Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Differential Proteomic Identification and Bioinformatics Analysis of Femoral Neck in Elderly Female Patients with Hyperuricaemia

Author(s): Yingyi He, Guangming Zhang, Yuyang Huang, Qi Li and Cheng Luo*

Volume 19, Issue 1, 2022

Published on: 12 January, 2021

Page: [30 - 38] Pages: 9

DOI: 10.2174/1570164618999210112203816

Price: $65

Abstract

Background: Serum uric acid (UA) is positively correlated with bone mineral density (BMD). However, the mechanism by which serum UA affects BMD remains unclear.

Objective: The aim was carried out to search for the functional proteins related to serum UA and femoral neck BMD to better understand the pathophysiological mechanism of osteoporosis.

Materials and Methods: In this study, patients in the UA group (hyperuricaemia combined with femoral neck fracture) and the control group (normal uricaemia combined with femoral neck fracture) were selected according to the inclusion criteria. Total protein was extracted from the femoral neck of each patient. Fluorescence differential gel electrophoresis was used to separate the total proteins, and the differentially expressed protein spots were detected by image analysis. After enzyme digestion, peptide mass fingerprinting and database searches were performed to identify the differentially expressed proteins. DAVID software and Kyoto Encyclopedia of Genes and Genomes (KEGG) data were used for enrichment analysis of the screened differential proteins.

Results: After mass spectrometry and database searching, 66 differentially expressed protein spots were identified between the UA group and the control group. Most differentially expressed proteins functioned in cytoskeleton formation, energy metabolism, or signal transduction. They were mainly involved in 50 biological processes, including peroxisome proliferator-activated receptor (PPAR) signalling and fatty acid metabolism. PPARγ and PLIN1 were subject to Western blotting analysis detection; results were consistent with the Label-Free result.

Conclusion: Based on an analysis of the biological information, these proteins may be associated with the incidence and progression of the femoral neck bone tissues of hyperuricaemia patients.

Keywords: Serum uric acid, elderly female, femoral neck, proteomics, PPAR signalling pathway, hyperuricaemia.

Graphical Abstract
[1]
Ignjatovic, V.; Geyer, P.E.; Palaniappan, K.K.; Chaaban, J.E.; Omenn, G.S.; Baker, M.S.; Deutsch, E.W.; Schwenk, J.M. Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data. J. Proteome Res., 2019, 18(12), 4085-4097.
[http://dx.doi.org/10.1021/acs.jproteome.9b00503] [PMID: 31573204]
[2]
Makovey, J.; Macara, M.; Chen, J.S.; Hayward, C.S.; March, L.; Seibel, M.J.; Sambrook, P.N. Serum uric acid plays a protective role for bone loss in peri- and postmenopausal women: a longitudinal study. Bone, 2013, 52(1), 400-406.
[http://dx.doi.org/10.1016/j.bone.2012.10.025] [PMID: 23111314]
[3]
Lee, H.N.; Kim, A.; Kim, Y.; Kim, G.T.; Sohn, D.H.; Lee, S.G. Higher serum uric acid levels are associated with reduced risk of hip osteoporosis in postmenopausal women with rheumatoid arthritis. Medicine (Baltimore), 2020, 99(24), e20633.
[http://dx.doi.org/10.1097/MD.0000000000020633] [PMID: 32541502]
[4]
Xiao, J.; Chen, W.; Feng, X.; Liu, W.; Zhang, Z.; He, L.; Ye, Z. Serum uric acid is associated with lumbar spine bone mineral density in healthy Chinese males older than 50 years. Clin. Interv. Aging, 2017, 12, 445-452.
[http://dx.doi.org/10.2147/CIA.S130690] [PMID: 28280317]
[5]
Ahn, S.H.; Lee, S.H.; Kim, B.J.; Lim, K.H.; Bae, S.J.; Kim, E.H.; Kim, H.K.; Choe, J.W.; Koh, J.M.; Kim, G.S. Higher serum uric acid is associated with higher bone mass, lower bone turnover, and lower prevalence of vertebral fracture in healthy postmenopausal women. Osteoporos. Int., 2013, 24(12), 2961-2970.
[http://dx.doi.org/10.1007/s00198-013-2377-7] [PMID: 23644878]
[6]
Kim, S.; Jung, J.; Jung, J.H.; Kim, S.K.; Kim, R.B.; Hahm, J.R. Risk Factors of Bone Mass Loss at the Lumbar Spine: A Longitudinal Study in Healthy Korean Pre- and Perimenopausal Women Older than 40 Years. PLoS One, 2015, 10(8), e0136283.
[http://dx.doi.org/10.1371/journal.pone.0136283] [PMID: 26317525]
[7]
Sritara, C.; Ongphiphadhanakul, B.; Chailurkit, L.; Yamwong, S.; Ratanachaiwong, W.; Sritara, P. Serum uric acid levels in relation to bone-related phenotypes in men and women. J. Clin. Densitom., 2013, 16(3), 336-340.
[http://dx.doi.org/10.1016/j.jocd.2012.05.008] [PMID: 22727551]
[8]
Kuyumcu, M.E.; Yesil, Y.; Oztürk, Z.A.; Cınar, E.; Kızılarslanoglu, C.; Halil, M.; Ulger, Z.; Yesil, N.K.; Cankurtaran, M.; Arıoğul, S. The association between homocysteine (hcy) and serum natural antioxidants in elderly bone mineral densitometry (BMD). Arch. Gerontol. Geriatr., 2012, 55(3), 739-743.
[http://dx.doi.org/10.1016/j.archger.2012.05.004] [PMID: 22682423]
[9]
Veronese, N.; Bolzetta, F.; De Rui, M.; Maggi, S.; Noale, M.; Zambon, S.; Corti, M.C.; Toffanello, E.D.; Baggio, G.; Perissinotto, E.; Crepaldi, G.; Manzato, E.; Sergi, G. Serum uric acid and incident osteoporotic fractures in old people: The PRO.V.A study. Bone, 2015, 79, 183-189.
[http://dx.doi.org/10.1016/j.bone.2015.06.005] [PMID: 26079996]
[10]
Lane, N.E.; Parimi, N.; Lui, L.Y.; Wise, B.L.; Yao, W.; Lay, Y.A.; Cawthon, P.M.; Orwoll, E. Osteoporotic Fractures in Men Study Group. Association of serum uric acid and incident nonspine fractures in elderly men: the Osteoporotic Fractures in Men (MrOS) study. J. Bone Miner. Res., 2014, 29(7), 1701-1707.
[http://dx.doi.org/10.1002/jbmr.2164] [PMID: 24347506]
[11]
Zhang, D.; Bobulescu, I.A.; Maalouf, N.M.; Adams-Huet, B.; Poindexter, J.; Park, S.; Wei, F.; Chen, C.; Moe, O.W.; Sakhaee, K. Relationship between serum uric Acid and bone mineral density in the general population and in rats with experimental hyperuricemia. J. Bone Miner. Res., 2015, 30(6), 992-999.
[http://dx.doi.org/10.1002/jbmr.2430] [PMID: 25491196]
[12]
Mehta, T.; Bůžková, P.; Sarnak, M.J.; Chonchol, M.; Cauley, J.A.; Wallace, E.; Fink, H.A.; Robbins, J.; Jalal, D. Serum urate levels and the risk of hip fractures: data from the Cardiovascular Health Study. Metabolism, 2015, 64(3), 438-446.
[http://dx.doi.org/10.1016/j.metabol.2014.11.006] [PMID: 25491429]
[13]
Wei, H.; Cheng, Z.; Ouyang, C.; Zhang, Y.; Hu, Y.; Chen, S.; Wang, C.; Lu, F.; Zhang, J.; Wang, Y.; Liu, X. Glycoprotein screening in colorectal cancer based on differentially expressed Tn antigen. Oncol. Rep., 2016, 36(3), 1313-1324.
[http://dx.doi.org/10.3892/or.2016.4937] [PMID: 27432485]
[14]
Li, B.; Weng, Q.; Dong, C.; Zhang, Z.; Li, R.; Liu, J.; Jiang, A.; Li, Q.; Jia, C.; Wu, W.; Liu, H. A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis. Genes (Basel), 2018, 9(4), E194.
[http://dx.doi.org/10.3390/genes9040194] [PMID: 29617344]
[15]
Shen, S.; Jiang, H.; Bei, Y.; Zhang, J.; Zhang, H.; Zhu, H.; Zhang, C.; Yao, W.; Wei, C.; Shang, H.; Li, X. Qiliqiangxin Attenuates Adverse Cardiac Remodeling after Myocardial Infarction in Ovariectomized Mice via Activation of PPARγ. Cell. Physiol. Biochem., 2017, 42(3), 876-888.
[http://dx.doi.org/10.1159/000478641] [PMID: 28647730]
[16]
Li, H.Z.; Chen, Z.; Hou, C.L.; Tang, Y.X.; Wang, F.; Fu, Q.G. Uric Acid Promotes Osteogenic Differentiation and Inhibits Adipogenic Differentiation of Human Bone Mesenchymal Stem Cells. J. Biochem. Mol. Toxicol., 2015, 29(8), 382-387.
[http://dx.doi.org/10.1002/jbt.21707] [PMID: 25917795]
[17]
Zhang, S.S.; Yang, N.; Xu, L.L.; Li, B.J.; Cui, J. Effect of uric acid on the expression of Cbfα1/Runx2 during the osteogenic differentiation of human bone marrow mesenchymal stem cells. Chin J Osteoporos., 2013, 19, 363-366.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy