Research Article

普及重组杆状病毒来源的OneBac系统用于实验室生产所有重组腺相关病毒载体血清型

卷 21, 期 2, 2021

发表于: 18 January, 2021

页: [167 - 176] 页: 10

弟呕挨: 10.2174/1566523221666210118111657

价格: $65

Open Access Journals Promotions 2
摘要

背景:重组腺相关病毒(rAAV)已被广泛用作生物医学研究以及基因治疗中的有效转基因载体。与血清型相关的转导效率,组织或细胞类型的嗜性和免疫学特征是rAAV各种应用中的主要考虑因素。对自然分离或人工改造的不同血清型rAAV的需求不断增加。然而,以理想的血清型rAAV的负担得起且可扩展的生产仍然非常困难,特别是对于缺乏相关经验的研究人员而言。 目的:在我们先前建立的源自单个重组杆状病毒表达载体(BEV)的OneBac系统的基础上,我们优化了工艺,并将rAAV的生产范围扩展到了血清型rAAV1-13的整个范围。 方法:首先,通过核糖体渗漏扫描优化AAV Cap基因的翻译,然后将目的基因(GOI)克隆到pFD / Cap-(ITR-GOI)-Rep2穿梭质粒中。遵循经典的Bac-to-Bac方法,可以快速获得包含所有rAAV包装元素的充足BEV库存。最后,我们可以使用单个BEV感染悬浮培养的Sf9细胞,在一周内重复扩大rAAV的产量。 rAAV1-13显示相对较高的产量,范围从5×104到4×105 VG /细胞。从5 L悬浮培养的Sf9细胞中可以轻松获得超过1×1015 VG纯化的rAAV。 结果:正如预期的那样,rAAV血清型1-13对体外转导和细胞型嗜性表现出不同的效力。 结论:总而言之,单个BEV衍生的OneBac系统应被证明可用于实验室放大生产任何血清型rAAV。

关键词: rAAV,重组杆状病毒,OneBac系统,规模化生产,血清型,基因治疗。

图形摘要
[1]
Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008; 21(4): 583-93.
[http://dx.doi.org/10.1128/CMR.00008-08] [PMID: 18854481]
[2]
Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 2019; 18(5): 358-78.
[http://dx.doi.org/10.1038/s41573-019-0012-9] [PMID: 30710128]
[3]
Wang D, Zhang F, Gao G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by aav vectors. Cell 2020; 181(1): 136-50.
[http://dx.doi.org/10.1016/j.cell.2020.03.023] [PMID: 32243786]
[4]
Haggerty DL, Grecco GG, Reeves KC, Atwood B. Adeno-Associated Viral Vectors in Neuroscience Research. Mol Ther Methods Clin Dev 2019; 17: 69-82.
[http://dx.doi.org/10.1016/j.omtm.2019.11.012] [PMID: 31890742]
[5]
Domenger C, Grimm D. Next-generation AAV vectors-do not judge a virus (only) by its cover. Hum Mol Genet 2019; 28(R1): R3-R14.
[http://dx.doi.org/10.1093/hmg/ddz148] [PMID: 31261383]
[6]
Gao G, Vandenberghe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther 2005; 5(3): 285-97.
[http://dx.doi.org/10.2174/1566523054065057] [PMID: 15975006]
[7]
Mietzsch M, Broecker F, Reinhardt A, Seeberger PH, Heilbronn R. Differential adeno-associated virus serotype-specific interaction patterns with synthetic heparins and other glycans. J Virol 2014; 88(5): 2991-3003.
[http://dx.doi.org/10.1128/JVI.03371-13] [PMID: 24371066]
[8]
Mary B, Khan N, Arumugam S, et al. Adeno-associated Virus Vectors in Gene Therapy Gene and Cell Therapy: Biology and Applications. Springer Singapore 2018; pp. 29-56.
[9]
Büning H, Huber A, Zhang L, Meumann N, Hacker U. Engineering the AAV capsid to optimize vector-host-interactions. Curr Opin Pharmacol 2015; 24: 94-104.
[http://dx.doi.org/10.1016/j.coph.2015.08.002] [PMID: 26302254]
[10]
Grimm D, Zolotukhin S. E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal--Tailored Acceleration of AAV Evolution. Mol Ther 2015; 23(12): 1819-31.
[http://dx.doi.org/10.1038/mt.2015.173] [PMID: 26388463]
[11]
Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21(4): 255-72.
[http://dx.doi.org/10.1038/s41576-019-0205-4] [PMID: 32042148]
[12]
Tse LV, Klinc KA, Madigan VJ, et al. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc Natl Acad Sci USA 2017; 114(24): e4812-21.
[http://dx.doi.org/10.1073/pnas.1704766114] [PMID: 28559317]
[13]
Deverman BE, Pravdo PL, Simpson BP, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 2016; 34(2): 204-9.
[http://dx.doi.org/10.1038/nbt.3440] [PMID: 26829320]
[14]
Watakabe A, Ohtsuka M, Kinoshita M, et al. Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res 2014; 9: 18.
[PMID: 25240284]
[15]
Aschauer DF, Kreuz S, Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 2013; 8(9)e76310
[http://dx.doi.org/10.1371/journal.pone.0076310] [PMID: 24086725]
[16]
Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16(6): 1073-80.
[http://dx.doi.org/10.1038/mt.2008.76] [PMID: 18414476]
[17]
Grimm D, Lee JS, Wang L, et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 2008; 82(12): 5887-911.
[http://dx.doi.org/10.1128/JVI.00254-08] [PMID: 18400866]
[18]
Hermonat PL, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA 1984; 81(20): 6466-70.
[http://dx.doi.org/10.1073/pnas.81.20.6466] [PMID: 6093102]
[19]
Ayuso E, Mingozzi F, Bosch F. Production, purification and characterization of adeno-associated vectors. Curr Gene Ther 2010; 10(6): 423-36.
[http://dx.doi.org/10.2174/156652310793797685] [PMID: 21054248]
[20]
Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72(3): 2224-32.
[http://dx.doi.org/10.1128/JVI.72.3.2224-2232.1998] [PMID: 9499080]
[21]
Chahal PS, Schulze E, Tran R, Montes J, Kamen AA. Production of adeno-associated virus (AAV) serotypes by transient transfection of HEK293 cell suspension cultures for gene delivery. J Virol Methods 2014; 196: 163-73.
[http://dx.doi.org/10.1016/j.jviromet.2013.10.038] [PMID: 24239634]
[22]
Grieger JC, Soltys SM, Samulski RJ. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol Ther 2016; 24(2): 287-97.
[http://dx.doi.org/10.1038/mt.2015.187] [PMID: 26437810]
[23]
Rabinowitz JE, Rolling F, Li C, et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76(2): 791-801.
[http://dx.doi.org/10.1128/JVI.76.2.791-801.2002] [PMID: 11752169]
[24]
Ye C, Qiu J, Pintel DJ. Efficient expression of the adeno-associated virus type 5 p41 capsid gene promoter in 293 cells does not require Rep. J Virol 2006; 80(13): 6559-67.
[http://dx.doi.org/10.1128/JVI.00387-06] [PMID: 16775342]
[25]
Emmerling VV, Pegel A, Milian EG, et al. Rational plasmid design and bioprocess optimization to enhance recombinant adeno-associated virus (AAV) productivity in mammalian cells. Biotechnol J 2016; 11(2): 290-7.
[http://dx.doi.org/10.1002/biot.201500176] [PMID: 26284700]
[26]
Van der Loo JC, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet 2016; 25(R1): R42-52.
[http://dx.doi.org/10.1093/hmg/ddv451] [PMID: 26519140]
[27]
O’Connor DM, Lutomski C, Jarrold MF, Boulis NM, Donsante A. Lot-to-Lot variation in Adeno-Associated virus serotype 9 (AAV9) preparations. Hum Gene Ther Methods 2019; 30(6): 214-25.
[http://dx.doi.org/10.1089/hgtb.2019.105] [PMID: 31752530]
[28]
Urabe M, Ding C, Kotin RM. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 2002; 13(16): 1935-43.
[http://dx.doi.org/10.1089/10430340260355347] [PMID: 12427305]
[29]
Chen H. Intron splicing-mediated expression of AAV Rep and Cap genes and production of AAV vectors in insect cells. Mol Ther 2008; 16(5): 924-30.
[http://dx.doi.org/10.1038/mt.2008.35] [PMID: 18388928]
[30]
Smith RH, Levy JR, Kotin RM. A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol Ther 2009; 17(11): 1888-96.
[http://dx.doi.org/10.1038/mt.2009.128] [PMID: 19532142]
[31]
Aslanidi G, Lamb K, Zolotukhin S. An inducible system for highly efficient production of recombinant adeno-associated virus (rAAV) vectors in insect Sf9 cells. Proc Natl Acad Sci USA 2009; 106(13): 5059-64.
[http://dx.doi.org/10.1073/pnas.0810614106] [PMID: 19279219]
[32]
Mietzsch M, Grasse S, Zurawski C, et al. OneBac: platform for scalable and high-titer production of adeno-associated virus serotype 1-12 vectors for gene therapy. Hum Gene Ther 2014; 25(3): 212-22.
[http://dx.doi.org/10.1089/hum.2013.184] [PMID: 24299301]
[33]
Wu Y, Mei T, Jiang L, et al. Development of Versatile and Flexible Sf9 Packaging Cell Line-Dependent OneBac System for Large-Scale Recombinant Adeno-Associated Virus Production. Hum Gene Ther Methods 2019; 30(5): 172-83.
[http://dx.doi.org/10.1089/hgtb.2019.123] [PMID: 31566024]
[34]
Wu Y, Jiang L, Geng H, et al. A Recombinant Baculovirus Efficiently Generates Recombinant Adeno-Associated Virus Vectors in Cultured Insect Cells and Larvae. Mol Ther Methods Clin Dev 2018; 10: 38-47.
[http://dx.doi.org/10.1016/j.omtm.2018.05.005] [PMID: 29988889]
[35]
Zolotukhin S, Byrne BJ, Mason E, et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 1999; 6(6): 973-85.
[http://dx.doi.org/10.1038/sj.gt.3300938] [PMID: 10455399]
[36]
Strobel B, Miller FD, Rist W, Lamla T. Comparative analysis of cesium chloride- and iodixanol-based purification of recombinant adeno-associated viral vectors for preclinical applications. Hum Gene Ther Methods 2015; 26(4): 147-57.
[http://dx.doi.org/10.1089/hgtb.2015.051] [PMID: 26222983]
[37]
Zuchero JB, Barres BA. Glia in mammalian development and disease. Development 2015; 142(22): 3805-9.
[http://dx.doi.org/10.1242/dev.129304] [PMID: 26577203]
[38]
Maes ME, Colombo G, Schulz R, Siegert S. Targeting microglia with lentivirus and AAV: Recent advances and remaining challenges. Neurosci Lett 2019; 707134310
[http://dx.doi.org/10.1016/j.neulet.2019.134310] [PMID: 31158432]
[39]
Kost TA, Condreay JP, Jarvis DL. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 2005; 23(5): 567-75.
[http://dx.doi.org/10.1038/nbt1095] [PMID: 15877075]
[40]
Mietzsch M, Casteleyn V, Weger S, Zolotukhin S, Heilbronn R. OneBac 2.0: Sf9 Cell Lines for Production of AAV5 Vectors with Enhanced Infectivity and Minimal Encapsidation of Foreign DNA. Hum Gene Ther 2015; 26(10): 688-97.
[http://dx.doi.org/10.1089/hum.2015.050] [PMID: 26134901]
[41]
Girod A, Wobus CE, Zadori Z, et al. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol 2002; 83(5): 973-8.
[http://dx.doi.org/10.1099/0022-1317-83-5-973]
[42]
Kondratov O, Marsic D, Crosson SM, et al. Direct Head-to-Head Evaluation of Recombinant Adeno-associated Viral Vectors Manufactured in Human versus Insect Cells. Mol Ther 2017; 25(12): 2661-75.
[http://dx.doi.org/10.1016/j.ymthe.2017.08.003] [PMID: 28890324]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy