Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Investigation of Radiolabeling Efficacy by Enhancement of the Chemical form of no Carrier Added 177Lu Isolated by Electro Amalgamation Process

Author(s): Sara Vosoughi, Nafise Salek *, Simindokht Shirvani Arani, Ali Bahrami Samani and Mohammad Ghannadi Maragheh

Volume 15, Issue 1, 2022

Published on: 22 January, 2021

Page: [56 - 62] Pages: 7

DOI: 10.2174/1874471014666210122150134

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Due to the suitable nuclear decay characteristics, 177Lu is an attractive radionuclide for various therapeutic applications. The non-carrier added form of177Lu has drawn much attention because of its high specific activity needed in radiolabeling studies. There have been several separation methods for NCA177Lu production.

Objectives: Among the various separation methods, the electro-amalgamation separation method has got a large potential for large scale production. Li presence is a significant problem in this separation method, which seriously affects the radiolabeling efficiency.

Methods: In this study, Li was separated from the final product of electro-amalgamation separation by adding an ion-exchange chromatography column to the separation process.

Results: NCA 177Lu was obtained by 84.09% ELM separation yield, 99.9% radionuclide purity and, 65 Ci/g specific activity. Then, 177Lu (177LuCl3 chemical form) was separated from Li using the ion exchange chromatography method by a separation yield of 94%. The obtained results of the radiolabeling efficacy studies showed that the radiochemical purity and radio-complex stability were significantly increased by separating NCA 177Lu from Li.

Conclusion: This new separation setup consisting of two steps allows using 177Lu of such a favorable quality for labeling studies.

Keywords: 177Lu, electro-amalgamation separation, 5, 10, 15, 20-tetrakis(phenyl)porphyrin (TPP), radiolabeling efficacy.

Graphical Abstract
[1]
Pillai, M.R.A.; Chakraborty, S.; Das, T.; Venkatesh, M.; Ramamoorthy, N. Production logistics of 177Lu for radionuclide therapy. Appl. Radiat. Isot., 2003, 59(2-3), 109-118.
[http://dx.doi.org/10.1016/S0969-8043(03)00158-1] [PMID: 12941498]
[2]
Dash, A.; Pillai, M.R.A.; Knapp, F.F., Jr Production of (177)Lu for Targeted Radionuclide Therapy: Available Options. Nucl. Med. Mol. Imaging, 2015, 49(2), 85-107.
[http://dx.doi.org/10.1007/s13139-014-0315-z] [PMID: 26085854]
[3]
Dvoráková, Z. Production and chemical processing of 177Lu for nuclear medicine at the Munich research reactor FRM-II; Institut fur Radiochemie der Technischen Universitat Munchen, 2007.
[4]
Horwitz, E.P.; McAlister, D.R.; Bond, A.H.; Barrans, R.E.; Williamson, J.M. A process for the separation of 177Lu from neutron irradiated 176Yb targets. Appl. Radiat. Isot., 2005, 63(1), 23-36.
[http://dx.doi.org/10.1016/j.apradiso.2005.02.005] [PMID: 15866444]
[5]
Park, H.; Kwon, D.; Cha, Y.; Nam, S.; Kim, T.; Han, J.; Kim, C. Laser isotope separation of 176Yb for medical applications. 2006.
[6]
Choppin, G.R.; Silva, R.J. Separation of the lanthanides by ion exchange with alpha-hydroxy isobutyric acid. J. Inorg. Nucl. Chem., 1956, 3(2), 153-154.
[http://dx.doi.org/10.1016/0022-1902(56)80076-6]
[7]
Marhol, M. Ion Exchangers in Analytical Chemistry: Their Properties and Use in Inorganic Chemistry. Compr Anal Chem., 1982.
[8]
Balasubramanian, P. Separation of carrier-free lutetium-177 from neutron irradiated naturalytterbium target. J. Radioanal. Nucl. Chem., 1994, 185(2), 305-310.
[http://dx.doi.org/10.1007/BF02041303]
[9]
Hashimoto, K.; Matsuoka, H.; Uchida, S. Production of no-carrier-added 177Lu via the 176Yb (n, γ)177Yb→177Lu process. J. Radioanal. Nucl. Chem., 2003, 255(3), 575-579.
[http://dx.doi.org/10.1023/A:1022557121351]
[10]
Lahiri, S.; Nayak, D.; Nandy, M.; Das, N.R. Separation of carrier free lutetium produced in proton activated ytterbium with HDEHP. Appl. Radiat. Isot., 1998, 49(8), 911-913.
[http://dx.doi.org/10.1016/S0969-8043(97)10101-4]
[11]
Kumrić, K.; Trtić-Petrović, T.; Koumarianou, E.; Archimandritis, S.; Čomor, J.J. Supported liquid membrane extraction of 177Lu (III) with DEHPA and its application for purification of 177Lu -DOTAlanreotide. Separ. Purif. Tech., 2006, 51(3), 310-317.
[http://dx.doi.org/10.1016/j.seppur.2006.02.011]
[12]
Watanabe, S.; Hashimoto, K.; Watanabe, S.; Iida, Y.; Hanaoka, H.; Endo, K.; Ishioka, N.S. Production of highly purified no-carrier-added 177Lu for radioimmunotherapy. J. Radioanal. Nucl. Chem., 2015, 303(1), 935-940.
[http://dx.doi.org/10.1007/s10967-014-3534-y]
[13]
Knapp, F.F., Jr; Ambrose, K.R.; Beets, A.L.; Lambert, C.R.; McPherson, D.W.; Mirzadeh, S.; Luo, H. Nuclear medicine program progress report for quarter ending December 31, 1994 (No. ORNL/TM- 12909); Oak Ridge National Lab: TN, United States, 1995.
[14]
Knapp, F.R., Jr; Mirzadeh, S.; Beets, A.L.; Du, M. Production of therapeutic radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for applications in nuclear medicine, oncologyand interventional cardiology. J. Radioanal. Nucl. Chem., 2005, 263(2), 503-509.
[http://dx.doi.org/10.1007/s10967-005-0083-4]
[15]
Monroy-Guzman, F.; Barreiro, F.J.; Salinas, E.J.; Treviño, A.V. Radiolanthanides Device Production. WJNST, 2015, 5(02), 111.
[http://dx.doi.org/10.4236/wjnst.2015.52011]
[16]
Morcos, N.; Zaw, M.; Pellegrini, P.; Greguric, I. Alternative chromatographic processes for nocarrier added 177Lu radioisotope separation. J. Radioanal. Nucl. Chem., 2008, 277(3), 663-673.
[http://dx.doi.org/10.1007/s10967-007-7129-8]
[17]
Lebedev, N.A.; Novgorodov, A.F.; Misiak, R.; Brockmann, J.; Rösch, F. Radiochemical separation of no-carrier-added 177Lu as produced via the 176Yb(n,γ)177Yb- >177Lu process. Appl. Radiat. Isot., 2000, 53(3), 421-425.
[http://dx.doi.org/10.1016/S0969-8043(99)00284-5] [PMID: 10972147]
[18]
Bilewicz, A.; Żuchowska, K.; Bartoś, B. Separation of Yb as YbSO4 from the 176Yb target for production of 177Lu via the 176Yb (n, γ) 177Yb→ 177Lu process. J. Radioanal. Nucl. Chem., 2009, 280(1), 167-169.
[19]
Chakravarty, R.; Das, T.; Dash, A.; Venkatesh, M. An electro-amalgamation approach to isolate no-carrier-added 177Lu from neutron irradiated Yb for biomedical applications. Nucl. Med. Biol., 2010, 37(7), 811-820.
[http://dx.doi.org/10.1016/j.nucmedbio.2010.04.082] [PMID: 20870156]
[20]
Kazakov, A.G. Production of 177Lu by hafnium irradiation using 55-MeV bremsstrahlung photons. J. Radioanal. Nucl. Chem., 2018, 317(3), 1469-1476.
[http://dx.doi.org/10.1007/s10967-018-6036-5]
[21]
Salek, N.; Shamsaei, M.; Ghannadi Maragheh, M. Comparative studies of extraction chromatography and electro-amalgamation separation to produce no-carrier added 177Lu by Tehran research reactor. Iran. J. Nucl. Med., 2017, 25(1), 23-33.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy