Research Article

ZEB2敲低诱导人类髓样白血病HL-60细胞凋亡

卷 21, 期 2, 2021

发表于: 20 January, 2021

页: [149 - 159] 页: 11

弟呕挨: 10.2174/1566523221999210120210017

价格: $65

conference banner
摘要

简介:急性髓细胞性白血病(AML)是成人造血系统中最普遍的癌症类型。在诊断为AML的个体中,传统疗法与不良副作用相关。这些具有部分缓解的后效应反映了迫切需要新颖的治疗方法,以诱导凋亡,特别是在恶性细胞中而又不影响其他细胞的凋亡。作为转录因子(TF),ZEB2(锌指E-Box结合同源异型盒2)调节正常条件下特定基因的表达。然而,在各种癌症中,尤其是在AML中,据报道ZEB2的表达增加,这与更高程度的恶性细胞凋亡抑制有关。在这项工作中,ZEB2在细胞凋亡抑制中的作用是通过在人类髓样白血病HL-60细胞中通过ZEB2特异性敲低来进行调查的。 材料和方法:在24、48和72小时内,使用ZEB2-siRNA以20、40、60和80 pmol的浓度转染HL-60细胞。确定最佳剂量和时间后,使用流式细胞仪测量细胞凋亡率。 MTT测定法还用于评估转染对细胞的细胞毒性影响。使用qRT-PCR在转染之前和之后测量候选基因的表达。 结果:根据获得的结果,通过siRNA抑制ZEB2表达与诱导凋亡,增加促凋亡和降低抗凋亡基因表达有关。 ZEB2-siRNA的转染也与细胞增殖和活力降低有关。 结论:我们的研究结果表明,通过凋亡诱导作用抑制骨髓性白血病细胞中的ZEB2可能是一种正确的治疗方法。

关键词: 急性骨髓性白血病,ZEB2(锌指E-Box结合同源异型盒2),RNAi,靶向治疗,细胞凋亡,白血病。

图形摘要
[1]
Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version. National Cancer Institute. 2018.
[2]
Acheampong DO, Adokoh CK, Asante DB, et al. Immunotherapy for acute myeloid leukemia (AML): a potent alternative therapy. Biomed Pharmacother 2018; 97: 225-32.
[http://dx.doi.org/10.1016/j.biopha.2017.10.100] [PMID: 29091870]
[3]
Verschueren K, Remacle JE, Collart C, et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 1999; 274(29): 20489-98.
[http://dx.doi.org/10.1074/jbc.274.29.20489] [PMID: 10400677]
[4]
Fardi M, Alivand M, Baradaran B, Farshdousti Hagh M, Solali S. The crucial role of ZEB2: From development to epithelial-to-mesenchymal transition and cancer complexity. J Cell Physiol 2019.
[http://dx.doi.org/10.1002/jcp.28277] [PMID: 30773635]
[5]
Hegarty SV, Sullivan AM, O’Keeffe GW. Zeb2: A multifunctional regulator of nervous system development. Prog Neurobiol 2015; 132: 81-95.
[http://dx.doi.org/10.1016/j.pneurobio.2015.07.001] [PMID: 26193487]
[6]
Epifanova E, Babaev A, Newman AG, Tarabykin V. Role of Zeb2/Sip1 in neuronal development. Brain Res 2019; 1705: 24-31.
[http://dx.doi.org/10.1016/j.brainres.2018.09.034] [PMID: 30266271]
[7]
Yin SY, Peng AP, Huang LT, Wang YT, Lan CW, Yang NS. The Phytochemical Shikonin Stimulates Epithelial-Mesenchymal Transition (EMT) in Skin Wound Healing. Evid Based Complement Alternat Med 2013; 2013: 262796.
[http://dx.doi.org/10.1155/2013/262796] [PMID: 23861701]
[8]
Ye C, Hu Y, Wang J. MicroRNA-377 Targets Zinc Finger E-box-Binding Homeobox 2 to Inhibit Cell Proliferation and Invasion of Cervical Cancer. Oncol Res 2019; 27(2): 183-92.
[http://dx.doi.org/10.3727/096504018X15201124340860] [PMID: 29523224]
[9]
Balcik-Ercin P, Cetin M, Yalim-Camci I, et al. Genome-wide analysis of endogenously expressed ZEB2 binding sites reveals inverse correlations between ZEB2 and GalNAc-transferase GALNT3 in human tumors. Cell Oncol (Dordr) 2018; 41(4): 379-93.
[http://dx.doi.org/10.1007/s13402-018-0375-7] [PMID: 29516288]
[10]
Wang T, Chen X, Qiao W, Kong L, Sun D, Li Z. Transcription factor E2F1 promotes EMT by regulating ZEB2 in small cell lung cancer. BMC Cancer 2017; 17(1): 719.
[http://dx.doi.org/10.1186/s12885-017-3701-y] [PMID: 29115924]
[11]
Chen P, Liu H, Hou A, et al. Prognostic Significance of Zinc Finger E-Box-Binding Homeobox Family in Glioblastoma. Med Sci Monit 2018; 24: 1145-51.
[http://dx.doi.org/10.12659/MSM.905902] [PMID: 29476046]
[12]
Yan Z, Tian X, Wang R, et al. Title Prognosis Significance of ZEB2 and TGF-β1 as well as Other Clinical Characteristics in Epithelial Ovarian Cancer. Int J Gynecol Cancer 2017; 27(7): 1343-9.
[http://dx.doi.org/10.1097/IGC.0000000000001037] [PMID: 30814239]
[13]
Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 2017; 14(10): 611-29.
[http://dx.doi.org/10.1038/nrclinonc.2017.44] [PMID: 28397828]
[14]
Santamaria PG, Moreno-Bueno G, Portillo F, Cano A. EMT: Present and future in clinical oncology. Mol Oncol 2017; 11(7): 718-38.
[http://dx.doi.org/10.1002/1878-0261.12091] [PMID: 28590039]
[15]
Song KA, Niederst MJ, Lochmann TL, et al. Epithelial-to-Mesenchymal Transition Antagonizes Response to Targeted Therapies in Lung Cancer by Suppressing BIM. Clin Cancer Res 2018; 24(1): 197-208.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1577] [PMID: 29051323]
[16]
Zhou P, Wang C, Hu Z, Chen W, Qi W, Li A. Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-κB/slug/E-cadherin pathway. BMC Cancer 2017; 17(1): 813.
[http://dx.doi.org/10.1186/s12885-017-3829-9] [PMID: 29202800]
[17]
Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127(20): 2391-405.
[http://dx.doi.org/10.1182/blood-2016-03-643544] [PMID: 27069254]
[18]
Almond LM, Charalampakis M, Ford SJ, Gourevitch D, Desai A. Myeloid Sarcoma: Presentation, Diagnosis, and Treatment. Clin Lymphoma Myeloma Leuk 2017; 17(5): 263-7.
[http://dx.doi.org/10.1016/j.clml.2017.02.027] [PMID: 28342811]
[19]
Wilson CS, Medeiros LJ. Extramedullary Manifestations of Myeloid Neoplasms. Am J Clin Pathol 2015; 144(2): 219-39.
[http://dx.doi.org/10.1309/AJCPO58YWIBUBESX] [PMID: 26185307]
[20]
Sawyers C. Targeted cancer therapy. Nature 2004; 432(7015): 294-7.
[http://dx.doi.org/10.1038/nature03095] [PMID: 15549090]
[21]
Human Protein Atlas 2019.
[22]
Li H, Mar BG, Zhang H, et al. The EMT regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia. Blood 2017; 129(4): 497-508.
[http://dx.doi.org/10.1182/blood-2016-05-714493] [PMID: 27756750]
[23]
Hong L, Han K, Wu K, et al. E-cadherin and ZEB2 modulate trophoblast cell differentiation during placental development in pigs. Reproduction 2017; 154(6): 765-75.
[http://dx.doi.org/10.1530/REP-17-0254] [PMID: 28912304]
[24]
Dai Y-H, Tang YP, Zhu HY, et al. ZEB2 promotes the metastasis of gastric cancer and modulates epithelial mesenchymal transition of gastric cancer cells. Dig Dis Sci 2012; 57(5): 1253-60.
[http://dx.doi.org/10.1007/s10620-012-2042-6] [PMID: 22350782]
[25]
Vandewalle C, Comijn J, De Craene B, et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 2005; 33(20): 6566-78.
[http://dx.doi.org/10.1093/nar/gki965] [PMID: 16314317]
[26]
Kahlert UD, Joseph JV, Kruyt FAE. EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Mol Oncol 2017; 11(7): 860-77.
[http://dx.doi.org/10.1002/1878-0261.12085] [PMID: 28556516]
[27]
Wu S, Du Y, Beckford J, Alachkar H. Upregulation of the EMT marker vimentin is associated with poor clinical outcome in acute myeloid leukemia. J Transl Med 2018; 16(1): 170.
[http://dx.doi.org/10.1186/s12967-018-1539-y] [PMID: 29925392]
[28]
Chen S-C, Liao T-T, Yang M-H. Emerging roles of epithelial-mesenchymal transition in hematological malignancies. J Biomed Sci 2018; 25(1): 37-7.
[http://dx.doi.org/10.1186/s12929-018-0440-6] [PMID: 29685144]
[29]
Navarro F, Lieberman J. miR-34 and p53: New Insights into a Complex Functional Relationship. PLoS One 2015; 10(7): e0132767.
[http://dx.doi.org/10.1371/journal.pone.0132767] [PMID: 26177460]
[30]
Chang CJ, Chao CH, Xia W, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011; 13(3): 317-23.
[http://dx.doi.org/10.1038/ncb2173] [PMID: 21336307]
[31]
Jing J, Xiong S, Li Z, et al. A feedback regulatory loop involving p53/miR-200 and growth hormone endocrine axis controls embryo size of zebrafish. Sci Rep 2015; 5: 15906.
[http://dx.doi.org/10.1038/srep15906] [PMID: 26507500]
[32]
Okada N, Lin CP, Ribeiro MC, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 2014; 28(5): 438-50.
[http://dx.doi.org/10.1101/gad.233585.113] [PMID: 24532687]
[33]
Rajabi H, Alam M, Takahashi H, et al. MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene 2014; 33(13): 1680-9.
[http://dx.doi.org/10.1038/onc.2013.114] [PMID: 23584475]
[34]
Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop--a motor of cellular plasticity in development and cancer? EMBO Rep 2010; 11(9): 670-7.
[http://dx.doi.org/10.1038/embor.2010.117] [PMID: 20706219]
[35]
Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer 2013; 132(4): 745-54.
[http://dx.doi.org/10.1002/ijc.27708] [PMID: 22753312]
[36]
Gill JG, Langer EM, Lindsley RC, et al. Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells 2011; 29(5): 764-76.
[http://dx.doi.org/10.1002/stem.628] [PMID: 21394833]
[37]
Siemens H, Jackstadt R, Hünten S, et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 2011; 10(24): 4256-71.
[http://dx.doi.org/10.4161/cc.10.24.18552] [PMID: 22134354]
[38]
Imani S, Wei C, Cheng J, et al. MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget 2017; 8(13): 21362-79.
[http://dx.doi.org/10.18632/oncotarget.15214] [PMID: 28423483]
[39]
Alves-Fernandes DK, Jasiulionis MG. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int J Mol Sci 2019; 20(13): E3153.
[http://dx.doi.org/10.3390/ijms20133153] [PMID: 31261609]
[40]
Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 2013; 5(3): 344-52.
[http://dx.doi.org/10.1002/emmm.201302451] [PMID: 23417962]
[41]
Zhao LJ, Kuppuswamy M, Vijayalingam S, Chinnadurai G. Interaction of ZEB and histone deacetylase with the PLDLS-binding cleft region of monomeric C-terminal binding protein 2. BMC Mol Biol 2009; 10: 89.
[http://dx.doi.org/10.1186/1471-2199-10-89] [PMID: 19754958]
[42]
Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001; 7(3): 683-94.
[http://dx.doi.org/10.1016/S1097-2765(01)00214-3] [PMID: 11463392]
[43]
Shibue T, Takeda K, Oda E, et al. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 2003; 17(18): 2233-8.
[http://dx.doi.org/10.1101/gad.1103603] [PMID: 12952892]
[44]
Schuler M, Maurer U, Goldstein JC, et al. p53 triggers apoptosis in oncogene-expressing fibroblasts by the induction of Noxa and mitochondrial Bax translocation. Cell Death Differ 2003; 10(4): 451-60.
[http://dx.doi.org/10.1038/sj.cdd.4401180] [PMID: 12719722]
[45]
Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004; 303(5660): 1010-4.
[http://dx.doi.org/10.1126/science.1092734] [PMID: 14963330]
[46]
Basu A, Haldar S. The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod 1998; 4(12): 1099-109.
[http://dx.doi.org/10.1093/molehr/4.12.1099] [PMID: 9872359]
[47]
Croce CM, Reed JC. Finally, An Apoptosis-Targeting Therapeutic for Cancer. Cancer Res 2016; 76(20): 5914-20.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1248] [PMID: 27694602]
[48]
Ren T, Zhu L, Cheng M. CXCL10 accelerates EMT and metastasis by MMP-2 in hepatocellular carcinoma. Am J Transl Res 2017; 9(6): 2824-37.
[PMID: 28670372]
[49]
Mendez MG, Kojima S, Goldman RD. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 2010; 24(6): 1838-51.
[http://dx.doi.org/10.1096/fj.09-151639] [PMID: 20097873]
[50]
Meyer SE. From EMT to HSC to AML: ZEB2 is a cell fate switch. Blood 2017; 129(4): 400-1.
[http://dx.doi.org/10.1182/blood-2016-11-748186] [PMID: 28126955]
[51]
Chou Y-S, Yang M-H. Epithelial-mesenchymal transition-related factors in solid tumor and hematological malignancy. J Chin Med Assoc 2015; 78(8): 438-45.
[http://dx.doi.org/10.1016/j.jcma.2015.05.002] [PMID: 26078096]
[52]
Duan X, Fu Z, Gao L, et al. Direct interaction between miR-203 and ZEB2 suppresses epithelial-mesenchymal transition signaling and reduces lung adenocarcinoma chemoresistance. Acta Biochim Biophys Sin (Shanghai) 2016; 48(11): 1042-9.
[http://dx.doi.org/10.1093/abbs/gmw099] [PMID: 27733346]
[53]
Fang S, Zeng X, Zhu W, Tang R, Chao Y, Guo L. Zinc finger E-box-binding homeobox 2 (ZEB2) regulated by miR-200b contributes to multi-drug resistance of small cell lung cancer. Exp Mol Pathol 2014; 96(3): 438-44.
[http://dx.doi.org/10.1016/j.yexmp.2014.04.008] [PMID: 24769353]
[54]
Du B, Shim JS. Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules 2016; 21(7): E965.
[http://dx.doi.org/10.3390/molecules21070965] [PMID: 27455225]
[55]
Zhang Y, Xu L, Li A, Han X. The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed Pharmacother 2019; 110: 400-8.
[http://dx.doi.org/10.1016/j.biopha.2018.11.112] [PMID: 30530042]
[56]
Wu W-S, You RI, Cheng CC, Lee MC, Lin TY, Hu CT. Snail collaborates with EGR-1 and SP-1 to directly activate transcription of MMP 9 and ZEB1. Sci Rep 2017; 7(1): 17753.
[http://dx.doi.org/10.1038/s41598-017-18101-7] [PMID: 29259250]
[57]
Bae G-Y, Choi SJ, Lee JS, et al. Loss of E-cadherin activates EGFR-MEK/ERK signaling, which promotes invasion via the ZEB1/MMP2 axis in non-small cell lung cancer. Oncotarget 2013; 4(12): 2512-22.
[http://dx.doi.org/10.18632/oncotarget.1463] [PMID: 24318272]
[58]
Yokoyama K, Kamata N, Fujimoto R, et al. Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol 2003; 22(4): 891-8.
[http://dx.doi.org/10.3892/ijo.22.4.891] [PMID: 12632084]
[59]
Miyoshi A, Kitajima Y, Sumi K, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer 2004; 90(6): 1265-73.
[http://dx.doi.org/10.1038/sj.bjc.6601685] [PMID: 15026811]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy