[1]
Abdou, M.M.; Seferoğlu, Z.; Fathy, M.; Akitsu, T.; Koketsu, M.; Kellow, R.; Amigues, E. Synthesis and chemical transformations of 3-acetyl-4-hydroxyquinolin-2(1H)-one and N-substituted derivatives: bird’s eye view. Res. Chem. Intermed., 2019, 45(3), 919-934.
[2]
Karel, P.; Stanislav, K.; Janez, K. Chemistry and Applications of 4-Hydroxyquinolin-2-one and Quinoline-2,4-dione-based Compounds. Curr. Org. Chem., 2017, 21(19), 1949-1975.
[3]
Romero, A.H. Role of Trifluoromethyl Substitution in Design of Antimalarial Quinolones: a Comprehensive Review. Top. Curr. Chem., 2019, 377(2), 9.
[4]
Sharma, K.; Khandelwal, S.; Samarth, R.M.; Kumar, M. Natural Product-Mimetic Scaffolds with Privileged Heterocyclic Systems: Design, Synthesis, and Evaluation of Antioxidant Activity of Quinazoquinobenzothiazinones. J. Heterocycl. Chem., 2016, 53(1), 220-228.
[5]
El-Neketi, M.; Ebrahim, W.; Lin, W.; Gedara, S.; Badria, F.; Saad, H-E.A.; Lai, D.; Proksch, P. Alkaloids and Polyketides from Penicillium citrinum, an Endophyte Isolated from the Moroccan Plant Ceratonia siliqua. Journal of Natural Products, 2013, 76(6), 1099-1104.
[6]
Bessonova, I.A. Components ofHaplophyllum bucharicum. Chem. Nat. Compd., 2000, 36(3), 323-324.
[7]
Ferretti, M.D.; Neto, A.T.; Morel, A.F.; Kaufman, T.S.; Larghi, E.L. Synthesis of symmetrically substituted 3,3-dibenzyl-4-hydroxy-3,4-dihydro-1H-quinolin-2-ones, as novel quinoline derivatives with antibacterial activity. Eur. J. Med. Chem., 2014, 81, 253-266.
[8]
Zwergel, C.; Czepukojc, B.; Evain-Bana, E.; Xu, Z.; Stazi, G.; Mori, M.; Patsilinakos, A.; Mai, A.; Botta, B.; Ragno, R.; Bagrel, D.; Kirsch, G.; Meiser, P.; Jacob, C.; Montenarh, M.; Valente, S. Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells. Eur. J. Med. Chem., 2017, 134, 316-333.
[9]
Greeff, J.; Joubert, J.; Malan, S.F.; van Dyk, S. Antioxidant properties of 4-quinolones and structurally related flavones. Bioorg. Med. Chem., 2012, 20(2), 809-818.
[10]
Mukherjee, S.; Pal, M. Quinolines: a new hope against inflammation. Drug Discov. Today, 2013, 18(7), 389-398.
[11]
Hsu, S-C.; Yang, J-S.; Kuo, C-L.; Lo, C.; Lin, J-P.; Hsia, T-C.; Lin, J-J.; Lai, K-C.; Kuo, H-M.; Huang, L-J.; Kuo, S-C.; Wood, W.G.; Chung, J-G. Novel quinolone CHM-1 induces apoptosis and inhibits metastasis in a human osterogenic sarcoma cell line. J. Orthop. Res., 2009, 27(12), 1637-1644.
[12]
Cocco, M.T.; Congiu, C.; Onnis, V.; Piras, R. Synthesis and antitumor evaluation of 6-thioxo-, 6-oxo- and 2,4-dioxopyrimidine derivatives. Farmaco, 2001, 56(10), 741-748.
[13]
Meneghesso, S.; Vanderlinden, E.; Stevaert, A.; McGuigan, C.; Balzarini, J.; Naesens, L. Synthesis and biological evaluation of pyrimidine nucleoside monophosphate prodrugs targeted against influenza virus. Antiviral Res., 2012, 94(1), 35-43.
[14]
Mallikarjunaswamy, C.; Mallesha, L.; Bhadregowda, D.G.; Pinto, O. Studies on synthesis of pyrimidine derivatives and their antimicrobial activity. Arab. J. Chem., 2017, 10, S484-S490.
[15]
Bhalgat, C.M.; Irfan Ali, M.; Ramesh, B.; Ramu, G. Novel pyrimidine and its triazole fused derivatives: Synthesis and investigation of antioxidant and anti-inflammatory activity. Arab. J. Chem., 2014, 7(6), 986-993.
[16]
Varothai, S.; Bergfeld, W.F. Androgenetic Alopecia: An Evidence-Based Treatment Update. Am. J. Clin. Dermatol., 2014, 15(3), 217-230.
[17]
Stellbrink, H-J. Antiviral drugs in the treatment of AIDS: what is in the pipeline? Eur. J. Med. Res., 2007, 12(9), 483-495.
[18]
World Health, O. World Health Organization model list of essential medicines: 21st list 2019; World Health Organization: Geneva, 2019.
[19]
Parkes, A.L.; Yule, I.A. Hybrid antibiotics – clinical progress and novel designs. Expert Opin. Drug Discov., 2016, 11(7), 665-680.
[20]
Yang, Y.; Hahne, H.; Kuster, B.; Verhelst, S.H.L. A simple and effective cleavable linker for chemical proteomics applications. Mol. Cell. Proteomics, 2013, 12(1), 237-244.
[21]
Bargh, J.D.; Isidro-Llobet, A.; Parker, J.S.; Spring, D.R. Cleavable linkers in antibody–drug conjugates. Chem. Soc. Rev., 2019, 48(16), 4361-4374.
[22]
Pedrosa, M.; da Cruz, R.; Viana, J.; de Moura, R.; Ishiki, H.; Filho, J.M.B. MFFM Diniz, MT Scotti, L. Scotti, FJBM Junior, Hybrid compounds as direct multitarget ligands: a review. Curr. Top. Med. Chem., 2017, 17, 1044-1079.
[23]
Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 281-305.
[24]
Hu, Y-Q.; Zhang, S.; Xu, Z.; Lv, Z-S.; Liu, M-L.; Feng, L-S. 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem., 2017, 141, 335-345.
[25]
Mao, T-Q.; He, Q-Q.; Wan, Z-Y.; Chen, W-X.; Chen, F-E.; Tang, G-F.; De Clercq, E.; Daelemans, D.; Pannecouque, C. Anti-HIV diarylpyrimidine–quinolone hybrids and their mode of action. Bioorg. Med. Chem., 2015, 23(13), 3860-3868.
[26]
Maurya, S.S.; Bahuguna, A.; Khan, S.I.; Kumar, D.; Kholiya, R.; Rawat, D.S. N-Substituted aminoquinoline-pyrimidine hybrids: Synthesis, in vitro antimalarial activity evaluation and docking studies. Eur. J. Med. Chem., 2019, 162, 277-289.
[27]
Chopra, R.; Chibale, K.; Singh, K. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. Eur. J. Med. Chem., 2018, 148, 39-53.
[28]
Heba, A.E.M.; Hossa, F.A-S. Design, Synthesis, Anti-Proliferative Evaluation and Cell Cycle Analysis of Hybrid 2-Quinolones. Anticancer. Agents Med. Chem., 2019, 19(9), 1132-1140.
[29]
Vettorazzi, M.; Insuasty, D.; Lima, S.; Gutiérrez, L.; Nogueras, M.; Marchal, A.; Abonia, R.; Andújar, S.; Spiegel, S.; Cobo, J.; Enriz, R.D. Design of new quinolin-2-one-pyrimidine hybrids as sphingosine kinases inhibitors. Bioorg. Chem., 2020, 94103414
[30]
Butler, M.M.; Lamarr, W.A.; Foster, K.A.; Barnes, M.H.; Skow, D.J.; Lyden, P.T.; Kustigian, L.M.; Zhi, C.; Brown, N.C.; Wright, G.E.; Bowlin, T.L. Antibacterial activity and mechanism of action of a novel anilinouracil-fluoroquinolone hybrid compound. Antimicrob. Agents Chemother., 2007, 51(1), 119-127.
[31]
Labischinski, H.; Cherian, J.; Calanasan, C.; Boyce, R., Hybrid antimicrobial compounds and their use. WO2010025906 . 2010.
[32]
Champoux, J.J.; Topoisomerases, D.N.A. Structure, Function, and Mechanism. Annu. Rev. Biochem., 2001, 70(1), 369-413.
[33]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of Quinolone Action and Resistance. Biochemistry, 2014, 53(10), 1565-1574.
[34]
Liang, X.; Wu, Q.; Luan, S.; Yin, Z.; He, C.; Yin, L.; Zou, Y.; Yuan, Z.; Li, L.; Song, X.; He, M.; Lv, C.; Zhang, W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur. J. Med. Chem., 2019, 171, 129-168.
[35]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[36]
Roschger, P.; Stadlbauer, W. Organic azides in heterocyclic synthesis, 11. Ring closure of 3-acetyl-4-azido-2-quinolones to isoxazolo[4,3-c]quinolones. Liebigs Ann. Chem., 1990, 1990(8), 821-823.
[37]
Faber, K.; Kappe, T. Non-steroidal antiinflammatory agents. 2. Synthesis of 4-hydroxy-1-methyl-2-oxo-dihydroquinolin-3-yl acetic acid and related tetrazolyl derivatives. J. Heterocycl. Chem., 1984, 21(6), 1881-1883.
[38]
Ruano, J.G.; Pedregal, C.; Rodríguez, J.H. Synthesis and tautomerism of 2,4-dihydroxyquinolines. Heterocycles, 1991, 32(11), 2151-2159.
[39]
Abdou, M.M. Chemistry of 4-Hydroxy-2(1H)-quinolone. Part 1: Synthesis and reactions. Arab. J. Chem., 2017, 10, S3324-S3337.
[40]
Giridhar, R.; Tamboli, R.S.; Ramajayam, R.; Prajapati, D.G.; Yadav, M.R. Assessment of antiplatelet activity of 2-aminopyrimidines. Eur. J. Med. Chem., 2012, 50, 428-432.
[41]
Robinson, S.J.; Petzer, J.P. Terre’Blanche, G.; Petzer, A.; van der Walt, M. M.; Bergh, J. J.; Lourens, A. C. U., 2-Aminopyrimidines as dual adenosine A1/A2A antagonists. Eur. J. Med. Chem., 2015, 104, 177-188.
[42]
Ingarsal, N.; Saravanan, G.; Amutha, P.; Nagarajan, S. Synthesis, in vitro antibacterial and antifungal evaluations of 2-amino-4-(1-naphthyl)-6-arylpyrimidines. Eur. J. Med. Chem., 2007, 42(4), 517-520.
[43]
Thanh, N.D.; Mai, N.T.T. Synthesis of N-tetra-O-acetyl-β-D-glucopyranosyl-N′-(4′,6′-diarylpyrimidin-2′-yl)thioureas. Carbohydr. Res., 2009, 344(17), 2399-2405.
[44]
Lagorce, D.; Reynes, C.; Camproux, A.C.; Miteva, M.A.; Sperandio, O.; Villoutreix, B.O. In silico adme/tox predictions. ADMET for Medicinal Chemists; John Wiley & Sons, Inc, 2011, pp. 29-124.
[45]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[46]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23(1-3), 3-25.
[47]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[48]
Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[49]
Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res., 2002, 19(10), 1446-1457.
[50]
Wu, C.C.; Li, T.K.; Farh, L.; Lin, L.Y.; Lin, T.S.; Yu, Y.J.; Yen, T.J.; Chiang, C.W.; Chan, N.L. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science, 2011, 333(6041), 459-462.
[51]
Goodwin, S.; Smith, A.F.; Horning, E.C. Alkaloids of Ochrosia elliptica Labill.1. J. Am. Chem. Soc., 1959, 81(8), 1903-1908.
[52]
Auclair, C. Multimodal action of antitumor agents on DNA: The ellipticine series. Arch. Biochem. Biophys., 1987, 259(1), 1-14.
[53]
Stiborová, M.; Poljaková, J.; Martínková, E.; Bořek-Dohalská, L.; Eckschlager, T.; Kizek, R.; Frei, E. Ellipticine cytotoxicity to cancer cell lines - a comparative study. Interdiscip. Toxicol., 2011, 4(2), 98-105.
[54]
Salerno, S.; La Pietra, V.; Hyeraci, M.; Taliani, S.; Robello, M.; Barresi, E.; Milite, C.; Simorini, F.; García-Argáez, A.N.; Marinelli, L.; Novellino, E.; Da Settimo, F.; Marini, A.M.; Dalla Via, L. Benzothiopyranoindole- and pyridothiopyranoindole-based antiproliferative agents targeting topoisomerases. Eur. J. Med. Chem., 2019, 165, 46-58.
[55]
Wu, C-C.; Li, Y-C.; Wang, Y-R.; Li, T-K.; Chan, N-L. On the structural basis and design guidelines for type II topoisomerase-targeting anticancer drugs. Nucleic Acids Res., 2013, 41(22), 10630-10640.
[56]
Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a Soluble Tetrazolium/Formazan Assay for Cell Growth and Drug Sensitivity in Culture Using Human and Other Tumor Cell Lines. Cancer Res., 1988, 48(17), 4827-4833.
[57]
Schrödinger, suite 2018-4; Schrödinger, LLC: New York, NY, 2018.
[58]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem., 2004, 47(7), 1750-1759.