerecetto, H.; González, M.; Lavaggi, M.L.; Azqueta, A.; López de Cerain, A.; Vega, A.M.; Abram, U.; Costa-Filho, A.J. Novel Cu(II) quinoxaline N1,N4-dioxide complexes as selective hypoxic cytotoxins. Eur. J. Med. Chem., 2005, 40(5), 473-480.
[http://dx.doi.org/10.1016/j.ejmech.2004.11.012] [PMID: 15893021]
[69]
Weng, Q.; Zhang, J.; Cao, J.; Xia, Q.; Wang, D.; Hu, Y.; Sheng, R.; Wu, H.; Zhu, D.; Zhu, H.; He, Q.; Yang, B. Q39, a quinoxaline 1,4-Di-N-oxide derivative, inhibits hypoxia-inducible factor-1α expression and the Akt/mTOR/4E-BP1 signaling pathway in human hepatoma cells. Invest. New Drugs, 2011, 29(6), 1177-1187.
[http://dx.doi.org/10.1007/s10637-010-9462-y] [PMID: 20524035]
[70]
Cogo, J.; Kaplum, V.; Sangi, D.P.; Ueda-Nakamura, T.; Corrêa, A.G.; Nakamura, C.V. Synthesis and biological evaluation of novel 2,3-disubstituted quinoxaline derivatives as antileishmanial and antitrypanosomal agents. Eur. J. Med. Chem., 2015, 90, 107-123.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.018] [PMID: 25461316]
[71]
Chacón-Vargas, K.F.; Nogueda-Torres, B.; Sánchez-Torres, L.E.; Suarez-Contreras, E.; Villalobos-Rocha, J.C.; Torres-Martinez, Y.; Lara-Ramirez, E.E.; Fiorani, G.; Krauth-Siegel, R.L.; Bolognesi, M.L.; Monge, A.; Rivera, G. Trypanocidal Activity of Quinoxaline 1,4 Di-N-oxide Derivatives as Trypanothione Reductase Inhibitors. Molecules, 2017, 22(2), 1-18.
[http://dx.doi.org/10.3390/molecules22020220] [PMID: 28157150]
[72]
Vazquez-Jimenez, L.K.; Hernandez-Posada, M.I.; Paz-Gonzalez, A.D.; Nogueda-Torres, B.; Martinez-Vazquez, A.V.; Herrera-Mayorga, V.; Bocanegra-Garcia, V.; Rivera, G. Analysis of the effect of methyl 2-acetamide-3-methylquinoxaline-7-carboxylate 1,4-di-N-oxide on the relative expression of the trypanothione reductase gene in Trypanosoma cruzi epimastigotes. Pak J Pharm Sci., 2019, 32(3 Special), 1447-1452.
[73]
Ancizu, S.; Moreno, E.; Torres, E.; Burguete, A.; Pérez-Silanes, S.; Benítez, D.; Villar, R.; Solano, B.; Marín, A.; Aldana, I.; Cerecetto, H.; González, M.; Monge, A. Heterocyclic-2-carboxylic acid (3-cyano-1,4-di-N-oxidequinoxalin-2-yl)amide derivatives as hits for the development of neglected disease drugs. Molecules, 2009, 14(6), 2256-2272.
[http://dx.doi.org/10.3390/molecules14062256] [PMID: 19553897]
[74]
Vicente, E.; Charnaud, S.; Bongard, E.; Villar, R.; Burguete, A.; Solano, B.; Ancizu, S.; Pérez-Silanes, S.; Aldana, I.; Vivas, L.; Monge, A. Synthesis and antiplasmodial activity of 3-furyl and 3-thienylquinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives. Molecules, 2008, 13(1), 69-77.
[http://dx.doi.org/10.3390/molecules13010069] [PMID: 18259130]
[75]
Estevez, Y.; Quiliano, M.; Burguete, A.; Cabanillas, B.; Zimic, M.; Málaga, E.; Verástegui, M.; Pérez-Silanes, S.; Aldana, I.; Monge, A.; Castillo, D.; Deharo, E. Trypanocidal properties, structure-activity relationship and computational studies of quinoxaline 1,4-di-N-oxide derivatives. Exp. Parasitol., 2011, 127(4), 745-751.
[http://dx.doi.org/10.1016/j.exppara.2011.01.009] [PMID: 21272583]
[76]
Alvarez, G.; Aguirre-López, B.; Varela, J.; Cabrera, M.; Merlino, A.; López, G.V.; Lavaggi, M.L.; Porcal, W.; Di Maio, R.; González, M.; Cerecetto, H.; Cabrera, N.; Pérez-Montfort, R.; de Gómez-Puyou, M.T.; Gómez-Puyou, A. Massive screening yields novel and selective Trypanosoma cruzi triosephosphate isomerase dimer-interface-irreversible inhibitors with anti-trypanosomal activity. Eur. J. Med. Chem., 2010, 45(12), 5767-5772.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.034] [PMID: 20889239]
[77]
Palos, I.; Moo-Puc, R.; Vique-Sánchez, J.L.; Benítez-Cardoza, C.G.; Monge, A.; Villalobos-Rocha, J.C.; Paz-Gonzalez, A.D.; Rivera, G. Esters of quinoxaline-7-Carboxylate 1,4-di-N-oxide as Trichomonas vaginalis Triosephosphate Isomerase inhibitors. Acta Pharm., 2021, 71(3), 485-495.
[78]
Soto-Sánchez, J.; Caro-Gómez, L.A.; Paz-González, A.D.; Marchat, L.A.; Rivera, G.; Moo-Puc, R.; Arias, D.G.; Ramírez-Moreno, E. Biological activity of esters of quinoxaline-7-carboxylate 1,4-di-N-oxide against E. histolytica and their analysis as potential thioredoxin reductase inhibitors. Parasitol. Res., 2020, 119(2), 695-711.
[http://dx.doi.org/10.1007/s00436-019-06580-8] [PMID: 31907668]
[79]
Voogd, C.E.; van der Stel, J.J.; Jacobs, J.J. The mutagenic action of quindoxin, carbadox, olaquindox and some other N-oxides on bacteria and yeast. Mutat. Res., 1980, 78(3), 233-242.
[http://dx.doi.org/10.1016/0165-1218(80)90104-4] [PMID: 7001216]
[80]
Wang, X.; Zhang, H.; Huang, L.; Pan, Y.; Li, J.; Chen, D.; Cheng, G.; Hao, H.; Tao, Y.; Liu, Z.; Yuan, Z. Deoxidation rates play a critical role in DNA damage mediated by important synthetic drugs, quinoxaline 1,4-dioxides. Chem. Res. Toxicol., 2015, 28(3), 470-481.
[http://dx.doi.org/10.1021/tx5004326] [PMID: 25626015]
[81]
Chacón-Vargas, K.F.; Andrade-Ochoa, S.; Nogueda-Torres, B.; Juárez-Ramírez, D.C.; Lara-Ramírez, E.E.; Mondragón-Flores, R.; Monge, A.; Rivera, G.; Sánchez-Torres, L.E. Isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives induce regulated necrosis-like cell death on Leishmania (Leishmania) mexicana. Parasitol. Res., 2018, 117(1), 45-58.
[http://dx.doi.org/10.1007/s00436-017-5635-3] [PMID: 29159705]
[82]
Ortega, M.A.; Morancho, M.J.; Martínez-Crespo, F.J.; Sainz, Y.; Montoya, M.E.; López de Ceráin, A.; Monge, A. New quinoxalinecarbonitrile 1,4-di-N-oxide derivatives as hypoxic-cytotoxic agents. Eur. J. Med. Chem., 2000, 35(1), 21-30.
[http://dx.doi.org/10.1016/S0223-5234(00)00112-4] [PMID: 10733600]
[83]
Amberg, A.; Anger, L.T.; Bercu, J.; Bower, D.; Cross, K.P.; Custer, L.; Harvey, J.S.; Hasselgren, C.; Honma, M.; Johnson, C.; Jolly, R.; Kenyon, M.O.; Kruhlak, N.L.; Leavitt, P.; Quigley, D.P.; Miller, S.; Snodin, D.; Stavitskaya, L.; Teasdale, A.; Trejo-Martin, A.; White, A.T.; Wichard, J.; Myatt, G.J. Extending (Q)SARs to incorporate proprietary knowledge for regulatory purposes: is aromatic N-oxide a structural alert for predicting DNA-reactive mutagenicity? Mutagenesis, 2019, 34(1), 67-82.
[http://dx.doi.org/10.1093/mutage/gey020] [PMID: 30189015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy