Research Article

膀胱癌特异性溶瘤腺病毒对小鼠的致畸毒性评价

卷 21, 期 2, 2021

发表于: 17 December, 2020

页: [160 - 166] 页: 7

弟呕挨: 10.2174/1566523220999201217161258

价格: $65

Open Access Journals Promotions 2
摘要

背景:在我们以前的研究中,我们已经证明了构建的膀胱组织特异性腺病毒Ad-PSCAE-UPII-E1A-AR(APU-EIA-AR)的有效性和特异性。还已经研究了裸鼠中病毒的生物分布和身体毒性。但是,膀胱癌特异性溶瘤腺病毒对胎儿小鼠和F1小鼠的安全性尚需深入研究。 目的:为了评估膀胱癌特异性溶瘤腺病毒APU-EIA-AR对小鼠的致畸毒性,在这项研究中,我们调查了胎儿小鼠的体重,胎儿的体长和尾巴的长度,胎儿的骨骼发育以及F1小鼠的体重,生长曲线和主要器官病理。膀胱组织特异性腺病毒Ad-PSCAE-UPII-E1A-AR(AD)的这些致畸毒性数据将为开展临床试验提供安全的信息。 方法:受精后第6天,每隔一天对妊娠小鼠进行肌注AD(1×107VP,1×108VP,1×109VP)。然后将怀孕的小鼠分为两组。第十七天,对一组人实施安乐死。取出胎儿小鼠,观察婴儿的骨骼结构。观察另一组直到自然分娩。孝顺一代(F1)被喂食30天;评估了生长进度和发展的变化。然后对小鼠实施安乐死;收集主要器官的组织并在显微镜下观察。 结果:在致畸毒性试验过程中,腺病毒治疗组胎盘重量,胎儿小鼠体重,体长和小鼠尾巴长度均未见任何改变。 同时,与PBS组相比,用腺病毒治疗的胎鼠的骨骼没有明显变化。 在用腺病毒治疗的F1小鼠的发育过程中,小鼠体重的变化显示出统计学意义。 但是,在增长曲线的进程中,这种差异不是很明显。 此外,病理切片显示主要器官无明显改变。 结论:我们的研究表明,膀胱癌特异性腺病毒Ad-PSCAE-UPII-E1A-AR在妊娠小鼠中似乎是安全的,对胎儿小鼠和F1发育没有任何明显的影响。 因此,对于肿瘤基因治疗来说是相对安全的。

关键词: 基因治疗,致畸毒性评估,生物安全性,膀胱癌,溶瘤腺病毒,动物模型。

图形摘要
[1]
Bhanvadia SK. Bladder Cancer Survivorship. Curr Urol Rep 2018; 19(12): 111.
[http://dx.doi.org/10.1007/s11934-018-0860-6] [PMID: 30414013]
[2]
Kaufman DS, Shipley WU, Feldman AS. Bladder cancer. Lancet 2009; 374(9685): 239-49.
[http://dx.doi.org/10.1016/S0140-6736(09)60491-8] [PMID: 19520422]
[3]
Ghoneim MA, Abol-Enein H. Management of muscle-invasive bladder cancer: an update. Nat Clin Pract Urol 2008; 5(9): 501-8.
[http://dx.doi.org/10.1038/ncpuro1202] [PMID: 18769377]
[4]
Hussain SA, James ND. The systemic treatment of advanced and metastatic bladder cancer. Lancet Oncol 2003; 4(8): 489-97.
[http://dx.doi.org/10.1016/S1470-2045(03)01168-9] [PMID: 12901963]
[5]
Rosewell Shaw A, Suzuki M. Recent advances in oncolytic adenovirus therapies for cancer. Curr Opin Virol 2016; 21: 9-15.
[http://dx.doi.org/10.1016/j.coviro.2016.06.009] [PMID: 27379906]
[6]
Man YKS, Davies JA, Coughlan L, et al. The Novel Oncolytic Adenoviral Mutant Ad5-3Δ-A20T Retargeted to αvβ6 Integrins Efficiently Eliminates Pancreatic Cancer Cells. Mol Cancer Ther 2018; 17(2): 575-87.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0671] [PMID: 29367266]
[7]
Pascual-Pasto G, Bazan-Peregrino M, Olaciregui NG, et al. Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Sci Transl Med 2019; 11(476): eaat9321.
[http://dx.doi.org/10.1126/scitranslmed.aat9321] [PMID: 30674657]
[8]
He XD, Wang ZP, Wei HY, et al. Construction of urothelium-specific recombinant adenovirus and its inhibition in bladder cancer cell. Urol Int 2009; 82(2): 209-13.
[http://dx.doi.org/10.1159/000200802] [PMID: 19322012]
[9]
Hoti N, Li Y, Chen CL, et al. Androgen receptor attenuation of Ad5 replication: implications for the development of conditionally replication competent adenoviruses. Molecular therapy : the journal of the American Society of Gene Therapy 2007; 15(8): 1495-503.
[http://dx.doi.org/10.1038/sj.mt.6300223]
[10]
Zhai Z, Wang Z, Fu S, et al. Antitumor effects of bladder cancer-specific adenovirus carrying E1A-androgen receptor in bladder cancer. Gene Ther 2012; 19(11): 1065-74.
[http://dx.doi.org/10.1038/gt.2011.180] [PMID: 22218302]
[11]
Wang L, Zhang Y, Zhao J, et al. Combination of bladder cancer-specific oncolytic adenovirus gene therapy with cisplatin on bladder cancer in vitro. Tumour Biol 2014; 35(11): 10879-90.
[http://dx.doi.org/10.1007/s13277-014-2353-7] [PMID: 25085582]
[12]
Li S, Wang F, Zhai Z, et al. Synergistic effect of bladder cancer-specific oncolytic adenovirus in combination with chemotherapy. Oncol Lett 2017; 14(2): 2081-8.
[http://dx.doi.org/10.3892/ol.2017.6416] [PMID: 28781650]
[13]
Zhang H, Wang F, Mao C, et al. Effect of combined treatment of radiation and tissue-specific recombinant oncolytic adenovirus on bladder cancer cells. Int J Radiat Biol 2017; 93(2): 174-83.
[http://dx.doi.org/10.1080/09553002.2017.1231942] [PMID: 27600610]
[14]
Chang J, Zhao X, Wu X, et al. A Phase I study of KH901, a conditionally replicating granulocyte-macrophage colony-stimulating factor: armed oncolytic adenovirus for the treatment of head and neck cancers. Cancer Biol Ther 2009; 8(8): 676-82.
[http://dx.doi.org/10.4161/cbt.8.8.7913] [PMID: 19242097]
[15]
Kimball KJ, Preuss MA, Barnes MN, et al. A phase I study of a tropism-modified conditionally replicative adenovirus for recurrent malignant gynecologic diseases. Clin Cancer Res 2010; 16(21): 5277-87.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0791]
[16]
Schenk E, Essand M, Bangma CH, et al. GIANT FP6 Consortium. Clinical adenoviral gene therapy for prostate cancer. Hum Gene Ther 2010; 21(7): 807-13.
[http://dx.doi.org/10.1089/hum.2009.206] [PMID: 20001452]
[17]
Kuryk L, Vassilev L, Ranki T, et al. Toxicological and bio-distribution profile of a GM-CSF-expressing, double-targeted, chimeric oncolytic adenovirus ONCOS-102 - Support for clinical studies on advanced cancer treatment. PLoS One 2017; 12(8): e0182715.
[http://dx.doi.org/10.1371/journal.pone.0182715] [PMID: 28796812]
[18]
Foreman PM, Friedman GK, Cassady KA, Markert JM. Oncolytic Virotherapy for the Treatment of Malignant Glioma. Neurotherapeutics 2017; 14(2): 333-44.
[http://dx.doi.org/10.1007/s13311-017-0516-0] [PMID: 28265902]
[19]
Fowler KB, Stagno S, Pass RF, Britt WJ, Boll TJ, Alford CA. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 1992; 326(10): 663-7.
[http://dx.doi.org/10.1056/NEJM199203053261003] [PMID: 1310525]
[20]
de Jong EP, de Haan TR, Kroes AC, Beersma MF, Oepkes D, Walther FJ. Parvovirus B19 infection in pregnancy. J Clin Virol 2006; 36(1): 1-7.
[http://dx.doi.org/10.1016/j.jcv.2006.01.004]
[21]
Wang F, Wang Z, Tian H, et al. Biodistribution and safety assessment of bladder cancer specific recombinant oncolytic adenovirus in subcutaneous xenografts tumor model in nude mice. Curr Gene Ther 2012; 12(2): 67-76.
[http://dx.doi.org/10.2174/156652312800099599] [PMID: 22384806]
[22]
Machiels JP, Salazar R, Rottey S, et al. A phase 1 dose escalation study of the oncolytic adenovirus enadenotucirev, administered intravenously to patients with epithelial solid tumors (EVOLVE). J Immunother Cancer 2019; 7(1): 20.
[http://dx.doi.org/10.1186/s40425-019-0510-7] [PMID: 30691536]
[23]
Philbrick B, Adamson DC. DNX-2401: an investigational drug for the treatment of recurrent glioblastoma. Expert Opin Investig Drugs 2019; 28(12): 1041-9.
[http://dx.doi.org/10.1080/13543784.2019.1694000] [PMID: 31726894]
[24]
Yokoda RT, Nagalo BM, Borad MJ. Oncolytic Adenoviruses in Gastrointestinal Cancers. Biomedicines 2018; 6(1): E33.
[http://dx.doi.org/10.3390/biomedicines6010033] [PMID: 29534501]
[25]
Terao S, Shirakawa T, Kubo S, et al. Midkine promoter-based conditionally replicative adenovirus for targeting midkine-expressing human bladder cancer model. Urology 2007; 70(5): 1009-13.
[http://dx.doi.org/10.1016/j.urology.2007.07.003] [PMID: 17919690]
[26]
Ramesh N, Ge Y, Ennist DL, et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res 2006; 12(1): 305-13.
[27]
Ramesh N, Memarzadeh B, Ge Y, et al. Identification of pretreatment agents to enhance adenovirus infection of bladder epithelium. Mol Ther 2004; 10(4): 697-705.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.002]
[28]
Wang H, Satoh M, Abe H, et al. Oncolytic viral therapy by bladder instillation using an E1A, E1B double-restricted adenovirus in an orthotopic bladder cancer model. Urology 2006; 68(3): 674-81.
[http://dx.doi.org/10.1016/j.urology.2006.04.021] [PMID: 16979729]
[29]
Ahi YS, Bangari DS, Mittal SK. Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther 2011; 11(4): 307-20.
[http://dx.doi.org/10.2174/156652311796150372] [PMID: 21453277]
[30]
Campos SK, Barry MA. Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther 2007; 7(3): 189-204.
[http://dx.doi.org/10.2174/156652307780859062] [PMID: 17584037]
[31]
Tamura RE, de Luna IV, Lana MG, Strauss BE. Improving adenoviral vectors and strategies for prostate cancer gene therapy. Clinics 2018; 73(Suppl. 1): e476s.
[http://dx.doi.org/10.6061/clinics/2018/e476s] [PMID: 30133562]
[32]
Goradel NH, Mohajel N, Malekshahi ZV, et al. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J Cell Physiol 2019; 234(6): 8636-46.
[http://dx.doi.org/10.1002/jcp.27850] [PMID: 30515798]
[33]
Demmler GJ. Infectious Diseases Society of America and Centers for Disease Control. Summary of a workshop on surveillance for congenital cytomegalovirus disease. Rev Infect Dis 1991; 13(2): 315-29.
[http://dx.doi.org/10.1093/clinids/13.2.315] [PMID: 1645882]
[34]
Chisaka H, Morita E, Yaegashi N, Sugamura K. Parvovirus B19 and the pathogenesis of anaemia. Rev Med Virol 2003; 13(6): 347-59.
[http://dx.doi.org/10.1002/rmv.395] [PMID: 14625883]
[35]
Norbeck O, Papadogiannakis N, Petersson K, Hirbod T, Broliden K, Tolfvenstam T. Revised clinical presentation of parvovirus B19-associated intrauterine fetal death. Clin Infect Dis 2002; 35(9): 1032-8.
[http://dx.doi.org/10.1086/342575] [PMID: 12384835]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy