Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Nanotechnology

Facile and Green Synthesis of Clean Porous Pd/2D-material Nanocomposites with Improved Catalytic Properties in 4-nitrophenol Reduction Reaction - The First Part

Author(s): Kai Ke, Haiyang Liu, Xin Chen*, Lingling Wang, Jiali Fang, Yulian Wu, Chuanzhen Wang, Chang Li and Xiaoxiang Yang

Volume 1, Issue 2, 2021

Published on: 22 December, 2020

Page: [252 - 259] Pages: 8

DOI: 10.2174/2210298101999201223091354

Open Access Journals Promotions 2
Abstract

Background: The development of environment-friendly and cost-effective palladium( Pd) based nanocomposite is of high interest for catalytic applications.

Objective and Methods: In this paper, a porous Pd/two-dimensional-material (graphene oxide (GO) and reduced graphene oxide (rGO)) nanocomposite was synthesized with a green and facile method, without adding any additional reductant, surfactant and special solvent.

Results: The catalytic activity of the Pd/rGO composite was investigated using the 4-nitrophenol (4-NP) reduction reaction in the presence of sodium borohydride (NaBH4). The results showed that the Pd/rGO nanocomposite not only exhibited much higher catalytic activity than the pure porous Pd catalyst but also showed a very good catalytic stability due to the less Pd aggregation and increased local 4-NP concentration arose from rGO bonding attraction. Besides, the Pd-rGO nanocomposite showed a kapp value of 0.383 min-1, which was 13 times higher than the pure Pd (0.0292 min-1), as well as a reliable 4-NP conversion rate of over 97%.

Conclusion: This study may provide a route for green-design and synthesis of heterogeneous catalyst composites with lower cost and better performance.

Keywords: Palladium, catalyst, porous structure, menthol oxidation, 4-nitrophenol reduction, compound material.

Graphical Abstract
[1]
Chen, G.; Wang, Y.; Wei, Y.; Zhao, W.; Gao, D.; Yang, H.; Li, C. Successive interfacial reaction-directed synthesis of CeO2@Au@CeO2-MnO2 environmental catalyst with sandwich hollow structure. ACS Appl. Mater. Interfaces, 2018, 10(14), 11595-11603.
[http://dx.doi.org/10.1021/acsami.7b18371] [PMID: 29557642]
[2]
Jeon, H.; Jeong, B.; Choun, M. In situ electrochemical extended X-ray absorption fine structure spectroscopy study on the reactivation of Pd electrocatalyst in formic acid oxidation. Electrochim. Acta, 2014, 140(140), 525-528.
[http://dx.doi.org/10.1016/j.electacta.2014.06.093]
[3]
Gao, S.; Zhang, Z.Y.; Liu, K.C. Direct evidence of plasmonic enhancement on catalytic reduction of 4-nitrophenol over silver nanoparticles supported on flexible fibrous networks. Appl. Catal. B, 2016, 188, 245-252.
[http://dx.doi.org/10.1016/j.apcatb.2016.01.074]
[4]
Zhang, J.; Chen, G.; Guay, D.; Chaker, M.; Ma, D. Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale, 2014, 6(4), 2125-2130.
[http://dx.doi.org/10.1039/C3NR04715F] [PMID: 24217271]
[5]
Hu, Q.Y.; Liu, X.W.; Tang, L. Pd-ZnO nanowire arrays as recyclable catalysts for 4-nitrophenol reduction and Suzuki coupling reactions. RSC Advances, 2017, 7(13), 7964-7972.
[http://dx.doi.org/10.1039/C6RA28467A]
[6]
Turcheniuk, K.; Boukherroub, R.; Szunerits, S. Gold-graphene nanocomposites for sensing and biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(21), 4301-4324.
[http://dx.doi.org/10.1039/C5TB00511F] [PMID: 32262773]
[7]
Ai, L.; Jiang, J. Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel. Bioresour. Technol., 2013, 132, 374-377.
[http://dx.doi.org/10.1016/j.biortech.2012.10.161] [PMID: 23206807]
[8]
Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 2010, 22(35), 3906-3924.
[http://dx.doi.org/10.1002/adma.201001068] [PMID: 20706983]
[9]
Su, C.; Zhao, S.; Peng, W. Synthesis and characterization of ultrafined palladium nanoparticles decorated on 2D magnetic graphene oxide nanosheets and their application for catalytic reduction of 4-nitrophenol. J. Environ. Chem. Eng., 2016, 4(3), 3433-3440.
[http://dx.doi.org/10.1016/j.jece.2016.07.021]
[10]
Zhu, X.Y.; Lv, Z.S.; Feng, J.J.; Yuan, P.X.; Zhang, L.; Chen, J.R.; Wang, A.J. Controlled fabrication of well-dispersed AgPd nanoclusters supported on reduced graphene oxide with highly enhanced catalytic properties towards 4-nitrophenol reduction. J. Colloid Interface Sci., 2018, 516, 355-363.
[http://dx.doi.org/10.1016/j.jcis.2018.01.047] [PMID: 29408123]
[11]
Feizi, M.B.; Jaleh, B.; Issaabadi, Z. Stainless steel mesh-GO/Pd Ps: catalytic applications of Suzuki–Miyaura and Stille coupling reactions in eco-friendly media. Green Chem., 2019, 21(12), 3319-3327.
[http://dx.doi.org/10.1039/C9GC00889F]
[12]
Kim, D.; Ahmed, M.S.; Jeon, S. Different length linkages of graphene modified with metal nanoparticles for oxygen reduction in acidic media. J. Mater. Chem., 2012, 22(32), 16353-16360.
[http://dx.doi.org/10.1039/c2jm31685d]
[13]
Hong, M.; Xu, L.D.; Wang, F.L. In situ synthesized Au-Ag nanocages on graphene oxide nanosheets: a highly active and recyclable catalyst for the reduction of 4-nitrophenol. New J. Chem., 2016, 40(2), 1685-1692.
[http://dx.doi.org/10.1039/C5NJ02978C]
[14]
Bai, S.; Shen, X.; Zhu, G.; Li, M.; Xi, H.; Chen, K. In situ growth of Ni(x)Co(100-x) nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties. ACS Appl. Mater. Interfaces, 2012, 4(5), 2378-2386.
[http://dx.doi.org/10.1021/am300310d] [PMID: 22486337]
[15]
Kong, X.; Cao, H.; Li, C.; Chen, X. One step photochemical synthesis of clean surfaced sponge-like porous platinum with high catalytic performances. J. Colloid Interface Sci., 2017, 487, 60-67.
[http://dx.doi.org/10.1016/j.jcis.2016.10.005] [PMID: 27744170]
[16]
Jin, Z.; Wang, F.; Wang, J.X. Metal nanocrystal-embedded hollow mesoporous TiO2 and ZrO2 microspheres prepared with polystyrene nanospheres as carriers and templates. Adv. Funct. Mater., 2013, 23(17), 2137-2144.
[http://dx.doi.org/10.1002/adfm.201202600]
[17]
Shin, H.J.; Kin, K.K.; Benayad, A. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater., 2009, 19(12), 1987-1992.
[http://dx.doi.org/10.1002/adfm.200900167]
[18]
Zhu, C.H.; Hai, Z.B.; Cui, C.H.; Li, H.H.; Chen, J.F.; Yu, S.H. In situ controlled synthesis of thermosensitive poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application. Small, 2012, 8(6), 930-936.
[http://dx.doi.org/10.1002/smll.201102060] [PMID: 22271613]
[19]
Abedini, A.; Daud, A.R.; Abdul Hamid, M.A.; Kamil Othman, N.; Saion, E. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett., 2013, 8(1), 474.
[http://dx.doi.org/10.1186/1556-276X-8-474] [PMID: 24225302]
[20]
Cui, Y.; Zhou, D.; Sui, Z.Y. Sonochemical synthesis of graphene oxide-wrapped gold nanoparticles hybrid materials: visible light photocatalytic activity. Chin. J. Chem., 2015, 33(1), 119-124.
[http://dx.doi.org/10.1002/cjoc.201400309]
[21]
Miraftab, R.; Ramezanzadeh, B.; Bahlakeh, G. An advanced approach for fabricating a reduced graphene oxide-AZO dye/polyurethane composite with enhanced ultraviolet (UV) shielding properties: Experimental and first-principles QM modeling. Chem. Eng., 2017, 321, 159-174.
[http://dx.doi.org/10.1016/j.cej.2017.03.124]
[22]
Liu, H.Y.; Ke, K.; Li, C. Facile synthesis of porous Pd nanoclusters for enhanced catalytic applications. Chin. J. Chem., 2019, 37, 565-569.
[http://dx.doi.org/10.1002/cjoc.201900037]
[23]
Wang, H.X.; Sheng, L.M.; Zhao, X.L. One-step synthesis of Pt-Pd catalyst nanoparticles supported on few-layer graphene for methanol oxidation. Curr. Appl. Phys., 2018, 18(8), 898-904.
[http://dx.doi.org/10.1016/j.cap.2018.04.006]
[24]
Tan, C.L.; Huang, X.; Zhang, H. Synthesis and applications of graphene-based noble metal nanostructures. Mater. Today, 2013, 16(1-2), 29-36.
[http://dx.doi.org/10.1016/j.mattod.2013.01.021]
[25]
Srisombat, L.; Nonkumwong, J.; Suwannarat, K. Simple preparation Au/Pd core/shell nanoparticles for 4-nitrophenol reduction. Colloids Surf., 2017, 512, 17-25.
[http://dx.doi.org/10.1016/j.colsurfa.2016.10.026]
[26]
Liu, L.; Chen, R.; Liu, W.; Wu, J.; Gao, D. Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide. J. Hazard. Mater., 2016, 320, 96-104.
[http://dx.doi.org/10.1016/j.jhazmat.2016.08.019] [PMID: 27521757]
[27]
Liu, W.J.; Tian, K.; Jiang, H. Harvest of Cu NP anchored magnetic carbon materials from Fe/Cu preloaded biomass: their pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-nitrophenol. Green Chem., 2014, 16(9), 4198-4205.
[http://dx.doi.org/10.1039/C4GC00599F]
[28]
Dong, Z.P.; Le, X.D.; Li, X.L. Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl. Catal. B, 2014, 158, 129-135.
[http://dx.doi.org/10.1016/j.apcatb.2014.04.015]
[29]
Nguyen, K.T.; Zhao, Y. Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale, 2014, 6(12), 6245-6266.
[http://dx.doi.org/10.1039/C4NR00612G] [PMID: 24752364]
[30]
Li, J. Liu, C.Y.; Liu, Y. Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem., 2012, 22(17), 8426-8430.
[http://dx.doi.org/10.1039/c2jm16386a]
[31]
Fath, R.H.; Hoseini, S.J.; Khozestan, H.G. A nanohybrid of organoplatinum(II) complex and graphene oxide as catalyst for reduction of p-nitrophenol. J. Organomet. Chem., 2017, 842, 1-8.
[http://dx.doi.org/10.1016/j.jorganchem.2017.04.027]
[32]
Sun, J.W.; Fu, Y.S.; He, G.Y. Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/graphene nanocomposite. Catal. Sci. Technol., 2014, 4(6), 1742-1748.
[http://dx.doi.org/10.1039/C4CY00048J]
[33]
Hemmati, S.; Mehrazin, L.; Pirhayati, M. Immobilization of palladium nanoparticles on Metformin-functionalized graphene oxide as a heterogeneous and recyclable nanocatalyst for Suzuki coupling reactions and reduction of 4-nitrophenol. Polyhedron, 2019, 158, 414-422.
[http://dx.doi.org/10.1016/j.poly.2018.11.038]
[34]
Wang, Z.M.; Xu, C.L.; Gao, G.Q. Facile synthesis of well-dispersed Pd-graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Advances, 2014, 4(26), 13644-13651.
[http://dx.doi.org/10.1039/c3ra47721e]
[35]
Su, B.Y.; Jia, Y.Z.; Zhang, S.Q. Synthesis of palladium nanoparticles on citrate-functionalized graphene oxide with high catalytic activity for 4-nitrophenol reduction. Chem. Lett., 2014, 43(6), 919-921.
[http://dx.doi.org/10.1246/cl.140105]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy