Review Article

纳米粒子在体内的命运和设计用于药物递送的隐形纳米粒子的策略

卷 22, 期 8, 2021

发表于: 18 January, 2021

页: [922 - 946] 页: 25

弟呕挨: 10.2174/1389450122666210118105122

价格: $65

Open Access Journals Promotions 2
摘要

纳米药物递送系统(Nano-DDS)在药物递送和疾病靶向治疗方面具有强大的优势。与传统药物配方相比,Nano-DDS 可以提高溶解度、生物相容性,并减少游离药物的脱靶副作用。然而,它们仍然存在一些缺点,限制了它们在临床应用中的全部潜力。血液中的蛋白质吸附、补体系统的激活以及随后单核吞噬细胞系统 (MPS) 的隔离导致纳米颗粒 (NP) 从循环中迅速清除。因此,NPs 的药物递送效率较低。因此,开发隐形纳米颗粒以减少生物纳米相互作用非常重要。在这篇综述中,我们首先总结了 NPs 与生物环境之间的相互作用,如血液蛋白和 MPS,以及相互影响的因素。接下来,我们将根据目前对生物-纳米相互作用的了解,总结减少 MPS 对 NPs 蛋白质吸附和吸收的新策略。通过结合有针对性的策略以获得更好的治疗效果,仿生隐身纳米递送系统的发展也将被强调进一步的方向。

关键词: 纳米粒子、蛋白质电晕、免疫清除、防污、隐身、仿生隐身。

图形摘要
[1]
Wang H, Xu X, Guan X, et al. Liposomal 9-aminoacridine for treatment of ischemic stroke: from drug discovery to drug delivery. Nano Lett 2020; 20(3): 1542-51.
[http://dx.doi.org/10.1021/acs.nanolett.9b04018] [PMID: 32039606]
[2]
Nadimi AE, Ebrahimipour SY, Afshar EG, et al. Nano-scale drug delivery systems for antiarrhythmic agents. Eur J Med Chem 2018; 157: 1153-63.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.080] [PMID: 30189397]
[3]
Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C 2019; 98: 1252-76.
[http://dx.doi.org/10.1016/j.msec.2019.01.066] [PMID: 30813007]
[4]
Albayaty YN, Thomas N, Ramírez-García PD, et al. pH-Responsive copolymer micelles to enhance itraconazole efficacy against Candida albicans biofilms. J Mater Chem B Mater Biol Med 2020; 8(8): 1672-81.
[http://dx.doi.org/10.1039/C9TB02586C] [PMID: 32016213]
[5]
Kim S, Kim M, Jung S, et al. Co-delivery of therapeutic protein and catalase-mimic nanoparticle using a biocompatible nanocarrier for enhanced therapeutic effect. J Control Release 2019; 309: 181-9.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.038] [PMID: 31356840]
[6]
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016; 1(5): 12.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[7]
Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. ACS Nano 2020; 14(3): 3075-95.
[http://dx.doi.org/10.1021/acsnano.9b08142] [PMID: 32078303]
[8]
Dai Q, Wilhelm S, Ding D, et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 2018; 12(8): 8423-35.
[http://dx.doi.org/10.1021/acsnano.8b03900] [PMID: 30016073]
[9]
Sun Q, Zhou Z, Qiu N, Shen Y. Rational design of cancer nanomedicine: nanoproperty integration and synchronization.Advanced materials (Deerfield Beach, Fla) 2017; 29(14).
[10]
Sun X, Wang G, Zhang H, et al. The blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. ACS Nano 2018; 12(6): 6179-92.
[http://dx.doi.org/10.1021/acsnano.8b02830] [PMID: 29847730]
[11]
Bertrand N, Grenier P, Mahmoudi M, et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun 2017; 8(1): 777.
[http://dx.doi.org/10.1038/s41467-017-00600-w] [PMID: 28974673]
[12]
Yallapu MM, Ebeling MC, Chauhan N, Jaggi M, Chauhan SC. Interaction of curcumin nanoformulations with human plasma proteins and erythrocytes. Int J Nanomedicine 2011; 6: 2779-90.
[PMID: 22128249]
[13]
Tsoi KM, MacParland SA, Ma XZ, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater 2016; 15(11): 1212-21.
[http://dx.doi.org/10.1038/nmat4718] [PMID: 27525571]
[14]
Du BJ, Yu MX, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater 2018; 3(10): 358-74.
[http://dx.doi.org/10.1038/s41578-018-0038-3]
[15]
Tenzer S, Docter D, Kuharev J, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 2013; 8(10): 772-81.
[http://dx.doi.org/10.1038/nnano.2013.181] [PMID: 24056901]
[16]
Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 2008; 105(38): 14265-70.
[http://dx.doi.org/10.1073/pnas.0805135105] [PMID: 18809927]
[17]
Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 2011; 111(9): 5610-37.
[http://dx.doi.org/10.1021/cr100440g] [PMID: 21688848]
[18]
Lin X, Pan Q, He Y. In situ detection of protein corona on single particle by rotational diffusivity. Nanoscale 2019; 11(39): 18367-74.
[http://dx.doi.org/10.1039/C9NR06072C] [PMID: 31573584]
[19]
Meghani NM, Amin H, Park C, et al. Combinatory interpretation of protein corona and shear stress for active cancer targeting of bioorthogonally clickable gelatin-oleic nanoparticles. Mater Sci Eng C 2020; 111: 110760.
[http://dx.doi.org/10.1016/j.msec.2020.110760] [PMID: 32279783]
[20]
Su G, Jiang H, Xu B, Yu Y, Chen X. Effects of protein corona on active and passive targeting of cyclic rgd peptide-functionalized pegylation nanoparticles. Mol Pharm 2018; 15(11): 5019-30.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00612] [PMID: 30222356]
[21]
Su GX, Zhou HY, Mu QX, Zhang Y, Li LW, Jiao PF, et al. Effective surface charge density determines the electrostatic attraction between nanoparticles and cells. J Phys Chem C 2012; 116(8): 4993-8.
[http://dx.doi.org/10.1021/jp211041m]
[22]
Digiacomo L, Jafari-Khouzani K, Palchetti S, et al. A protein corona sensor array detects breast and prostate cancers. Nanoscale 2020; 12(32): 16697-704.
[http://dx.doi.org/10.1039/D0NR03439H] [PMID: 32776050]
[23]
Ho YT, Azman NA, Loh FWY, et al. Protein corona formed from different blood plasma proteins affects the colloidal stability of nanoparticles differently. Bioconjug Chem 2018; 29(11): 3923-34.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00743] [PMID: 30347973]
[24]
Pitek AS, Wen AM, Shukla S, Steinmetz NF. The protein corona of plant virus nanoparticles influences their dispersion properties, cellular interactions, and in vivo fates. Small (Weinheim an der Bergstrasse, Germany) 2016; 12(13): 1758-69.
[25]
Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML. Protein corona significantly reduces active targeting yield. Chem Commun (Camb) 2013; 49(25): 2557-9.
[http://dx.doi.org/10.1039/c3cc37307j] [PMID: 23423192]
[26]
Dai Q, Yan Y, Guo JL, et al. Targeting ability of affibody-functionalized particles is enhanced by albumin but inhibited by serum coronas. ACS Macro Lett 2015; 4(11): 1259-63.
[http://dx.doi.org/10.1021/acsmacrolett.5b00627]
[27]
Varnamkhasti BS, Hosseinzadeh H, Azhdarzadeh M, et al. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core-shell nanoparticles. Int J Pharm 2015; 494(1): 430-44.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.060] [PMID: 26315125]
[28]
Xiao W, Xiong J, Zhang S, Xiong Y, Zhang H, Gao H. Influence of ligands property and particle size of gold nanoparticles on the protein adsorption and corresponding targeting ability. Int J Pharm 2018; 538(1-2): 105-11.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.011] [PMID: 29341915]
[29]
Zhang H, Wu T, Yu W, Ruan S, He Q, Gao H. Ligand size and conformation affect the behavior of nanoparticles coated with in vitro and in vivo protein corona. ACS Appl Mater Interfaces 2018; 10(10): 9094-103.
[http://dx.doi.org/10.1021/acsami.7b16096] [PMID: 29473734]
[30]
Francia V, Yang K, Deville S, Reker-Smit C, Nelissen I, Salvati A. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano 2019; 13(10): 11107-21.
[http://dx.doi.org/10.1021/acsnano.9b03824] [PMID: 31525954]
[31]
Barrán-Berdón AL, Pozzi D, Caracciolo G, et al. Time evolution of nanoparticle-protein corona in human plasma: relevance for targeted drug delivery. Langmuir 2013; 29(21): 6485-94.
[http://dx.doi.org/10.1021/la401192x] [PMID: 23631648]
[32]
Lazarovits J, Sindhwani S, Tavares AJ, et al. Supervised Learning and Mass Spectrometry Predicts the in vivo Fate of Nanomaterials. ACS Nano 2019; 13(7): 8023-34.
[http://dx.doi.org/10.1021/acsnano.9b02774] [PMID: 31268684]
[33]
Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 2012; 41(7): 2780-99.
[http://dx.doi.org/10.1039/C1CS15233E] [PMID: 22086677]
[34]
Srivastava I, Khan MS, Dighe K, et al. On-chip electrical monitoring of real-time "soft" and "hard" protein corona formation on carbon nanoparticles. Small Methods 2020; 4(7): 2000099.
[http://dx.doi.org/10.1002/smtd.202000099]
[35]
Yu Q, Zhao L, Guo C, Yan B, Su G. Regulating protein corona formation and dynamic protein exchange by controlling nanoparticle hydrophobicity. Front Bioeng Biotechnol 2020; 8: 210.
[http://dx.doi.org/10.3389/fbioe.2020.00210] [PMID: 32266237]
[36]
Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology 2013; 11: 26.
[http://dx.doi.org/10.1186/1477-3155-11-26] [PMID: 23870291]
[37]
Meesaragandla B, García I, Biedenweg D, et al. H-Bonding-mediated binding and charge reorganization of proteins on gold nanoparticles. Phys Chem Chem Phys 2020; 22(8): 4490-500.
[http://dx.doi.org/10.1039/C9CP06371D] [PMID: 32067002]
[38]
Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS Nano 2010; 4(7): 3623-32.
[http://dx.doi.org/10.1021/nn901372t] [PMID: 20553005]
[39]
Hadjidemetriou M, Al-Ahmady Z, Kostarelos K. Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles. Nanoscale 2016; 8(13): 6948-57.
[http://dx.doi.org/10.1039/C5NR09158F] [PMID: 26961355]
[40]
Lee H. Effects of nanoparticle electrostatics and protein-protein interactions on corona formation: conformation and hydrodynamics. Small (Weinheim an der Bergstrasse, Germany) 2020; 16(10): e1906598.
[41]
Weiss ACG, Kempe K, Förster S, Caruso F. Microfluidic examination of the "hard" biomolecular corona formed on engineered particles in different biological milieu. Biomacromolecules 2018; 19(7): 2580-94.
[http://dx.doi.org/10.1021/acs.biomac.8b00196] [PMID: 29668268]
[42]
Zhang Y, Wu JLY, Lazarovits J, Chan WCW. An analysis of the binding function and structural organization of the protein corona. J Am Chem Soc 2020; 142(19): 8827-36.
[http://dx.doi.org/10.1021/jacs.0c01853] [PMID: 32293877]
[43]
Ashkarran AA, Dararatana N, Crespy D, Caracciolo G, Mahmoudi M. Mapping the heterogeneity of protein corona by ex vivo magnetic levitation. Nanoscale 2020; 12(4): 2374-83.
[http://dx.doi.org/10.1039/C9NR10367H] [PMID: 31960871]
[44]
Feiner-Gracia N, Beck M, Pujals S, Tosi S, Mandal T, Buske C. Super-resolution microscopy unveils dynamic heterogeneities in nanoparticle protein Corona. Small (Weinheim an der Bergstrasse, Germany). 2017; 13: p. (41)11.
[http://dx.doi.org/10.1002/smll.201701631]
[45]
Abbina S, Takeuchi LE, Anilkumar P, et al. Blood circulation of soft nanomaterials is governed by dynamic remodeling of protein opsonins at nano-biointerface. Nat Commun 2020; 11(1): 3048.
[http://dx.doi.org/10.1038/s41467-020-16772-x] [PMID: 32546688]
[46]
Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 2012; 7(12): 779-86.
[http://dx.doi.org/10.1038/nnano.2012.207] [PMID: 23212421]
[47]
Cristian RE, Mohammad IJ, Mernea M, Sbarcea BG, Trica B, Stan MS, et al. Analyzing the interaction between two different types of nanoparticles and serum albumin materials. Basel, Switzerland 2019; 12(19)
[http://dx.doi.org/10.3390/ma12193183]
[48]
Kenry YT, Yeo T, Manghnani PN, et al. Mechanistic understanding of the biological responses to polymeric nanoparticles. ACS Nano 2020; 14(4): 4509-22.
[http://dx.doi.org/10.1021/acsnano.9b10195] [PMID: 32250586]
[49]
Ndumiso M, Buchtová N, Husselmann L, et al. Comparative whole corona fingerprinting and protein adsorption thermodynamics of PLGA and PCL nanoparticles in human serum. Colloids Surf B Biointerfaces 2020; 188: 110816.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110816] [PMID: 31991290]
[50]
Kari OK, Ndika J, Parkkila P, et al. In situ analysis of liposome hard and soft protein corona structure and composition in a single label-free workflow. Nanoscale 2020; 12(3): 1728-41.
[http://dx.doi.org/10.1039/C9NR08186K] [PMID: 31894806]
[51]
Ruotolo R, Pira G, Villani M, Zappettini A, Marmiroli N. Ring-shaped corona proteins influence the toxicity of engineered nanoparticles to yeast. Environ Sci Nano 2018; 5(6): 1428-40.
[http://dx.doi.org/10.1039/C7EN01226H]
[52]
Del Pilar Chantada-Vázquez M, López AC, Bravo SB, Vázquez-Estévez S, Acea-Nebril B, Núñez C. Proteomic analysis of the bio-corona formed on the surface of (Au, Ag, Pt)-nanoparticles in human serum. Colloids Surf B Biointerfaces 2019; 177: 141-8.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.056] [PMID: 30721790]
[53]
Piella J, Bastús NG, Puntes V. Size-dependent protein-nanoparticle interactions in citrate-stabilized gold nanoparticles: the emergence of the protein corona. Bioconjug Chem 2017; 28(1): 88-97.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00575] [PMID: 27997136]
[54]
García-Álvarez R, Hadjidemetriou M, Sánchez-Iglesias A, Liz-Marzán LM, Kostarelos K. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale 2018; 10(3): 1256-64.
[http://dx.doi.org/10.1039/C7NR08322J] [PMID: 29292433]
[55]
Lima T, Bernfur K, Vilanova M, Cedervall T. Understanding the lipid and protein corona formation on different sized polymeric nanoparticles. Sci Rep 2020; 10(1): 1129.
[http://dx.doi.org/10.1038/s41598-020-57943-6] [PMID: 31980686]
[56]
Marichal L, Klein G, Armengaud J, et al. Protein corona composition of silica nanoparticles in complex media: nanoparticle size does not matter. Nanomaterials (Basel) 2020; 10(2): 15.
[http://dx.doi.org/10.3390/nano10020240] [PMID: 32013169]
[57]
Marichal L, Degrouard J, Gatin A, et al. From protein corona to colloidal self-assembly: the importance of protein size in protein-nanoparticle interactions. Langmuir 2020; 36(28): 8218-30.
[http://dx.doi.org/10.1021/acs.langmuir.0c01334] [PMID: 32585107]
[58]
Glancy D, Zhang Y, Wu JLY, Ouyang B, Ohta S, Chan WCW. Characterizing the protein corona of sub-10 nm nanoparticles. J Control Release 2019; 304: 102-10.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.023] [PMID: 31004667]
[59]
Carnovale C, Bryant G, Shukla R, Bansal V. Impact of nanogold morphology on interactions with human serum. Phys Chem Chem Phys 2018; 20(46): 29558-65.
[http://dx.doi.org/10.1039/C8CP05938A] [PMID: 30457613]
[60]
Madathiparambil Visalakshan R, González García LE, Benzigar MR, Ghazaryan A, Simon J, Mierczynska-Vasilev A, et al. The influence of nanoparticle shape on protein corona formation. Small (Weinheim an der Bergstrasse, Germany) 2020; 16(25): e20002851.
[61]
Wang B, Sun Y, Davis TP, Ke PC, Wu Y, Ding F. Understanding effects of pamam dendrimer size and surface chemistry on serum protein binding with discrete molecular dynamics simulations. ACS Sustain Chem& Eng 2018; 6(9): 11704-15.
[http://dx.doi.org/10.1021/acssuschemeng.8b01959] [PMID: 30881771]
[62]
Kurtz-Chalot A, Villiers C, Pourchez J, et al. Impact of silica nanoparticle surface chemistry on protein corona formation and consequential interactions with biological cells. Mater Sci Eng C 2017; 75: 16-24.
[http://dx.doi.org/10.1016/j.msec.2017.02.028] [PMID: 28415450]
[63]
Moyano DF, Saha K, Prakash G, et al. Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 2014; 8(7): 6748-55.
[http://dx.doi.org/10.1021/nn5006478] [PMID: 24971670]
[64]
Simonelli F, Rossi G, Monticelli L. Role of ligand conformation on nanoparticle-protein interactions. J Phys Chem B 2019; 123(8): 1764-9.
[http://dx.doi.org/10.1021/acs.jpcb.8b11204] [PMID: 30698447]
[65]
Lu X, Xu P, Ding HM, Yu YS, Huo D, Ma YQ. Tailoring the component of protein corona via simple chemistry. Nat Commun 2019; 10(1): 4520.
[http://dx.doi.org/10.1038/s41467-019-12470-5] [PMID: 31586045]
[66]
Wang H, Ma R, Nienhaus K, Nienhaus GU. Formation of a monolayer protein corona around polystyrene nanoparticles and implications for nanoparticle agglomeration. Small (Weinheim an der Bergstrasse, Germany) 2019; 15(22): e1900974.
[http://dx.doi.org/10.1002/smll.201900974]
[67]
Saha K, Rahimi M, Yazdani M, et al. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS Nano 2016; 10(4): 4421-30.
[http://dx.doi.org/10.1021/acsnano.6b00053] [PMID: 27040442]
[68]
Wurster EC, Liebl R, Michaelis S, et al. Oligolayer-coated nanoparticles: impact of surface topography at the nanobio interface. ACS Appl Mater Interfaces 2015; 7(15): 7891-900.
[http://dx.doi.org/10.1021/am508435j] [PMID: 25815610]
[69]
Piloni A, Wong CK, Chen F, Lord M, Walther A, Stenzel MH. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake. Nanoscale 2019; 11(48): 23259-67.
[http://dx.doi.org/10.1039/C9NR06835J] [PMID: 31782458]
[70]
Deng J, Li Z, Yao M, Gao C. Influence of albumin configuration by the chiral polymer-grafted gold nanoparticles. Langmuir 2016; 32(22): 5608-16.
[http://dx.doi.org/10.1021/acs.langmuir.6b01447] [PMID: 27181989]
[71]
Wang X, Wang M, Lei R, Zhu SF, Zhao Y, Chen C. Chiral surface of nanoparticles determines the orientation of adsorbed transferrin and its interaction with receptors. ACS Nano 2017; 11(5): 4606-16.
[http://dx.doi.org/10.1021/acsnano.7b00200] [PMID: 28460159]
[72]
Wang X, Wang X, Wang M, Zhang D, Yang Q, Liu T, et al. Probing adsorption behaviors of bsa onto chiral surfaces of nanoparticles. Small (Weinheim an der Bergstrasse, Germany) 2018; 14(16): e1703982.
[http://dx.doi.org/10.1002/smll.201703982]
[73]
Qu S, Sun F, Qiao Z, Li J, Shang L. In situ investigation on the protein corona formation of quantum dots by using fluorescence resonance energy transfer. Small (Weinheim an der Bergstrasse, Germany) 2020; 16(21): e1907633.
[http://dx.doi.org/10.1002/smll.201907633]
[74]
Partikel K, Korte R, Mulac D, Humpf HU, Langer K. Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles. Beilstein J Nanotechnol 2019; 10: 1002-15.
[http://dx.doi.org/10.3762/bjnano.10.101] [PMID: 31165027]
[75]
Gunnarsson SB, Bernfur K, Englund-Johansson U, Johansson F, Cedervall T. Analysis of complexes formed by small gold nanoparticles in low concentration in cell culture media. PLoS One 2019; 14(6): e0218211.
[http://dx.doi.org/10.1371/journal.pone.0218211] [PMID: 31199838]
[76]
Gorshkov V, Bubis JA, Solovyeva EM, Gorshkov MV, Kjeldsen F. Protein corona formed on silver nanoparticles in blood plasma is highly selective and resistant to physicochemical changes of the solution. Environ Sci Nano 2019; 6(4): 1089-98.
[http://dx.doi.org/10.1039/C8EN01054D] [PMID: 31304020]
[77]
Mahmoudi M, Abdelmonem AM, Behzadi S, et al. Temperature: the “ignored” factor at the NanoBio interface. ACS Nano 2013; 7(8): 6555-62.
[http://dx.doi.org/10.1021/nn305337c] [PMID: 23808533]
[78]
Digiacomo L, Palchetti S, Giulimondi F, et al. The biomolecular corona of gold nanoparticles in a controlled microfluidic environment. Lab Chip 2019; 19(15): 2557-67.
[http://dx.doi.org/10.1039/C9LC00341J] [PMID: 31243412]
[79]
Johnston BD, Kreyling WG, Pfeiffer C, et al. Colloidal stability and surface chemistry are key factors for the composition of the protein corona of inorganic gold nanoparticles. Adv Funct Mater 2017; 27(42): 1701956.
[http://dx.doi.org/10.1002/adfm.201701956]
[80]
Weidner A, Gräfe C, von der Lühe M, et al. Preparation of core-shell hybrid materials by producing a protein corona around magnetic nanoparticles. Nanoscale Res Lett 2015; 10(1): 992.
[http://dx.doi.org/10.1186/s11671-015-0992-2] [PMID: 26153125]
[81]
Solorio-Rodríguez A, Escamilla-Rivera V, Uribe-Ramírez M. A comparison of the human and mouse protein corona profiles of functionalized SiO2 nanocarriers. Nanoscale 2017; 9(36): 13651-60.
[http://dx.doi.org/10.1039/C7NR04685E] [PMID: 28875999]
[82]
Strojan K, Leonardi A, Bregar VB, Križaj I, Svete J, Pavlin M. Dispersion of nanoparticles in different media importantly determines the composition of their protein corona. PLoS One 2017; 12(1): e0169552.
[http://dx.doi.org/10.1371/journal.pone.0169552] [PMID: 28052135]
[83]
Mbeh DA, Javanbakht T, Tabet L, et al. Protein corona formation on magnetite nanoparticles: effects of culture medium composition, and its consequences on superparamagnetic nanoparticle cytotoxicity. J Biomed Nanotechnol 2015; 11(5): 828-40.
[http://dx.doi.org/10.1166/jbn.2015.2000] [PMID: 26349395]
[84]
Maiorano G, Sabella S, Sorce B, et al. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 2010; 4(12): 7481-91.
[http://dx.doi.org/10.1021/nn101557e] [PMID: 21082814]
[85]
Zhao L, Zhao L, Li H, et al. Facile evaluation of nanoparticle-protein interaction based on charge neutralization with pulsed streaming potential measurement. Anal Chem 2019; 91(24): 15670-7.
[http://dx.doi.org/10.1021/acs.analchem.9b03778] [PMID: 31710814]
[86]
Park JH, Sut TN, Jackman JA, Ferhan AR, Yoon BK, Cho NJ. Controlling adsorption and passivation properties of bovine serum albumin on silica surfaces by ionic strength modulation and cross-linking. Phys Chem Chem Phys 2017; 19(13): 8854-65.
[http://dx.doi.org/10.1039/C7CP01310H] [PMID: 28294278]
[87]
Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. Surface modifications of nanoparticles for stability in biological fluids. Materials (Basel) 2018; 11(7): 28.
[http://dx.doi.org/10.3390/ma11071154] [PMID: 29986436]
[88]
Hadjidemetriou M, Al-Ahmady Z, Mazza M, Collins RF, Dawson K, Kostarelos K. In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 2015; 9(8): 8142-56.
[http://dx.doi.org/10.1021/acsnano.5b03300] [PMID: 26135229]
[89]
Palchetti S, Pozzi D, Capriotti AL, et al. Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells. Colloids Surf B Biointerfaces 2017; 153: 263-71.
[http://dx.doi.org/10.1016/j.colsurfb.2017.02.037] [PMID: 28273493]
[90]
Jayaram DT, Pustulka SM, Mannino RG, Lam WA, Payne CK. Protein corona in response to flow: effect on protein concentration and structure. Biophys J 2018; 115(2): 209-16.
[http://dx.doi.org/10.1016/j.bpj.2018.02.036] [PMID: 29650368]
[91]
Yu K, Andruschak P, Yeh HH, Grecov D, Kizhakkedathu JN. Influence of dynamic flow conditions on adsorbed plasma protein corona and surface-induced thrombus generation on antifouling brushes. Biomaterials 2018; 166: 79-95.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.009] [PMID: 29549767]
[92]
Hadjidemetriou M, McAdam S, Garner G, et al. The human in vivo biomolecule corona onto pegylated liposomes: a proof-of-concept clinical study. Adv Mater 2019; 31(4): e1803335.
[http://dx.doi.org/10.1002/adma.201803335] [PMID: 30488990]
[93]
Lundqvist M, Stigler J, Cedervall T, et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano 2011; 5(9): 7503-9.
[http://dx.doi.org/10.1021/nn202458g] [PMID: 21861491]
[94]
Bonvin D, Aschauer U, Alexander DTL, Chiappe D, Moniatte M, Hofmann H, et al. Protein corona: impact of lymph versus blood in a complex in vitro environment.Small (Weinheim an der Bergstrasse, Germany). 2017; 13: p. (29)13.
[95]
Qin M, Zhang J, Li M, et al. Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions. Theranostics 2020; 10(3): 1213-29.
[http://dx.doi.org/10.7150/thno.38900] [PMID: 31938061]
[96]
Pandit S, Dutta D, Nie S. Active transcytosis and new opportunities for cancer nanomedicine. Nat Mater 2020; 19(5): 478-80.
[http://dx.doi.org/10.1038/s41563-020-0672-1] [PMID: 32332990]
[97]
Sindhwani S, Syed AM, Ngai J, et al. The entry of nanoparticles into solid tumours. Nat Mater 2020; 19(5): 566-75.
[http://dx.doi.org/10.1038/s41563-019-0566-2] [PMID: 31932672]
[98]
Hajipour MJ, Laurent S, Aghaie A, Rezaee F, Mahmoudi M. Personalized protein coronas: a “key” factor at the nanobiointerface. Biomater Sci 2014; 2(9): 1210-21.
[http://dx.doi.org/10.1039/C4BM00131A] [PMID: 32481892]
[99]
Colapicchioni V, Tilio M, Digiacomo L, et al. Personalized liposome-protein corona in the blood of breast, gastric and pancreatic cancer patients. Int J Biochem Cell Biol 2016; 75: 180-7.
[http://dx.doi.org/10.1016/j.biocel.2015.09.002] [PMID: 26369869]
[100]
Tavakol M, Montazeri A, Naghdabadi R, et al. Disease-related metabolites affect protein-nanoparticle interactions. Nanoscale 2018; 10(15): 7108-15.
[http://dx.doi.org/10.1039/C7NR09502C] [PMID: 29616243]
[101]
Hajipour MJ, Raheb J, Akhavan O, et al. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide. Nanoscale 2015; 7(19): 8978-94.
[http://dx.doi.org/10.1039/C5NR00520E] [PMID: 25920546]
[102]
Shannahan JH, Fritz KS, Raghavendra AJ, Podila R, Persaud I, Brown JM. From the cover: disease-induced disparities in formation of the nanoparticle-biocorona and the toxicological consequences. Toxicol Sci 2016; 152(2): 406-16.
[http://dx.doi.org/10.1093/toxsci/kfw097] [PMID: 27255384]
[103]
Ren J, Cai R, Wang J, et al. Precision nanomedicine development based on specific opsonization of human cancer patient-personalized protein coronas. Nano Lett 2019; 19(7): 4692-701.
[http://dx.doi.org/10.1021/acs.nanolett.9b01774] [PMID: 31244235]
[104]
Li YZ, Liu ZH, Li L, Lian WH, He YH, Khalil E, et al. Tandem-mass-tag based proteomic analysis facilitates analyzing critical factors of porous silicon nanoparticles in determining their biological responses under diseased condition. Adv Sci12 2020; 7(15): 2001129.
[http://dx.doi.org/10.1002/advs.202001129]
[105]
Zheng T, Pierre-Pierre N, Yan X, et al. Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment. ACS Appl Mater Interfaces 2015; 7(12): 6819-27.
[http://dx.doi.org/10.1021/acsami.5b00371] [PMID: 25757512]
[106]
Vidaurre-Agut C, Rivero-Buceta E, Romaní-Cubells E, et al. Protein corona over mesoporous silica nanoparticles: influence of the pore diameter on competitive adsorption and application to prostate cancer diagnostics. ACS Omega 2019; 4(5): 8852-61.
[http://dx.doi.org/10.1021/acsomega.9b00460] [PMID: 31459973]
[107]
Caracciolo G, Safavi-Sohi R, Malekzadeh R, et al. Disease-specific protein corona sensor arrays may have disease detection capacity. Nanoscale Horiz 2019; 4(5): 1063-76.
[http://dx.doi.org/10.1039/C9NH00097F]
[108]
Yong SB, Song Y, Kim HJ, Ain QU, Kim YH. Mononuclear phagocytes as a target, not a barrier, for drug delivery. Journal of the Controlled Release Society 2017; 259: 53-61.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.024]
[109]
Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. Journal of the Controlled Release Society 2016; 240: 332-48.
[110]
Tavares AJ, Poon W, Zhang YN, et al. Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc Natl Acad Sci USA 2017; 114(51): E10871-80.
[http://dx.doi.org/10.1073/pnas.1713390114] [PMID: 29208719]
[111]
Campbell F, Bos FL, Sieber S, et al. Directing nanoparticle biodistribution through evasion and exploitation of stab2-dependent nanoparticle uptake. ACS Nano 2018; 12(3): 2138-50.
[http://dx.doi.org/10.1021/acsnano.7b06995] [PMID: 29320626]
[112]
Poon W, Zhang YN, Ouyang B, et al. Elimination pathways of nanoparticles. ACS Nano 2019; 13(5): 5785-98.
[http://dx.doi.org/10.1021/acsnano.9b01383] [PMID: 30990673]
[113]
Hayashi Y, Takamiya M, Jensen PB, et al. Differential nanoparticle sequestration by macrophages and scavenger endothelial cells visualized in vivo in real-time and at ultrastructural resolution. ACS Nano 2020; 14(2): 1665-81.
[http://dx.doi.org/10.1021/acsnano.9b07233] [PMID: 31922724]
[114]
Yang YW, Luo WH. Cellular biodistribution of polymeric nanoparticles in the immune system. J Control Release 2016; 227: 82-93.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.011] [PMID: 26873334]
[115]
Liu LY, Ma XZ, Ouyang B, et al. Nanoparticle uptake in a spontaneous and immunocompetent woodchuck liver cancer model. ACS Nano 2020; 14(4): 4698-715.
[http://dx.doi.org/10.1021/acsnano.0c00468] [PMID: 32255624]
[116]
Safari H, Kelley WJ, Saito E, et al. Neutrophils preferentially phagocytose elongated particles-An opportunity for selective targeting in acute inflammatory diseases. Sci Adv 2020; 6(24): eaba1474.
[http://dx.doi.org/10.1126/sciadv.aba1474] [PMID: 32577517]
[117]
Fromen CA, Kelley WJ, Fish MB, et al. Neutrophil-particle interactions in blood circulation drive particle clearance and alter neutrophil responses in acute inflammation. ACS Nano 2017; 11(11): 10797-807.
[http://dx.doi.org/10.1021/acsnano.7b03190] [PMID: 29028303]
[118]
Betker JL, Jones D, Childs CR, et al. Nanoparticle uptake by circulating leukocytes: A major barrier to tumor delivery. J Control Release 2018; 286: 85-93.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.031] [PMID: 30030182]
[119]
Sica A, Invernizzi P, Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology 2014; 59(5): 2034-42.
[http://dx.doi.org/10.1002/hep.26754] [PMID: 24115204]
[120]
Feito MJ, Diez-Orejas R, Cicuéndez M, Casarrubios L, Rojo JM, Portolés MT. Characterization of M1 and M2 polarization phenotypes in peritoneal macrophages after treatment with graphene oxide nanosheets. Colloids Surf B Biointerfaces 2019; 176: 96-105.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.063] [PMID: 30594708]
[121]
Zhang W, Cao S, Liang S, et al. Differently charged super-paramagnetic iron oxide nanoparticles preferentially induced m1-like phenotype of macrophages. Front Bioeng Biotechnol 2020; 8: 537.
[http://dx.doi.org/10.3389/fbioe.2020.00537] [PMID: 32548111]
[122]
Gallud A, Bondarenko O, Feliu N, et al. Macrophage activation status determines the internalization of mesoporous silica particles of different sizes: Exploring the role of different pattern recognition receptors. Biomaterials 2017; 121: 28-40.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.029] [PMID: 28063981]
[123]
MacParland SA, Tsoi KM, Ouyang B, et al. Phenotype determines nanoparticle uptake by human macrophages from liver and blood. ACS Nano 2017; 11(3): 2428-43.
[http://dx.doi.org/10.1021/acsnano.6b06245] [PMID: 28040885]
[124]
Kai MP, Brighton HE, Fromen CA, et al. Tumor presence induces global immune changes and enhances nanoparticle clearance. ACS Nano 2016; 10(1): 861-70.
[http://dx.doi.org/10.1021/acsnano.5b05999] [PMID: 26592524]
[125]
de Kruijff RM, Raavé R, Kip A, et al. Elucidating the influence of tumor presence on the polymersome circulation time in mice. Pharmaceutics 2019; 11(5): E241.
[http://dx.doi.org/10.3390/pharmaceutics11050241] [PMID: 31137479]
[126]
Jones SW, Roberts RA, Robbins GR, et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Invest 2013; 123(7): 3061-73.
[http://dx.doi.org/10.1172/JCI66895] [PMID: 23778144]
[127]
Li Y, Wan J, Wang F, Guo J, Wang C. Effect of increasing liver blood flow on nanodrug clearance by the liver for enhanced antitumor therapy. Biomater Sci 2019; 7(4): 1507-15.
[http://dx.doi.org/10.1039/C8BM01371C] [PMID: 30675877]
[128]
de Groot AM, Thanki K, Gangloff M, et al. Immunogenicity testing of lipidoids in vitro and in silico: modulating lipidoid-mediated tlr4 activation by nanoparticle design. Mol Ther Nucleic Acids 2018; 11: 159-69.
[http://dx.doi.org/10.1016/j.omtn.2018.02.003] [PMID: 29858051]
[129]
Baimanov D, Wu J, Chu R, et al. Immunological responses induced by blood protein coronas on two-dimensional mos2 nanosheets. ACS Nano 2020; 14(5): 5529-42.
[http://dx.doi.org/10.1021/acsnano.9b09744] [PMID: 32283010]
[130]
Gan J, Dou Y, Li Y, et al. Producing anti-inflammatory macrophages by nanoparticle-triggered clustering of mannose receptors. Biomaterials 2018; 178: 95-108.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.015] [PMID: 29920405]
[131]
Chinen AB, Guan CXM, Ko CH, Mirkin CA. The impact of protein corona formation on the macrophage cellular uptake and biodistribution of spherical nucleic acids. Small (Weinheim an der Bergstrasse, Germany) 2017; 13(16): 8.
[http://dx.doi.org/10.1002/smll.201603847]
[132]
Chavez-Santoscoy AV, Roychoudhury R, Pohl NLB, Wannemuehler MJ, Narasimhan B, Ramer-Tait AE. Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using “pathogen-like” amphiphilic polyanhydride nanoparticles. Biomaterials 2012; 33(18): 4762-72.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.027] [PMID: 22465338]
[133]
Das M, Shen L, Liu Q, Goodwin TJ, Huang L. Nanoparticle delivery of rig-i agonist enables effective and safe adjuvant therapy in pancreatic cancer. Mol Ther 2019; 27(3): 507-17.
[http://dx.doi.org/10.1016/j.ymthe.2018.11.012] [PMID: 30545600]
[134]
Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17(3): 638-50.
[http://dx.doi.org/10.1016/j.intimp.2013.06.034] [PMID: 23994464]
[135]
Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev 2017; 117(17): 11476-521.
[http://dx.doi.org/10.1021/acs.chemrev.7b00194] [PMID: 28862437]
[136]
Chen F, Wang G, Griffin JI, et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat Nanotechnol 2017; 12(4): 387-93.
[http://dx.doi.org/10.1038/nnano.2016.269] [PMID: 27992410]
[137]
Banda NK, Mehta G, Chao Y, et al. Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum. Part Fibre Toxicol 2014; 11: 64.
[http://dx.doi.org/10.1186/s12989-014-0064-2] [PMID: 25425420]
[138]
Ding T, Sun J. Formation of protein corona on nanoparticle affects different complement activation pathways mediated by C1q. Pharm Res 2019; 37(1): 10.
[http://dx.doi.org/10.1007/s11095-019-2747-8] [PMID: 31872347]
[139]
Tavano R, Gabrielli L, Lubian E, et al. C1q-mediated complement activation and c3 opsonization trigger recognition of stealth poly(2-methyl-2-oxazoline)-coated silica nanoparticles by human phagocytes. ACS Nano 2018; 12(6): 5834-47.
[http://dx.doi.org/10.1021/acsnano.8b01806] [PMID: 29750504]
[140]
Vu VP, Gifford GB, Chen F, et al. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat Nanotechnol 2019; 14(3): 260-8.
[http://dx.doi.org/10.1038/s41565-018-0344-3] [PMID: 30643271]
[141]
Chen X, Yang M, Liu B, Li Z, Tan H, Li J. Multilayer choline phosphate molecule modified surface with enhanced cell adhesion but resistance to protein adsorption. Langmuir 2017; 33(33): 8295-301.
[http://dx.doi.org/10.1021/acs.langmuir.7b01050] [PMID: 28759995]
[142]
Jiang LQ, Wang TY, Webster TJ, et al. Intracellular disposition of chitosan nanoparticles in macrophages: intracellular uptake, exocytosis, and intercellular transport. Int J Nanomedicine 2017; 12: 6383-98.
[http://dx.doi.org/10.2147/IJN.S142060] [PMID: 28919742]
[143]
Li Z, Sun L, Zhang Y, Dove AP, O’Reilly RK, Chen G. Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Macro Lett 2016; 5(9): 1059-64.
[http://dx.doi.org/10.1021/acsmacrolett.6b00419] [PMID: 27695648]
[144]
Ding L, Yao CJ, Yin XF, Li CC, Huang YA, Wu M, et al. Size, shape, and protein corona determine cellular uptake and removal mechanisms of gold nanoparticles.Small (Weinheim an der Bergstrasse, Germany). 2018; 14: p. (42)13.
[145]
Bartneck M, Keul HA, Zwadlo-Klarwasser G, Groll J. Phagocytosis independent extracellular nanoparticle clearance by human immune cells. Nano Lett 2010; 10(1): 59-63.
[http://dx.doi.org/10.1021/nl902830x] [PMID: 19994869]
[146]
Li X, Wang B, Zhou S, et al. Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. J Nanobiotechnology 2020; 18(1): 45.
[http://dx.doi.org/10.1186/s12951-020-00599-1] [PMID: 32169073]
[147]
Xie X, Liao J, Shao X, Li Q, Lin Y. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci Rep 2017; 7(1): 3827.
[http://dx.doi.org/10.1038/s41598-017-04229-z] [PMID: 28630477]
[148]
Chen SF, Li LY, Zhao C, Zheng J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer (Guildf) 2010; 51(23): 5283-93.
[http://dx.doi.org/10.1016/j.polymer.2010.08.022]
[149]
Schöttler S, Becker G, Winzen S, et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol 2016; 11(4): 372-7.
[http://dx.doi.org/10.1038/nnano.2015.330] [PMID: 26878141]
[150]
Hatakeyama H, Akita H, Harashima H. The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull 2013; 36(6): 892-9.
[http://dx.doi.org/10.1248/bpb.b13-00059] [PMID: 23727912]
[151]
Saadati R, Dadashzadeh S, Abbasian Z, Soleimanjahi H. Accelerated blood clearance of PEGylated PLGA nanoparticles following repeated injections: effects of polymer dose, PEG coating, and encapsulated anticancer drug. Pharm Res 2013; 30(4): 985-95.
[http://dx.doi.org/10.1007/s11095-012-0934-y] [PMID: 23184228]
[152]
Shimizu T, Mima Y, Hashimoto Y, et al. Anti-PEG IgM and complement system are required for the association of second doses of PEGylated liposomes with splenic marginal zone B cells. Immunobiology 2015; 220(10): 1151-60.
[http://dx.doi.org/10.1016/j.imbio.2015.06.005] [PMID: 26095176]
[153]
Yang Q, Lai SK. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(5): 655-77.
[http://dx.doi.org/10.1002/wnan.1339] [PMID: 25707913]
[154]
Pelaz B, del Pino P, Maffre P, et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 2015; 9(7): 6996-7008.
[http://dx.doi.org/10.1021/acsnano.5b01326] [PMID: 26079146]
[155]
Wang JL, Du XJ, Yang JX, et al. The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials 2018; 182: 104-13.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.022] [PMID: 30114562]
[156]
Du XJ, Wang JL, Liu WW, et al. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Biomaterials 2015; 69: 1-11.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.048] [PMID: 26275857]
[157]
Li D, Wang F, Di H, et al. Cross-linked poly(ethylene glycol) shells for nanoparticles: enhanced stealth effect and colloidal stability. Langmuir 2019; 35(26): 8799-805.
[http://dx.doi.org/10.1021/acs.langmuir.9b01325] [PMID: 31177786]
[158]
Zhou H, Fan Z, Li PY, et al. Dense and dynamic polyethylene glycol shells cloak nanoparticles from uptake by liver endothelial cells for long blood circulation. ACS Nano 2018; 12(10): 10130-41.
[http://dx.doi.org/10.1021/acsnano.8b04947] [PMID: 30117736]
[159]
Pannuzzo M, Esposito S, Wu LP, et al. Overcoming nanoparticle-mediated complement activation by surface peg pairing. Nano Lett 2020; 20(6): 4312-21.
[http://dx.doi.org/10.1021/acs.nanolett.0c01011] [PMID: 32259451]
[160]
Zhong L, Xu L, Liu Y, et al. Transformative hyaluronic acid-based active targeting supramolecular nanoplatform improves long circulation and enhances cellular uptake in cancer therapy. Acta Pharm Sin B 2019; 9(2): 397-409.
[http://dx.doi.org/10.1016/j.apsb.2018.11.006] [PMID: 30972285]
[161]
Han H, Valdepérez D, Jin Q, et al. Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy. ACS Nano 2017; 11(2): 1281-91.
[http://dx.doi.org/10.1021/acsnano.6b05541] [PMID: 28071891]
[162]
Gao A, Chen B, Gao J, et al. Sheddable prodrug vesicles combating adaptive immune resistance for improved photodynamic immunotherapy of cancer. Nano Lett 2020; 20(1): 353-62.
[http://dx.doi.org/10.1021/acs.nanolett.9b04012] [PMID: 31793787]
[163]
Perche F, Biswas S, Patel NR, Torchilin VP. Hypoxia-responsive copolymer for sirna delivery. Methods Mol Biol 2016; 1372: 139-62.
[http://dx.doi.org/10.1007/978-1-4939-3148-4_12] [PMID: 26530922]
[164]
Liu HM, Zhang RL, Niu YW, et al. Development of hypoxia-triggered prodrug micelles as doxorubicin carriers for tumor therapy. RSC Advances 2015; 5(27): 20848-57.
[http://dx.doi.org/10.1039/C4RA14875D] [PMID: 26989483]
[165]
Conte C, Mastrotto F, Taresco V, et al. Enhanced uptake in 2D- and 3D- lung cancer cell models of redox responsive PEGylated nanoparticles with sensitivity to reducing extra- and intracellular environments. J Control Release 2018; 277: 126-41.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.011] [PMID: 29534890]
[166]
Jia X, He J, Shen L, et al. Gradient redox-responsive and two-stage rocket-mimetic drug delivery system for improved tumor accumulation and safe chemotherapy. Nano Lett 2019; 19(12): 8690-700.
[http://dx.doi.org/10.1021/acs.nanolett.9b03340] [PMID: 31698897]
[167]
Ni R, Zhu J, Xu Z, Chen Y. A self-assembled pH/enzyme dual-responsive prodrug with PEG deshielding for multidrug-resistant tumor therapy. J Mater Chem B Mater Biol Med 2020; 8(6): 1290-301.
[http://dx.doi.org/10.1039/C9TB02264C] [PMID: 31967176]
[168]
Zhou M, Huang H, Wang D, et al. Light-triggered pegylation/depegylation of the nanocarriers for enhanced tumor penetration. Nano Lett 2019; 19(6): 3671-5.
[http://dx.doi.org/10.1021/acs.nanolett.9b00737] [PMID: 31062980]
[169]
Weiss ACG, Kelly HG, Faria M, et al. Link between low-fouling and stealth: a whole blood biomolecular corona and cellular association analysis on nanoengineered particles. ACS Nano 2019; 13(5): 4980-91.
[http://dx.doi.org/10.1021/acsnano.9b00552] [PMID: 30998312]
[170]
Debayle M, Balloul E, Dembele F, et al. Zwitterionic polymer ligands: an ideal surface coating to totally suppress protein-nanoparticle corona formation? Biomaterials 2019; 219: 119357.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119357] [PMID: 31351245]
[171]
Li Y, Liu R, Shi Y, Zhang Z, Zhang X. Zwitterionic poly(carboxybetaine)-based cationic liposomes for effective delivery of small interfering RNA therapeutics without accelerated blood clearance phenomenon. Theranostics 2015; 5(6): 583-96.
[http://dx.doi.org/10.7150/thno.11234] [PMID: 25825598]
[172]
Li Y, Liu R, Yang J, et al. Enhanced retention and anti-tumor efficacy of liposomes by changing their cellular uptake and pharmacokinetics behavior. Biomaterials 2015; 41: 1-14.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.010] [PMID: 25522960]
[173]
Ou H, Cheng T, Zhang Y, et al. Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater 2018; 65: 339-48.
[http://dx.doi.org/10.1016/j.actbio.2017.10.034] [PMID: 29079515]
[174]
Wang J, Yuan S, Zhang Y, Wu W, Hu Y, Jiang X. The effects of poly(zwitterions)s versus poly(ethylene glycol) surface coatings on the biodistribution of protein nanoparticles. Biomater Sci 2016; 4(9): 1351-60.
[http://dx.doi.org/10.1039/C6BM00201C] [PMID: 27426309]
[175]
Cao Z, Zhang L, Jiang S. Superhydrophilic zwitterionic polymers stabilize liposomes. Langmuir 2012; 28(31): 11625-32.
[http://dx.doi.org/10.1021/la302433a] [PMID: 22783927]
[176]
Zhou W, Ling L, Du Y, et al. Thiol-mediated multidentate phosphorylcholine as a zwitterionic ligand for stabilizing biocompatible gold nanoparticles. Langmuir 2019; 35(40): 13031-9.
[http://dx.doi.org/10.1021/acs.langmuir.9b01547] [PMID: 31537058]
[177]
Banskota S, Saha S, Bhattacharya J, et al. Genetically encoded stealth nanoparticles of a zwitterionic polypeptide-paclitaxel conjugate have a wider therapeutic window than abraxane in multiple tumor models. Nano Lett 2020; 20(4): 2396-409.
[http://dx.doi.org/10.1021/acs.nanolett.9b05094] [PMID: 32125864]
[178]
Zou Y, Ito S, Yoshino F, Suzuki Y, Zhao L, Komatsu N. Polyglycerol grafting shields nanoparticles from protein corona formation to avoid macrophage uptake. ACS Nano 2020; 14(6): 7216-26.
[http://dx.doi.org/10.1021/acsnano.0c02289] [PMID: 32379425]
[179]
Yoshino F, Amano T, Zou Y, Xu J, Kimura F, Furusho Y, et al. Preferential tumor accumulation of polyglycerol functionalized nanodiamond conjugated with cyanine dye leading to near-infrared fluorescence in vivo tumor imaging. Small (Weinheim an der Bergstrasse, Germany) 2019; 15(48): e1901930.
[http://dx.doi.org/10.1002/smll.201901930]
[180]
Panja P, Das P, Mandal K, Jana NR. Hyperbranched polyglycerol grafting on the surface of silica-coated nanoparticles for high colloidal stability and low nonspecific interaction. ACS Sustain Chem& Eng 2017; 5(6): 4879-89.
[http://dx.doi.org/10.1021/acssuschemeng.7b00292]
[181]
Du N, Guo WX, Yu QS, Guan SL, Guo LY, Shen T, et al. Poly(D,L-lactic acid)-block-poly(N-(2-hydroxypropyl) methacrylamide) nanoparticles for overcoming accelerated blood clearance and achieving efficient anti-tumor therapy. Polym Chem 2016; 7(36): 5719-29.
[http://dx.doi.org/10.1039/C6PY01113F]
[182]
Klepac D, Kostková H, Petrova S, et al. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins - the introduction of protein-corona-free polymer nanomedicine. Nanoscale 2018; 10(13): 6194-204.
[http://dx.doi.org/10.1039/C7NR09355A] [PMID: 29560983]
[183]
Abbina S, Parambath A. 14 - pegylation and its alternatives: a summary. Engineering of biomaterials for drug delivery systems. Woodhead Publishing 2018; pp. 363-76.
[http://dx.doi.org/10.1016/B978-0-08-101750-0.00014-3]
[184]
de Oliveira FA, Albuquerque LJC, Riske KA, Jäger E, Giacomelli FC. Outstanding protein-repellent feature of soft nanoparticles based on poly(N-(2-hydroxypropyl) methacrylamide) outer shells. J Colloid Interface Sci 2020; 574: 260-71.
[http://dx.doi.org/10.1016/j.jcis.2020.04.048] [PMID: 32330752]
[185]
Qiao R, Fu C, Li Y, et al. Sulfoxide-containing polymer-coated nanoparticles demonstrate minimal protein fouling and improved blood circulation. Adv Sci (Weinh) 2020; 7(13): 2000406.
[http://dx.doi.org/10.1002/advs.202000406] [PMID: 32670765]
[186]
Settanni G, Schäfer T, Muhl C, Barz M, Schmid F. Poly-sarcosine and Poly(Ethylene-Glycol) Interactions with Proteins Investigated Using Molecular Dynamics Simulations. Comput Struct Biotechnol J 2018; 16: 543-50.
[http://dx.doi.org/10.1016/j.csbj.2018.10.012] [PMID: 30524669]
[187]
Otter R, Klinker K, Spitzer D, Schinnerer M, Barz M, Besenius P. Folding induced supramolecular assembly into pH-responsive nanorods with a protein repellent shell. Chem Commun (Camb) 2018; 54(4): 401-4.
[http://dx.doi.org/10.1039/C7CC08127H] [PMID: 29250629]
[188]
Weber B, Birke A, Fischer K, Schmidt M, Barz M. Solution Properties of Polysarcosine: From Absolute and Relative Molar Mass Determinations to Complement Activation. Macromolecules 2018; 51(7): 2653-61.
[http://dx.doi.org/10.1021/acs.macromol.8b00258]
[189]
Chen Y, Xu Z, Zhu D, et al. Gold nanoparticles coated with polysarcosine brushes to enhance their colloidal stability and circulation time in vivo. J Colloid Interface Sci 2016; 483: 201-10.
[http://dx.doi.org/10.1016/j.jcis.2016.08.038] [PMID: 27552428]
[190]
Bleher S, Buck J, Muhl C, Sieber S, Barnert S, Witzigmann D, et al. Poly(sarcosine) surface modification imparts stealth-like properties to liposomes. Small (Weinheim an der Bergstrasse, Germany) 2019; 15(50): 10.
[191]
Son K, Ueda M, Taguchi K, Maruyama T, Takeoka S, Ito Y. Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes. J Control Release 2020; 322: 209-16.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.022] [PMID: 32194174]
[192]
Kierstead PH, Okochi H, Venditto VJ, et al. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. Journal of the Controlled Release Society 2015; 213: 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.023]
[193]
Wang P, Dong Y, Zhang S, Liu W, Wu Z, Chen H. Protein-resistant properties of poly(N-vinylpyrrolidone)-modified gold surfaces: The advantage of bottle-brushes over linear brushes. Colloids Surf B Biointerfaces 2019; 177: 448-53.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.030] [PMID: 30798066]
[194]
Li J, Ge Z, Liu S. PEG-sheddable polyplex micelles as smart gene carriers based on MMP-cleavable peptide-linked block copolymers. Chem Commun (Camb) 2013; 49(62): 6974-6.
[http://dx.doi.org/10.1039/c3cc43576h] [PMID: 23802223]
[195]
Ding M, He X, Wang Z, et al. Cellular uptake of polyurethane nanocarriers mediated by gemini quaternary ammonium. Biomaterials 2011; 32(35): 9515-24.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.074] [PMID: 21907404]
[196]
Pan Z, Fang D, Song N, et al. Surface distribution and biophysicochemical properties of polymeric micelles bearing gemini cationic and hydrophilic groups. ACS Appl Mater Interfaces 2017; 9(3): 2138-49.
[http://dx.doi.org/10.1021/acsami.6b14339] [PMID: 28029776]
[197]
Yu X, Liu Z, Janzen J, et al. Polyvalent choline phosphate as a universal biomembrane adhesive. Nat Mater 2012; 11(5): 468-76.
[http://dx.doi.org/10.1038/nmat3272] [PMID: 22426460]
[198]
Li S, Wang F, Li X, et al. Dipole orientation matters: longer-circulating choline phosphate than phosphocholine liposomes for enhanced tumor targeting. ACS Appl Mater Interfaces 2017; 9(21): 17736-44.
[http://dx.doi.org/10.1021/acsami.7b03160] [PMID: 28488431]
[199]
Li X, Zhao Y, Jiang W, et al. Ultralong circulating choline phosphate liposomal nanomedicines for cascaded chemo-radiotherapy. Biomater Sci 2019; 7(4): 1335-44.
[http://dx.doi.org/10.1039/C9BM00051H] [PMID: 30816393]
[200]
Li B, Jain P, Ma J, et al. Trimethylamine N-oxide-derived zwitterionic polymers: A new class of ultralow fouling bioinspired materials. Sci Adv 2019; 5(6): eaaw9562.
[http://dx.doi.org/10.1126/sciadv.aaw9562] [PMID: 31214655]
[201]
Leng C, Sun S, Zhang K, Jiang S, Chen Z. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ. Acta Biomater 2016; 40: 6-15.
[http://dx.doi.org/10.1016/j.actbio.2016.02.030] [PMID: 26923530]
[202]
Shao Q, Jiang S. Molecular understanding and design of zwitterionic materials. Advanced materials (Deerfield Beach, Fla) 2015; 27(1): 15-26.
[http://dx.doi.org/10.1002/adma.201404059]
[203]
Shao Q, Jiang S. Influence of charged groups on the properties of zwitterionic moieties: a molecular simulation study. J Phys Chem B 2014; 118(27): 7630-7.
[http://dx.doi.org/10.1021/jp5027114] [PMID: 24922061]
[204]
Chang Y, Chen S, Zhang Z, Jiang S. Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir 2006; 22(5): 2222-6.
[http://dx.doi.org/10.1021/la052962v] [PMID: 16489810]
[205]
Zhang Z, Chen S, Chang Y, Jiang S. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B 2006; 110(22): 10799-804.
[http://dx.doi.org/10.1021/jp057266i] [PMID: 16771329]
[206]
Zhang Z, Chen S, Jiang S. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 2006; 7(12): 3311-5.
[http://dx.doi.org/10.1021/bm060750m] [PMID: 17154457]
[207]
Yang W, Chen S, Cheng G, et al. Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 2008; 24(17): 9211-4.
[http://dx.doi.org/10.1021/la801487f] [PMID: 18672924]
[208]
Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 2008; 9(5): 1357-61.
[http://dx.doi.org/10.1021/bm701301s] [PMID: 18376858]
[209]
Yang W, Xue H, Li W, Zhang J, Jiang S. Pursuing “zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir 2009; 25(19): 11911-6.
[http://dx.doi.org/10.1021/la9015788] [PMID: 19583183]
[210]
Vaisocherová H, Zhang Z, Yang W, et al. Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma--material selection and protein immobilization optimization. Biosens Bioelectron 2009; 24(7): 1924-30.
[http://dx.doi.org/10.1016/j.bios.2008.09.035] [PMID: 19036575]
[211]
Rajendrakumar SK, Chang NC, Mohapatra A, et al. A lipophilic ir-780 dye-encapsulated zwitterionic polymer-lipid micellar nanoparticle for enhanced photothermal therapy and nir-based fluorescence imaging in a cervical tumor mouse model. Int J Mol Sci 2018; 19(4): E1189.
[http://dx.doi.org/10.3390/ijms19041189] [PMID: 29652833]
[212]
Cai M, Cao J, Wu Z, Cheng F, Chen Y, Luo X. In vitro and in vivo anti-tumor efficiency comparison of phosphorylcholine micelles with PEG micelles. Colloids Surf B Biointerfaces 2017; 157: 268-79.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.053] [PMID: 28601755]
[213]
Wang Y, Huang D, Wang X, Yang F, Shen H, Wu D. Fabrication of zwitterionic and pH-responsive polyacetal dendrimers for anticancer drug delivery. Biomater Sci 2019; 7(8): 3238-48.
[http://dx.doi.org/10.1039/C9BM00606K] [PMID: 31165798]
[214]
Xiong Z, Alves CS, Wang J, et al. Zwitterion-functionalized dendrimer-entrapped gold nanoparticles for serum-enhanced gene delivery to inhibit cancer cell metastasis. Acta Biomater 2019; 99: 320-9.
[http://dx.doi.org/10.1016/j.actbio.2019.09.005] [PMID: 31513912]
[215]
Zhang L, Xue H, Gao C, et al. Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages. Biomaterials 2010; 31(25): 6582-8.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.018] [PMID: 20541254]
[216]
Hu F, Chen K, Xu H, Gu H. Design and preparation of bi-functionalized short-chain modified zwitterionic nanoparticles. Acta Biomater 2018; 72: 239-47.
[http://dx.doi.org/10.1016/j.actbio.2018.03.038] [PMID: 29597022]
[217]
Chen H, Sun T, Yan Y, et al. Cartilage matrix-inspired biomimetic superlubricated nanospheres for treatment of osteoarthritis. Biomaterials 2020; 242: 119931.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119931] [PMID: 32145507]
[218]
Wang Y, He L, Yu B, Chen Y, Shen Y, Cong H. ZnO quantum dots modified by ph-activated charge-reversal polymer for tumor targeted drug delivery. Polymers (Basel) 2018; 10(11): E1272.
[http://dx.doi.org/10.3390/polym10111272] [PMID: 30961197]
[219]
Wang Z, Ma G, Zhang J, et al. Surface protonation/deprotonation controlled instant affinity switch of nano drug vehicle (NDV) for pH triggered tumor cell targeting. Biomaterials 2015; 62: 116-27.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.020] [PMID: 26046750]
[220]
Jackson MA, Werfel TA, Curvino EJ, et al. Zwitterionic nanocarrier surface chemistry improves sirna tumor delivery and silencing activity relative to polyethylene glycol. ACS Nano 2017; 11(6): 5680-96.
[http://dx.doi.org/10.1021/acsnano.7b01110] [PMID: 28548843]
[221]
Peng S, Ouyang B, Men Y, et al. Biodegradable zwitterionic polymer membrane coating endowing nanoparticles with ultra-long circulation and enhanced tumor photothermal therapy. Biomaterials 2020; 231: 119680.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119680] [PMID: 31864018]
[222]
Safavi-Sohi R, Maghari S, Raoufi M, et al. Bypassing protein corona issue on active targeting: zwitterionic coatings dictate specific interactions of targeting moieties and cell receptors. ACS Appl Mater Interfaces 2016; 8(35): 22808-18.
[http://dx.doi.org/10.1021/acsami.6b05099] [PMID: 27526263]
[223]
Caracciolo G, Palchetti S, Colapicchioni V, et al. Stealth effect of biomolecular corona on nanoparticle uptake by immune cells. Langmuir 2015; 31(39): 10764-73.
[http://dx.doi.org/10.1021/acs.langmuir.5b02158] [PMID: 26378619]
[224]
Mirshafiee V, Kim R, Park S, Mahmoudi M, Kraft ML. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials 2016; 75: 295-304.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.019] [PMID: 26513421]
[225]
Simon J, Müller LK, Kokkinopoulou M, et al. Exploiting the biomolecular corona: pre-coating of nanoparticles enables controlled cellular interactions. Nanoscale 2018; 10(22): 10731-9.
[http://dx.doi.org/10.1039/C8NR03331E] [PMID: 29845991]
[226]
Giulimondi F, Digiacomo L, Pozzi D, et al. Interplay of protein corona and immune cells controls blood residency of liposomes. Nat Commun 2019; 10(1): 3686.
[http://dx.doi.org/10.1038/s41467-019-11642-7] [PMID: 31417080]
[227]
Pitek AS, Jameson SA, Veliz FA, Shukla S, Steinmetz NF. Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials 2016; 89: 89-97.
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.032] [PMID: 26950168]
[228]
Gulati NM, Pitek AS, Czapar AE, Stewart PL, Steinmetz NF. The in vivo fates of plant viral nanoparticles camouflaged using self-proteins: overcoming immune recognition. J Mater Chem B Mater Biol Med 2018; 6(15): 2204-16.
[http://dx.doi.org/10.1039/C7TB03106H] [PMID: 30294445]
[229]
Li Z, Li D, Li Q, et al. In situ low-immunogenic albumin-conjugating-corona guiding nanoparticles for tumor-targeting chemotherapy. Biomater Sci 2018; 6(10): 2681-93.
[http://dx.doi.org/10.1039/C8BM00692J] [PMID: 30151516]
[230]
Zhang W, Meckes B, Mirkin CA. Spherical nucleic acids with tailored and active protein coronae. ACS Cent Sci 2019; 5(12): 1983-90.
[http://dx.doi.org/10.1021/acscentsci.9b01105] [PMID: 31893228]
[231]
Takeuchi T, Kitayama Y, Sasao R, et al. Molecularly imprinted nanogels acquire stealth in situ by cloaking themselves with native dysopsonic proteins. Angew Chem Int Ed Engl 2017; 56(25): 7088-92.
[http://dx.doi.org/10.1002/anie.201700647] [PMID: 28455941]
[232]
Zhang F, Zhu G, Jacobson O, et al. Transformative nanomedicine of an amphiphilic camptothecin prodrug for long circulation and high tumor uptake in cancer therapy. ACS Nano 2017; 11(9): 8838-48.
[http://dx.doi.org/10.1021/acsnano.7b03003] [PMID: 28858467]
[233]
Prozeller D, Pereira J, Simon J, Mailänder V, Morsbach S, Landfester K. Prevention of dominant igg adsorption on nanocarriers in igg-enriched blood plasma by clusterin precoating. Adv Sci (Weinh) 2019; 6(10): 1802199.
[http://dx.doi.org/10.1002/advs.201802199] [PMID: 31131195]
[234]
Barani M, Mirzaei M, Torkzadeh-Mahani M, Lohrasbi-Nejad A, Nematollahi MH. A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. Mater Sci Eng C 2020; 113: 110975.
[http://dx.doi.org/10.1016/j.msec.2020.110975] [PMID: 32487392]
[235]
Oh JY, Kim HS, Palanikumar L, et al. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat Commun 2018; 9(1): 4548.
[http://dx.doi.org/10.1038/s41467-018-06979-4] [PMID: 30382085]
[236]
Huang B, Yang Z, Fang S, et al. Amphoteric natural starch-coated polymer nanoparticles with excellent protein corona-free and targeting properties. Nanoscale 2020; 12(10): 5834-47.
[http://dx.doi.org/10.1039/C9NR09405A] [PMID: 32068222]
[237]
Betker JL, Anchordoquy TJ. The use of lactose as an alternative coating for nanoparticles. J Pharm Sci 2020; 109(4): 1573-80.
[http://dx.doi.org/10.1016/j.xphs.2020.01.019] [PMID: 32004536]
[238]
Lazarovits J, Chen YY, Song F, et al. Synthesis of patient-specific nanomaterials. Nano Lett 2019; 19(1): 116-23.
[http://dx.doi.org/10.1021/acs.nanolett.8b03434] [PMID: 30525697]
[239]
Liu T, Choi H, Zhou R, Chen IW. RES blockade: A strategy for boosting efficiency of nanoparticle drug. Nano Today 2015; 10(1): 11-21.
[http://dx.doi.org/10.1016/j.nantod.2014.12.003]
[240]
Sun X, Yan X, Jacobson O, et al. Improved tumor uptake by optimizing liposome based res blockade strategy. Theranostics 2017; 7(2): 319-28.
[http://dx.doi.org/10.7150/thno.18078] [PMID: 28042337]
[241]
Tang Y, Wang X, Li J, et al. Overcoming the reticuloendothelial system barrier to drug delivery with a "don’t-eat-us" strategy. ACS Nano 2019; 13(11): 13015-26.
[http://dx.doi.org/10.1021/acsnano.9b05679] [PMID: 31689086]
[242]
Belhadj Z, He B, Deng H, et al. A combined “eat me/don’t eat me” strategy based on extracellular vesicles for anticancer nanomedicine. J Extracell Vesicles 2020; 9(1): 1806444.
[http://dx.doi.org/10.1080/20013078.2020.1806444] [PMID: 32944191]
[243]
Wan Z, Zhao L, Lu F, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics 2020; 10(1): 218-30.
[http://dx.doi.org/10.7150/thno.38198] [PMID: 31903116]
[244]
Nikitin MP, Zelepukin IV, Shipunova VO, Sokolov IL, Deyev SM, Nikitin PI. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nat Biomed Eng 2020; 4(7): 717-31.
[http://dx.doi.org/10.1038/s41551-020-0581-2] [PMID: 32632229]
[245]
Ou WQ, Nam KS, Park DH, Hwang J, Ku SK, Yong CS, et al. Artificial nanoscale erythrocytes from clinically relevant compounds for enhancing cancer immunotherapy. Nano-Micro Lett 2020; 12(1): 19.
[http://dx.doi.org/10.1007/s40820-020-00428-y]
[246]
Liu WL, Zou MZ, Qin SY, et al. Recent advances of cell membrane-coated nanomaterials for biomedical applications. Advanced Functional Materials 2020; 30(39): 2003559.
[247]
Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011; 108(27): 10980-5.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[248]
Hu CMJ, Fang RH, Luk BT, et al. ‘Marker-of-self’ functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 2013; 5(7): 2664-8.
[http://dx.doi.org/10.1039/c3nr00015j] [PMID: 23462967]
[249]
Rao L, Bu LL, Xu JH, et al. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small (Weinheim an der Bergstrasse, Germany) 2015; 11(46): 6225-36.
[http://dx.doi.org/10.1002/smll.201502388]
[250]
Zhai Z, Xu P, Yao J, et al. Erythrocyte-mimicking paclitaxel nanoparticles for improving biodistributions of hydrophobic drugs to enhance antitumor efficacy. Drug Deliv 2020; 27(1): 387-99.
[http://dx.doi.org/10.1080/10717544.2020.1731862] [PMID: 32098525]
[251]
Wang P, Jiang S, Li Y, et al. Fabrication of hypoxia-responsive and uperconversion nanoparticles-modified RBC micro-vehicles for oxygen delivery and chemotherapy enhancement. Biomater Sci 2020; 8(16): 4595-602.
[http://dx.doi.org/10.1039/D0BM00678E] [PMID: 32700684]
[252]
Ben-Akiva E, Meyer RA, Yu H, Smith JT, Pardoll DM, Green JJ. Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal. Sci Adv 2020; 6(16): eaay9035.
[http://dx.doi.org/10.1126/sciadv.aay9035] [PMID: 32490199]
[253]
Wang M, Yan W, Chu M, et al. Erythrocyte membrane-wrapped magnetic nanotherapeutic agents for reduction and removal of blood Cr(VI). ACS Appl Mater Interfaces 2020; 12(25): 28014-23.
[http://dx.doi.org/10.1021/acsami.0c06437] [PMID: 32525652]
[254]
Nguyen TDT, Marasini R, Rayamajhi S, Aparicio C, Biller D, Aryal S. Erythrocyte membrane concealed paramagnetic polymeric nanoparticle for contrast-enhanced magnetic resonance imaging. Nanoscale 2020; 12(6): 4137-49.
[http://dx.doi.org/10.1039/D0NR00039F] [PMID: 32022084]
[255]
Zheng DY, Yu PW, Wei ZW, Zhong C, Wu M, Liu XL. RBC membrane camouflaged semiconducting polymer nanoparticles for near-infrared photoacoustic imaging and photothermal therapy. Nano-Micro Lett 2020; 12(1): 17.
[http://dx.doi.org/10.1007/s40820-020-00429-x]
[256]
Huang XZ, Shang WT, Deng H, et al. Clothing spiny nanoprobes against the mononuclear phagocyte system clearance in vivo: Photoacoustic diagnosis and photothermal treatment of early stage liver cancer with erythrocyte membrane-camouflaged gold nanostars. Appl Mater Today 2020; 18: 12.
[http://dx.doi.org/10.1016/j.apmt.2019.100484]
[257]
Chen HW, Fang ZS, Chen YT, et al. Targeting and enrichment of viral pathogen by cell membrane cloaked magnetic nanoparticles for enhanced detection. ACS Appl Mater Interfaces 2017; 9(46): 39953-61.
[http://dx.doi.org/10.1021/acsami.7b09931] [PMID: 29088538]
[258]
Lin A, Liu Y, Zhu X, et al. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition. ACS Nano 2019; 13(12): 13965-84.
[http://dx.doi.org/10.1021/acsnano.9b05766] [PMID: 31730327]
[259]
Guo J, Agola JO, Serda R, et al. Biomimetic rebuilding of multifunctional red blood cells: modular design using functional components. ACS Nano 2020; 14(7): 7847-59.
[http://dx.doi.org/10.1021/acsnano.9b08714] [PMID: 32391687]
[260]
Hu CMJ, Fang RH, Wang KC, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015; 526(7571): 118-21.
[http://dx.doi.org/10.1038/nature15373] [PMID: 26374997]
[261]
Hu Q, Sun W, Qian C, Wang C, Bomba HN, Gu Z. Anticancer Platelet-Mimicking Nanovehicles. Adv Mater 2015; 27(44): 7043-50.
[http://dx.doi.org/10.1002/adma.201503323] [PMID: 26416431]
[262]
Rao L, Bu LL, Meng QF, Cai B, Deng WW, Li A, et al. Antitumor platelet-mimicking magnetic nanoparticles. Adv Funct Mater 2017; 27(9): 10.
[263]
Parodi A, Quattrocchi N, van de Ven AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 2013; 8(1): 61-8.
[http://dx.doi.org/10.1038/nnano.2012.212] [PMID: 23241654]
[264]
Molinaro R, Corbo C, Martinez JO, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat Mater 2016; 15(9): 1037-46.
[http://dx.doi.org/10.1038/nmat4644] [PMID: 27213956]
[265]
Corbo C, Molinaro R, Taraballi F, et al. Unveiling the in vivo protein corona of circulating leukocyte-like carriers. ACS Nano 2017; 11(3): 3262-73.
[http://dx.doi.org/10.1021/acsnano.7b00376] [PMID: 28264157]
[266]
Zhang Y, Cai K, Li C, et al. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett 2018; 18(3): 1908-15.
[http://dx.doi.org/10.1021/acs.nanolett.7b05263] [PMID: 29473753]
[267]
Rao L, Yu GT, Meng QF, Bu LL, Tian R, Lin LS, et al. Cancer cell membrane-coated nanoparticles for personalized therapy in patient-derived xenograft models. Adv Funct Mater 2019; 29(51): 10.
[http://dx.doi.org/10.1002/adfm.201905671]
[268]
Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 2019; 572(7769): 392-6.
[http://dx.doi.org/10.1038/s41586-019-1456-0] [PMID: 31367043]
[269]
Paczulla AM, Rothfelder K, Raffel S, et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature 2019; 572(7768): 254-9.
[http://dx.doi.org/10.1038/s41586-019-1410-1] [PMID: 31316209]
[270]
Rao L, Bu LL, Cai B, et al. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv Mater 2016; 28(18): 3460-6.
[http://dx.doi.org/10.1002/adma.201506086] [PMID: 26970518]
[271]
Gao CY, Lin ZH, Jurado-Sanchez B, Lin XK, Wu ZG, He Q. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small (Weinheim an der Bergstrasse, Germany) 2016; 12(30): 4056-62.
[http://dx.doi.org/10.1002/smll.201600624]
[272]
Gao C, Lin Z, Wu Z, Lin X, He Q. Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy. ACS Appl Mater Interfaces 2016; 8(50): 34252-60.
[http://dx.doi.org/10.1021/acsami.6b12865] [PMID: 27936561]
[273]
Liu Y, Zhao J, Jiang J, Chen F, Fang X. Doxorubicin delivered using nanoparticles camouflaged with mesenchymal stem cell membranes to treat colon cancer. Int J Nanomedicine 2020; 15: 2873-84.
[http://dx.doi.org/10.2147/IJN.S242787] [PMID: 32368059]
[274]
Dehaini D, Wei X, Fang RH, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater 2017; 29(16): 8.
[http://dx.doi.org/10.1002/adma.201606209] [PMID: 28199033]
[275]
Wang D, Dong H, Li M, et al. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 2018; 12(6): 5241-52.
[http://dx.doi.org/10.1021/acsnano.7b08355] [PMID: 29800517]
[276]
Bu LL, Rao L, Yu GT, et al. Cancer stem cell-platelet hybrid membrane-coated magnetic nanoparticles for enhanced photothermal therapy of head and neck squamous cell carcinoma. Adv Funct Mater 2019; 29(10): 11.
[http://dx.doi.org/10.1002/adfm.201807733]
[277]
He H, Guo C, Wang J, et al. Leutusome: A biomimetic nanoplatform integrating plasma membrane components of leukocytes and tumor cells for remarkably enhanced solid tumor homing. Nano Lett 2018; 18(10): 6164-74.
[http://dx.doi.org/10.1021/acs.nanolett.8b01892] [PMID: 30207473]
[278]
Underhill DM, Goodridge HS. Information processing during phagocytosis. Nat Rev Immunol 2012; 12(7): 492-502.
[http://dx.doi.org/10.1038/nri3244] [PMID: 22699831]
[279]
Barclay AN, van den Berg TK. The interaction between signal regulatory protein alpha (sirp alpha) and cd47: structure, function, and therapeutic target. Annual Review of Immunology. Palo Alto 2014; 32: pp. 25-50.
[280]
Weiskopf K. Cancer immunotherapy targeting the CD47/SIRPα axis. Eur J Cancer 2017; 76: 100-9.
[http://dx.doi.org/10.1016/j.ejca.2017.02.013] [PMID: 28286286]
[281]
Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013; 339(6122): 971-5.
[http://dx.doi.org/10.1126/science.1229568] [PMID: 23430657]
[282]
Zhang KL, Zhou J, Zhou H, et al. Bioinspired "active" stealth magneto-nanomicelles for theranostics combining efficient mri and enhanced drug delivery. ACS Appl Mater Interfaces 2017; 9(36): 30502-9.
[http://dx.doi.org/10.1021/acsami.7b10086] [PMID: 28812358]
[283]
Jiang Z, Tian Y, Shan D, et al. pH protective Y1 receptor ligand functionalized antiphagocytosis BPLP-WPU micelles for enhanced tumor imaging and therapy with prolonged survival time. Biomaterials 2018; 170: 70-81.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.002] [PMID: 29653288]
[284]
Wang Y, Wang Z, Qian Y, et al. Synergetic estrogen receptor-targeting liposome nanocarriers with anti-phagocytic properties for enhanced tumor theranostics. J Mater Chem B Mater Biol Med 2019; 7(7): 1056-63.
[http://dx.doi.org/10.1039/C8TB03351J] [PMID: 32254773]
[285]
Zhang L, Liu XG, Liu DQ, Yu XL, Zhang LX, Zhu J, et al. A Conditionally Releasable “Do not Eat Me” CD47 signal facilitates microglia-targeted drug delivery for the treatment of alzheimer’s disease. Adv Funct Mater 2020; 30(24): 10.
[http://dx.doi.org/10.1002/adfm.201910691]
[286]
Erwig LP, Gow NAR. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol 2016; 14(3): 163-76.
[http://dx.doi.org/10.1038/nrmicro.2015.21] [PMID: 26853116]
[287]
Brewer SM, Brubaker SW, Monack DM. Host inflammasome defense mechanisms and bacterial pathogen evasion strategies. Curr Opin Immunol 2019; 60: 63-70.
[http://dx.doi.org/10.1016/j.coi.2019.05.001] [PMID: 31174046]
[288]
Chen X, Liu S, Goraya MU, Maarouf M, Huang S, Chen JL. Host immune response to influenza a virus infection. Front Immunol 2018; 9: 320.
[http://dx.doi.org/10.3389/fimmu.2018.00320] [PMID: 29556226]
[289]
Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017; 545(7655): 495-9.
[http://dx.doi.org/10.1038/nature22396] [PMID: 28514441]
[290]
Barkal AA, Weiskopf K, Kao KS, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 2018; 19(1): 76-84.
[http://dx.doi.org/10.1038/s41590-017-0004-z] [PMID: 29180808]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy