Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Review Article

Green Approaches for Cancers Management: An Effective Tool for Health Care

Author(s): Jitendra Gupta*, Ashima Ahuja and Reena Gupta

Volume 22, Issue 1, 2022

Published on: 19 January, 2021

Page: [101 - 114] Pages: 14

DOI: 10.2174/1871520621666210119091826

Price: $65

Abstract

Background: Cancer is one of the leading causes of an increasing number of deaths in modern society. As the population increases, there is an increased thrust for screening newer anticancer (phytoconstituents) agents to manage cancers. Around 35000 herbal phytoconstituents are obtained from plants, animals and marine sources to create awareness of green therapy in managing, reducing, and minimizing side effects of modern chemotherapeutics and radiation therapy. The herbal plants are the richest sources of natural remedies and bioactive compounds that promote medicines' alternative systems as a green approach for managing various cancers. The terpenoids, saponins, volatile oils, and flavonoid phytoconstituents are most efficiently used to manage cancer with minimal side effects.

Objective: The objectives of the present study are to investigate the efficacious, potent and safe use of herbal phytoconstituents extracts in the management of cancers and study their mechanism of action through alteration of transcription proteins, blocking G-2/M phase, distortion of tubulin structure, generation of reactive oxygen species, lipid peroxidation, cell cycle arrest, and anti-proliferation induced cell apoptosis for target specific cancer treatment. The information was collected from databases such as ScienceDirect, PubMed, Google Scholar, Academia, MedLine, and WoS.

Methods: The literature was surveyed, and keywords like cancer therapeutics, metastasis, proliferation, cell apoptosis, cell lines, phytoconstituents for cancer management, and related disorders were screened.

Results: The findings suggested that the crude extracts act as an antioxidant, free radical scavenger, or anti-aging agent exploited in the management of cancers along with treatment of other infectious diseases like ulcers, gout, liver diseases, respiratory tract infection, renal disorders, blood disorders, CVD, anti-inflammatory and several wound infections.

Conclusion: The phytoactive moieties having herbal extracts help improve the compromised immunity status of affected patients and provide measures for scientific studies of newer anticancer agents in herbal industries.

Keywords: Green approaches, Cancer, Herbal phytoconstituents, Cell cycle arrest, Anticancer, Breast cancer, Colon cancer.

Graphical Abstract
[1]
Pawar, S.R.; Jangam, S.; Waghmare, S. Anti-cancer herbal drugs: An overview. J. Drug Deliv. Ther., 2018, 8(4), 48-58.
[http://dx.doi.org/10.22270/jddt.v8i4.1749]
[2]
Dini, L.; Mariano, S.; Panzarini, E. Herbal extracts from Carica papaya and Azadirachta indica: What Role for ROS in Cancer Cell Lines: Herbal Medicine: Back to the Future. Cancer Ther., 2019, 3, 1-45.
[3]
Hu, X.Q.; Sun, Y.; Lau, E.; Zhao, M.; Su, S.B. Advances in synergistic combinations of chinese herbal medicine for the treatment of cancer. Curr. Cancer Drug Targets, 2016, 16(4), 346-356.
[http://dx.doi.org/10.2174/1568009616666151207105851] [PMID: 26638885]
[4]
Hussain, T.; Bajpai, S.; Saeed, M.; Moin, A.; Alafnan, A.; Khan, M.; Kamal, M.A.; Ganash, M.; Ashraf, G.M. khan, M.; Kamal, M.A.; Ganash, M.; Ashraf, G.M. Potentiating effect of ethnomedicinal plants against proliferation on different cancer cell lines. Curr. Drug Metab., 2018, 19(7), 584-595.
[http://dx.doi.org/10.2174/1389200219666180305144841] [PMID: 29512451]
[5]
Yang, A.K.; He, S.M.; Liu, L.; Liu, J.P.; Wei, M.Q.; Zhou, S.F. Herbal interactions with anticancer drugs: mechanistic and clinical considerations. Curr. Med. Chem., 2010, 17(16), 1635-1678.
[http://dx.doi.org/10.2174/092986710791111279] [PMID: 20345351]
[6]
Zong, A.; Cao, H.; Wang, F. Anticancer polysaccharides from natural resources: a review of recent research. Carbohydr. Polym., 2012, 90(4), 1395-1410.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.026] [PMID: 22944395]
[7]
Lavanya, V.; Mohamed, A.; Ahmed, N.; Jamal, S. Lectins-the promising cancer therapeutics. Oncology and Targets, 2014, 1(1), 12-15.
[http://dx.doi.org/10.4103/2395-4469.145348]
[8]
Singh, R.S.; Kaur, H.P.; Kanwar, J.R. Mushroom lectins as promising anticancer substances. Curr. Protein Pept. Sci., 2016, 17(8), 797-807.
[http://dx.doi.org/10.2174/1389203717666160226144741] [PMID: 26916164]
[9]
Agrawal, S.B.; Gupta, N.; Bhagyawant, S.S.; Gaikwad, S.M. Anticancer activity of lectins from Bauhinia purpurea and Wisteria floribunda on breast cancer MCF-7 cell lines. Protein Pept. Lett., 2020, 27(9), 870-877.
[http://dx.doi.org/10.2174/0929866527666200408143614] [PMID: 32268858]
[10]
Jan, S.A.; Shinwari, Z.K.; Malik, M.; Ilyas, M. Antioxidant and anticancer activities of Brassica rapa: A review. MOJ Biol. Med., 2018, 3(4), 175-178.
[11]
Wang, J-T. Ge, D.; Qu, Hai-Fang.; Wang, Guo-Kai.; Wang, G. Chemical constituents of Curcuma kwangsiensis and their antimigratory activities in RKO cells. Nat. Prod. Res., 2019, 33(24), 3493-3499.
[12]
Wua, Jian-guo.; Maa, Li.; Lina, Shui-hua.; Wua, Yan-bin.; Yib, J.; Yang, Bin-jun.; Wua, Jin-zhong.; Wong, K. Anticancer and anti-angiogenic activities of extract from Actinidia eriantha Benth root. J. Ethnopharmacol., 2017, 203, 1-10.
[http://dx.doi.org/10.1016/j.jep.2017.03.013]
[13]
Wang, F-F.; Shi, C.; Yang, Y.; Fang, Y.; Sheng, L.; Li, N. Medicinal mushroom Phellinus igniarius induced cell apoptosis in gastric cancer SGC-7901 through a mitochondria-dependent pathway. Biomed. Pharmacother., 2018, 102, 18-25.
[http://dx.doi.org/10.1016/j.biopha.2018.03.038] [PMID: 29549725]
[14]
Lee, H.H.; Lee, S.; Lee, K. Shin, Yu Su.; Kang, H.; Cho, H. Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis. Daru, 2015, 23(35), 1-8.
[15]
Biswas, G.; Nandi, S.; Kuila, D.; Acharya, K. A Comprehensive review on food and medicinal prospects of Astraeus hygrometricus. Pharmacogn. J., 2017, 9(6), 799-806.
[http://dx.doi.org/10.5530/pj.2017.6.125]
[16]
Tammy Yau, T.; Dan, X.; Wing Ng, C.C. Ng, Tzi Bun. Lectins with potential for anti-cancer therapy. Molecule, 2015, 20, 3791-3810.
[http://dx.doi.org/10.3390/molecules20033791]
[17]
Mbae, K.M.; Umesha, S.; Manukumar, H.M. Therapeutic properties of lectins in herbal supplements. Phytochem. Rev., 2018, 17(3), 627-647.
[http://dx.doi.org/10.1007/s11101-018-9572-2]
[18]
Mazalovska, M.; Kouokam, J.C. Plant-derived lectins as potential cancer therapeutics and diagnostic tools. BioMed Res. Int., 2020.20201631394
[http://dx.doi.org/10.1155/2020/1631394] [PMID: 32509848]
[19]
Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B. Khalil. A.T. Plant-derived anticancer agent: A green anticancer approach. Asian Pac. J. Trop. Biomed., 2017, 7(12), 1129-1150.
[http://dx.doi.org/10.1016/j.apjtb.2017.10.016]
[20]
Feng, Y.; Wang, N.; Zhu, M.; Feng, Y.; Li, H.; Tsao, S. Recent progress on anticancer candidates in patents of herbal medicinal products. Recent Pat. Food Nutr. Agric., 2011, 3(1), 30-48.
[http://dx.doi.org/10.2174/2212798411103010030] [PMID: 21114469]
[21]
Suzuki, H.; Asakawa, A.; Amitani, H.; Nakamura, N.; Inui, A. Cachexia and herbal medicine: perspective. Curr. Pharm. Des., 2012, 18(31), 4865-4888.
[http://dx.doi.org/10.2174/138161212803216960] [PMID: 22632866]
[22]
Gutheil, W.G.; Reed, G.; Ray, A.; Anant, S.; Dhar, A. Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr. Pharm. Biotechnol., 2012, 13(1), 173-179.
[http://dx.doi.org/10.2174/138920112798868566] [PMID: 21466430]
[23]
Tian, G.; Guo, L.; Gao, W. Use of compound Chinese medicine in the treatment of lung cancer. Curr. Drug Discov. Technol., 2010, 7(1), 32-36.
[http://dx.doi.org/10.2174/157016310791162776] [PMID: 20156141]
[24]
YiYin. S.; Wei, W.C.; Jian, F.Y.; Yang, N.S. Therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement. Alternat. Med., 2013, 1-15.
[25]
Alizadeh, A.M.; Khaniki, M.; Azizian, S.; Mohaghgheghi, M.A.; Sadeghizadeh, M.; Najafi, F. Chemoprevention of azoxymethane-initiated colon cancer in rat by using a novel polymeric nanocarrier--curcumin. Eur. J. Pharmacol., 2012, 689(1-3), 226-232.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.016] [PMID: 22709992]
[26]
Kooti, W.; Servatyari, K.; Behzadifar, M.; Asadi-Samani, M.; Sadeghi, F.; Nouri, B.; Zare Marzouni, H. Effective medicinal plant in cancer treatment, Part 2: Review study. J. Evid. Based Complementary Altern. Med., 2017, 22(4), 982-995.
[http://dx.doi.org/10.1177/2156587217696927] [PMID: 28359161]
[27]
Ayyadurai, N.; Valarmathy, N.; Kannan, S.; Jansirani, D.; Alsenaidy, A. Evaluation of cytotoxic properties of Curcuma longa and Tagetes erecta on cancer cell line (Hep2). Afr. J. Pharm. Pharmacol., 2013, 7(14), 736-739.
[http://dx.doi.org/10.5897/AJPP12.031]
[28]
Sadooghi, S.; Abadi, N.S.; Zafar, B.S.; Baharara, J. Investigating the cytotoxic effects of ethanolic extract of Ferula asafoetida resin on HepG2 cell line. J. Kashan Uni. Med. Sci., 2013, 17(4), 323-330.
[29]
Panwar, R.; Rana, S.; Dhawan, D.K.; Prasad, K.K. Chemopreventive efficacy of different doses of Ferula asafoetida oleo-gum-resin against 1, 2-dimethylhydrazine (DMH) induced rat colon carcinogenesis. J. Phytoparmacol., 2015, 4(6), 282-286.
[30]
Bagheri, S.M.; Abdian-Asl, A.; Moghadam, M.T.; Yadegari, M.; Mirjalili, A.; Zare-Mohazabieh, F.; Momeni, H. Antitumor effect of Ferula assa foetida oleo gum resin against breast cancer induced by 4T1 cells in BALB/c mice. J. Ayurveda Integr. Med., 2017, 8(3), 152-158.
[http://dx.doi.org/10.1016/j.jaim.2017.02.013] [PMID: 28690055]
[31]
Sakthivel, K.M.; Guruvayoorappan, C. Targeted inhibition of tumor survival, metastasis and angiogenesis by Acacia ferruginea mediated regulation of VEGF, inflammatory mediators, cytokine profile and inhibition of transcription factor activation. Regul. Toxicol. Pharmacol., 2018, 95, 400-411.
[http://dx.doi.org/10.1016/j.yrtph.2018.04.012] [PMID: 29678767]
[32]
Sakthivel, K.M.; Guruvayoorappan, C. Acacia ferruginea inhibits tumor progression by regulating inflammatory mediators-(TNF-a, iNOS, COX-2, IL-1β, IL-6, IFN-γ, IL-2, GM-CSF) and pro-angiogenic growth factor- VEGF. Asian Pac. J. Cancer Prev., 2013, 14(6), 3909-3919.
[http://dx.doi.org/10.7314/APJCP.2013.14.6.3909] [PMID: 23886206]
[35]
Sakthivel, K.M.; Kannan, N.; Angeline, A.; Guruvayoorappan, C. Anticancer activity of Acacia nilotica (L.) Wild. Ex. Delile subsp. indica against Dalton’s ascitic lymphoma induced solid and ascitic tumor model. Asian Pac. J. Cancer Prev., 2012, 13(8), 3989-3995.
[http://dx.doi.org/10.7314/APJCP.2012.13.8.3989] [PMID: 23098505]
[36]
Sundarraj, S.; Thangam, R.; Sreevani, V.; Kaveri, K.; Gunasekaran, P.; Achiraman, S.; Kannan, S. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J. Ethnopharmacol., 2012, 141(3), 803-809.
[http://dx.doi.org/10.1016/j.jep.2012.03.014] [PMID: 22440953]
[37]
Meena, P.D.; Kaushik, P.; Shukla, S.; Soni, A.K.; Kumar, M.; Kumar, A. Anticancer and antimutagenic properties of Acacia nilotica (Linn.) on 7,12-dimethylbenz(a)anthracene-induced skin papillomagenesis in Swiss albino mice. Asian Pac. J. Cancer Prev., 2006, 7(4), 627-632.
[PMID: 17250441]
[38]
Chan, Y.S.; Cheng, L.N.; Wu, J.H.; Chan, E.; Kwan, Y.W.; Lee, S.M.; Leung, G.P.; Yu, P.H.; Chan, S.W. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology, 2011, 19(5), 245-254.
[http://dx.doi.org/10.1007/s10787-010-0062-4] [PMID: 20981575]
[39]
Predes, F.S.; Ruiz, A.L.; Carvalho, J.E.; Foglio, M.A.; Dolder, H. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complement. Altern. Med., 2011, 11, 25.
[http://dx.doi.org/10.1186/1472-6882-11-25] [PMID: 21429215]
[40]
Sun, Y.; Tan, Y.J.; Lu, Z.; Li, B.; Sun, C.; Li, T. Zhao, Li-li; Liu, Z.; Zhang, G.; Yao, J.; Li, Jie. Arctigenin inhibits liver cancer tumorogenesis by inhibiting gankyrin expression via c/ebp α and ppar α. Front. Pharmacol., 2018, 9(268), 1-12.
[41]
Gurunanselage Don, R.A.S.; Yap, M.K.K. Arctium lappa L. root extract induces cell death via mitochondrial-mediated caspase-dependent apoptosis in Jurkat human leukemic T cells. Biomed. Pharmacother., 2019, 110, 918-929.
[http://dx.doi.org/10.1016/j.biopha.2018.12.023] [PMID: 30572196]
[42]
Habib, S.H.; Makpol, S.; Abdul Hamid, N.A.; Das, S.; Ngah, W.Z.; Yusof, Y.A. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics (São Paulo), 2008, 63(6), 807-813.
[http://dx.doi.org/10.1590/S1807-59322008000600017] [PMID: 19061005]
[43]
Ramakrishnan, R. Anticancer properties of Zingiber officinale ginger: A review. Int. J. Med. Pharm. Sci., 2013, 3(5), 11-20.
[44]
Kim, S.O.; Chun, K.S.; Kundu, J.K.; Surh, Y.J. Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-kappaB and p38 MAPK in mouse skin. Biofactors, 2004, 21(1-4), 27-31.
[http://dx.doi.org/10.1002/biof.552210107] [PMID: 15630166]
[45]
Ling, H.; Yang, H.; Tan, S.H.; Chui, W.K.; Chew, E.H. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation. Br. J. Pharmacol., 2010, 161(8), 1763-1777.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00991.x] [PMID: 20718733]
[46]
Park, G.; Park, J.; Song, H.; Eo, H.; Kim, M.K.; Lee, J.; Lee, M.; Cho, K.; Lee, J.; Cho, H.J.; Jeong, J. Anticancer activity of Zingiber officinale leaf through expression of activating transcriptor factor 3 in human colorectal cancer cells. BMC Complement. Altern. Med., 2014, 14(408), 2-8.
[47]
Karna, P.; Chagani, S.; Gundala, S.R.; Rida, P.C.; Asif, G.; Sharma, V.; Gupta, M.V.; Aneja, R. Benefits of whole ginger extract in prostate cancer. Br. J. Nutr., 2012, 107(4), 473-484.
[http://dx.doi.org/10.1017/S0007114511003308] [PMID: 21849094]
[48]
Tsubura, A.; Lai, Y.C.; Kuwata, M.; Uehara, N.; Yoshizawa, K. Anticancer effects of garlic and garlic-derived compounds for breast cancer control. Anticancer. Agents Med. Chem., 2011, 11(3), 249-253.
[http://dx.doi.org/10.2174/187152011795347441] [PMID: 21269259]
[49]
Matsuura, N.; Miyamae, Y.; Yamane, K.; Nagao, Y.; Hamada, Y.; Kawaguchi, N.; Katsuki, T.; Hirata, K.; Sumi, S.; Ishikawa, H. Aged garlic extract inhibits angiogenesis and proliferation of colorectal carcinoma cells. J. Nutr., 2006, 136(3)(Suppl.), 842S-846S.
[http://dx.doi.org/10.1093/jn/136.3.842S] [PMID: 16484577]
[50]
Hussain, A.; Sharma, C.; Khan, S.; Shah, K.; Haque, S. Aloe vera inhibits proliferation of human breast and cervical cancer cells and acts synergistically with cisplatin. Asian Pac. J. Cancer Prev., 2015, 16(7), 2939-2946.
[http://dx.doi.org/10.7314/APJCP.2015.16.7.2939] [PMID: 25854386]
[51]
Yonehara, A.; Tanaka, Y.; Kulkeaw, K.; Era, T.; Nakanishi, Y.; Sugiyama, D. Aloe vera extract suppresses proliferation of neuroblastoma cells in-vitro. Anticancer Res., 2015, 35(8), 4479-4485.
[PMID: 26168490]
[52]
Rouissi, K.; Kouidhi, S.; Hamrita, B.; Ouerhani, S.; Cherif, M.; Elgaaied, A.B. Amel. Therapeutic effects of Aloe Vera plant extract against cyclophosphamide and buthionine sulfoximine induced toxicities in the bladder. Biochem. Pharmacol., 2012, 1(4), 1-7.
[53]
Liu, H.; Schmitz, J.C.; Wei, J.; Cao, S.; Beumer, J.H.; Strychor, S.; Cheng, L.; Liu, M.; Wang, C.; Wu, N.; Zhao, X.; Zhang, Y.; Liao, J.; Chu, E.; Lin, X. Clove extract inhibits tumor growth and promotes cell cycle arrest and apoptosis. Oncol. Res., 2014, 21(5), 247-259.
[http://dx.doi.org/10.3727/096504014X13946388748910] [PMID: 24854101]
[54]
Fragis, M.; Murayyan, A.I.; Neethirajan, S. Cytotoxic activity and anti-cancer potential of Ontario grown onion extracts against breast cancer cell lines. Funct. Food Health Dis., 2018, 8(3), 159-174.
[http://dx.doi.org/10.31989/ffhd.v8i3.408]
[55]
Pan, Y.; Zheng, Y.M.; Ho, W.S. Effect of quercetin glucosides from Allium extracts on HepG2, PC-3 and HT-29 cancer cell lines. Oncol. Lett., 2018, 15(4), 4657-4661.
[http://dx.doi.org/10.3892/ol.2018.7893] [PMID: 29552109]
[56]
Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosis inducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828.
[http://dx.doi.org/10.3892/or.2017.5766] [PMID: 28677813]
[57]
López-Lázaro, M.; Palma De La Peña, N.; Pastor, N.; Martín-Cordero, C.; Navarro, E.; Cortés, F.; Ayuso, M.J.; Toro, M.V. Anti-tumour activity of Digitalis purpurea L. subsp. heywoodii. Planta Med., 2003, 69(8), 701-704.
[http://dx.doi.org/10.1055/s-2003-42789] [PMID: 14531018]
[58]
Schneider, N.F.Z.; Cerella, C.; Simões, C.M.O.; Diederich, M. Anticancer and immunogenic properties of cardiac glycosides. Molecules, 2017, 22(11), 1-16.
[http://dx.doi.org/10.3390/molecules22111932] [PMID: 29117117]
[59]
Kepp, O.; Menger, L.; Vacchelli, E.; Adjemian, S.; Martins, I.; Ma, Y.; Sukkurwala, A.Q.; Michaud, M.; Galluzzi, L.; Zitvogel, L.; Kroemer, G. Anticancer activity of cardiac glycosides: At the frontier between cell-autonomous and immunological effects. OncoImmunology, 2012, 1(9), 1640-1642.
[http://dx.doi.org/10.4161/onci.21684] [PMID: 23264921]
[60]
Pongrakhananon, V. Anticancer properties of cardiac glycosides.Cancer treatment - Conventional and innovative approaches; Intect, 2013, pp. 66-82.
[61]
Escribano, J.; Alonso, G.L.; Coca-Prados, M.; Fernandez, J.A. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett., 1996, 100(1-2), 23-30.
[http://dx.doi.org/10.1016/0304-3835(95)04067-6] [PMID: 8620447]
[62]
Milajerdi, A.; Djafarian, K.; Hosseini, B. The toxicity of saffron (Crocus sativus L) and its constituents against normal and cancer cells. J. Nutr. Intermed. Metab., 2015, 3, 23-32.
[http://dx.doi.org/10.1016/j.jnim.2015.12.332]
[63]
Festuccia, C.; Mancini, A.; Gravina, G.L.; Scarsella, L.; Llorens, S.; Alonso, G.L.; Tatone, C.; Di Cesare, E.; Jannini, E.A.; Lenzi, A.; D’Alessandro, A.M.; Carmona, M. Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. BioMed Res. Int., 2014.2014135048
[http://dx.doi.org/10.1155/2014/135048] [PMID: 24900952]
[64]
Alizadeh, F.; Bolhassani, A. In-vitro cytotoxicity of iranian saffron and two main components as a potential anti-cancer drug. SM. J. Pharmacol. Ther., 2015, 1(1), 1-5.
[65]
Samarghandian, S.; Borji, A. Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacognosy Res., 2014, 6(2), 99-107.
[http://dx.doi.org/10.4103/0974-8490.128963] [PMID: 24761112]
[66]
Abdullaev, F.I. Antitumor effect of saffron (Crocus sativus L.): Overview and perspectives. Acta Hort.650, Mexico, 2004, 491-499.,
[67]
Chermahini, S.H.; Majid, F.A.; Sarmidi, M.R.; Taghizadeh, E.; Salehnezhad, S. Impact of saffron as an anti-cancer and anti-tumor herb. Afr. J. Pharm. Pharmacol., 2010, 4(11), 834-840.
[68]
Afshari, J.T.; Brook, A.; Mousavi, S.H. Study of cytotoxicity and adaptogenic extract of saffron extract in human cancer cells. Food Chem. Toxicol., 2008, 46, 3443-3447.
[http://dx.doi.org/10.1016/j.fct.2008.08.018] [PMID: 18790714]
[69]
Kumar, A.; Sharma, P.R.; Mondhe, D.M. Potential anticancer role of colchicine-based derivatives: an overview. Anticancer Drugs, 2017, 28(3), 250-262.
[http://dx.doi.org/10.1097/CAD.0000000000000464] [PMID: 28030380]
[70]
Moudi, M.; Go, R.; Yien, C.Y.; Nazre, M. Vinca alkaloids. Int. J. Prev. Med., 2013, 4(11), 1231-1235.
[PMID: 24404355]
[71]
Barret, J.M.; Etiévant, C.; Hill, B.T. In vitro synergistic effects of vinflunine, a novel fluorinated vinca alkaloid, in combination with other anticancer drugs. Cancer Chemother. Pharmacol., 2000, 45(6), 471-476.
[http://dx.doi.org/10.1007/s002800051021] [PMID: 10854134]
[72]
Montopoli, M.; Bertin, R.; Chen, Z.; Bolcato, J.; Caparrotta, L.; Froldi, G. Croton lechleri sap and isolated alkaloid taspine exhibit inhibition against human melanoma SK23 and colon cancer HT29 cell lines. J. Ethnopharmacol., 2012, 144(3), 747-753.
[http://dx.doi.org/10.1016/j.jep.2012.10.032] [PMID: 23123266]
[73]
Ding, X.; Zhu, F.S.; Li, M.; Gao, S.G. Induction of apoptosis in human hepatoma SMMC-7721 cells by solamargine from Solanum nigrum L. J. Ethnopharmacol., 2012, 139(2), 599-604.
[http://dx.doi.org/10.1016/j.jep.2011.11.058] [PMID: 22172325]
[74]
Flegkas, A.; Ifantis, T.M. Christina, Barda.; Samara, P.; Tsitsilonis, O.; Skaltsa, H. Antiproliferative activity of (-)-rabdosiin isolated from Ocimum sanctum L. Medicines (Basel), 2019, 6(37), 1-10.
[75]
You, M.K.; Kim, H.J.; Kook, J.H.; Kim, H.A.St. John’s Wort regulates proliferation and apoptosis in MCF-7 human breast cancer cells by inhibiting AMPK/mTOR and activating the mitochondrial pathway. Int. J. Mol. Sci., 2018, 19(4), 1-14.
[http://dx.doi.org/10.3390/ijms19040966] [PMID: 29570671]
[76]
Mohansrinivasan, V.; Subathra, D.C.; Meenakshi, D.; Biswas, A.; Jemimah, N.S. Exploring the anticancer activity of grape seed extract on skin cancer cell lines A431. Braz. Arch. Biol. Technol., 2015, 58(4), 540-546.
[http://dx.doi.org/10.1590/s1516-8913201500076]
[77]
Al-Sheddi, E.S.; Al-Zaid, N.A.; Al-Oqail, M.M.; Al-Massarani, S.M.; El-Gamal, A.A.; Farshori, N.N. Evaluation of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L. essential oil in human hepatocellular carcinoma cell line. Saudi Pharm. J., 2019, 27(7), 1053-1060.
[http://dx.doi.org/10.1016/j.jsps.2019.09.001] [PMID: 31997913]
[78]
Amin, A.; Alkaabi, A.; Alfalasi, S.; Daoud, S. Chemopreventive activities of (Fenugreek) against breast cancer. Cell Biol. Int., 2005, 29(8), 687-694.
[http://dx.doi.org/10.1016/j.cellbi.2005.04.004] [PMID: 15936223]
[79]
Liu, Z.H.; Zhang, S.Y.; Yu, Y.Y.; Su, G.Q. (-)-4-O-(4-O-β-D-glucopyranosylcaffeoyl) quinic acid presents antitumor activity in HT-29 human colon cancer in vitro and in vivo. Mol. Cell. Toxicol., 2015, 11(4), 457-463.
[http://dx.doi.org/10.1007/s13273-015-0049-8]
[80]
Kim, J.W.; Kim, H.P.; Sung, S.H. Cytotoxic pterosins from Pteris multifida roots against HCT116 human colon cancer cells. Bioorg. Med. Chem. Lett., 2017, 27(14), 3144-3147.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.034] [PMID: 28532669]
[81]
Kameswaran, T.R.; Ramanibai, R. The antiproliferative activity of flavanoidal fraction of Indigofera tinctoria is through cell cycle arrest and apoptotic pathway in A-549 cells. Online J. Biol. Sci., 2008, 8(3), 584-590.
[http://dx.doi.org/10.3923/jbs.2008.584.590]
[82]
Achkar, I.W.; Mraiche, F.; Mohammad, R.M.; Uddin, S. Anticancer potential of sanguinarine for various human malignancies. Future Med. Chem., 2017, 9(9), 933-950.
[http://dx.doi.org/10.4155/fmc-2017-0041] [PMID: 28636454]
[83]
Chen, S.; Wan, L.; Couch, L.; Lin, H.; Li, Y.; Dobrovolsky, V.N.; Mei, N.; Guo, L. Mechanism study of goldenseal-associated DNA damage. Toxicol. Lett., 2013, 221(1), 64-72.
[http://dx.doi.org/10.1016/j.toxlet.2013.05.641] [PMID: 23747414]
[84]
Novotny, L.; Abdel-Hamid, M.E.; Hunakova, L. Anticancer potential of β-sitosterol. Int. J. Clin. Pharmacol. Pharmacother., 2017, 2(129), 1-4.
[85]
Moore, J.; Yousef, M.; Tsiani, E. Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients, 2016, 8(11), 1-32.
[http://dx.doi.org/10.3390/nu8110731] [PMID: 27869665]
[86]
Vutakuri, N.; Somara, S. Natural and herbal medicine for breast cancer using Elettaria cardamomum (L.). Maton. Int. J. Herbal Med, 2018, 6(2), 91-96.
[87]
Srivastava, J.K.; Gupta, S. Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. J. Agric. Food Chem., 2007, 55(23), 9470-9478.
[http://dx.doi.org/10.1021/jf071953k] [PMID: 17939735]
[88]
Ahuja, A.; Kim, J.H.; Kim, J.H.; Yi, Y.S.; Cho, J.Y. Functional role of ginseng-derived compounds in cancer. J. Ginseng Res., 2018, 42(3), 248-254.
[http://dx.doi.org/10.1016/j.jgr.2017.04.009] [PMID: 29983605]
[89]
Lima, A.; Oliveira, J.; Saúde, F.; Mota, J.; Ferreira, R.B. Proteins in soy might have a higher role in cancer prevention than previously expected: Soybean protein fractions are more effective mmp-9 inhibitors than non-protein fractions, even in cooked seeds. Nutrients, 2017, 9(3), 1-16.
[http://dx.doi.org/10.3390/nu9030201] [PMID: 28264435]
[90]
Shanbhag, V.K.L. Letter: Lycopene in cancer therapy. J. Pharm. Biomed. Sci., 2016, 8(2), 170-171.
[91]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[92]
Clarke, J.D.; Dashwood, R.H.; Ho, E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett., 2008, 269(2), 291-304.
[http://dx.doi.org/10.1016/j.canlet.2008.04.018] [PMID: 18504070]
[93]
Feng, X.; Zhang, L.; Zhu, H. Comparative anticancer and antioxidant activities of different ingredients of Ginkgo biloba extract (EGb 761). Planta Med., 2009, 75(8), 792-796.
[http://dx.doi.org/10.1055/s-0029-1185451] [PMID: 19288403]
[94]
Kuang, X.; Li, W.; Kanno, Y.; Yamashita, N.; Nemoto, K.; Asada, Y.; Koike, K. ent-Atisane diterpenoids from Euphorbia fischeriana inhibit mammosphere formation in MCF-7 cells. J. Nat. Med., 2016, 70(1), 120-126.
[http://dx.doi.org/10.1007/s11418-015-0940-6] [PMID: 26411465]
[95]
Shivpuje, P.; Ammanangi, R.; Bhat, K.; Katti, S. Effect of Ocimum sanctum on oral cancer cell line: An in vitro study. J. Contemp. Dent. Pract., 2015, 16(9), 709-714.
[http://dx.doi.org/10.5005/jp-journals-10024-1745] [PMID: 26522595]
[96]
Verma, P.; Naik, S.; Nanda, P.; Banerjee, S.; Naik, S.; Ghosh, A. In-vitro anticancer activity of virgin coconut oil and its fractions in liver and oral cancer cells. Anticancer. Agents Med. Chem., 2019, 19(18), 2223-2230.
[http://dx.doi.org/10.2174/1871520619666191021160752] [PMID: 31736449]
[97]
Mitra, S.K.; Prakash, N.S.; Sundaram, R. Shatavarins (containing Shatavarin IV) with anticancer activity from the roots of Asparagus racemosus. Indian J. Pharmacol., 2012, 44(6), 732-736.
[http://dx.doi.org/10.4103/0253-7613.103273] [PMID: 23248403]
[98]
Rather, R.A.; Bhagat, M. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities. Front. Cell Dev. Biol., 2018, 6(10), 10.
[http://dx.doi.org/10.3389/fcell.2018.00010] [PMID: 29497610]
[99]
Nazeer, A.A.; Veeraiyan, S.; Vijaykumar, S.D. Anti-cancer potency and sustained release of phytosomal diallyl disulfide containing methanolic Allium sativum extract against breast cancer. Int. Res. J. Pharm, 2017, 8(8), 34-40.
[http://dx.doi.org/10.7897/2230-8407.088141]
[100]
Wani, K.; Tarawadi, K.; Ghanekar, R.K. Nanocarriers for delivery of herbal based drugs in breast cancer-an overview. J. Nano Res, 2015, 34, 29-40.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.34.29]
[101]
Babazadeh, A.; Zeinali, M.; Hamishehkar, H. Nano-phytosome: a developing platform for herbal anti-cancer agents in cancer therapy. Curr. Drug Targets, 2018, 19(2), 170-180.
[http://dx.doi.org/10.2174/1389450118666170508095250] [PMID: 28482783]
[102]
Zucker, D.; Barenholz, Y. Optimization of vincristine-topotecan combination--paving the way for improved chemotherapy regimens by nanoliposomes. J. Control. Release, 2010, 146(3), 326-333.
[http://dx.doi.org/10.1016/j.jconrel.2010.05.024] [PMID: 20685223]
[103]
Chen, X.W.; Sneed, K.B.; Zhou, S.F. Pharmacokinetic profiles of anticancer herbal medicines in humans and the clinical implications. Curr. Med. Chem., 2011, 18(21), 3190-3210.
[http://dx.doi.org/10.2174/092986711796391624] [PMID: 21671861]
[104]
Radha, G.V.; Sadhana, B.; Trideva, S.K.; Ganapaty, S. Bioactive umbelliferone and its derivatives: An update. J. Pharmacog. Phytochem, 2019, 8(1), 59-66.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy